
1Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 11:
Model-based Design

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – January 15, 2002

2

Model-based Desi gnModel-based Design

	 Concept
� requirements Æ models Æ implementation

	 Models
� Allow us to check properties of interest before

implementation
¤ Safety for the appropriate (sub)system
¤ Progress on the overall system

	 Practice
� Interpret model behavior to infer actual system

behavior (e.g., which will be composed of threads and
monitors).

3

From Re quirements to ModelsFrom Requirements to Models

Any appropriate
design approach

can be used.

• goals of the system
• scenarios (Use Case models)

• properties of interest

	 identify the main events, actions, and interactions
	 identify and define the main processes
	 identify and define the properties of interest
	 structure the processes into an architecture

• check traces of interest
• check properties of interest

Requirements

Model

4

Cruise Control Re quirementsCruise Control Requirements

When the car
ignition is switched
on and the on button
is pressed, the
current speed is
recorded and the
system is enabled:
it maintains the
speed of the car at
the recorded setting.

Pressing the brake ,
accelerator , or
off button disables
the system. Pressing
resume or on re-
enables the system.buttons

5

Cruise Control S ystem HardwareCruise Control System Hardware

buttons

engine

accelerator

brake
PIA

polled

wheel interrupt

CPU

throttleD/A

Parallel Interface Adapter (PIA) is polled every 100msec. It records the
actions of the sensors:

Wheel revolution sensor generates interrupts to enable the
car speed to be calculated.

Output : The cruise control system controls the car speed
by setting the throttle via the digital-to-analog converter.

• but buttons (on , off , resume)
• brake (pressed)
• accelerator (pressed)
• engine (on, off)

6

Model Desi gn OutlineModel Design Outline

Outline processes and interactions:

Sensors

PromptsEngine

speed setThrottle

Sensor Scan
monitors the
buttons, brake,
accelerator and
engine events.

Cruise Controller
triggers clear speed
and record speed,
and enables or
disables the speed
control.

Input Speed
monitors the
speed when the
engine is on, and
provides the
current speed
readings to speed
control.

Speed Control
clears and
records the
speed, and sets
the throttle
accordingly
when enabled.

Throttle
sets the
actual
throttle.

7

Model Desi gn OverviewModel Design Overview

	 Main processes
� SENSORSCAN, INPUTSPEED, CRUISECONTROLLER,

SPEEDCONTROL, and THROTTLE

	 Main events, actions, and interactions
� engineOn , engineOff , on , off , resume , brake ,

and accelerator (monitored by sensors)
� clearSpeed , recordSpeed , enableControl ,

disableControl (interact with speed control)
� speed and setThrottle (input/output of speed

control)
	 Main properties
� Safety – system is disabled when off , brake , or

accelerator is pressed

8

Cruise Control StructureCruise Control Structure

SENSOR
SCAN

CRUISE
CONTROLLER

Sensors

INPUT
SPEED

SPEED
CONTROL

set
Throttle

speed

Engine Prompts

CONTROL CRUISE
CONTROL
SYSTEM

THROTTLE

The CONTROL
system is
structured as
two processes.

The main
actions and
interactions are
as shown.

// Simplify keeping track of sensor events
set Sensors = {engineOn,engineOff,on,off,
 resume,brake,accelerator}

9

Cruise Control ModelCruise Control Model

// "Listen" for all sensor events
SENSORSCAN = ({Sensors}->SENSORSCAN).

// Monitor speed when engine on
INPUTSPEED = (engineOn->CHECKSPEED),
CHECKSPEED = (speed->CHECKSPEED
 |engineOff->INPUTSPEED).

// "Zoom" when throttle set
THROTTLE =(setThrottle->zoom->THROTTLE).

// Perform speed control when enabled
SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed}->DISABLED
 |enableControl->ENABLED),
ENABLED = (speed->setThrottle->ENABLED
 |{recordSpeed,enableControl}->ENABLED
 |disableControl->DISABLED).

10

Cruise Control ModelCruise Control Model

// Enable speed control when cruising,
// disable when off, brake or accelerator pressed
CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn->clearSpeed->ACTIVE),
ACTIVE =(engineOff->INACTIVE
 |on->recordSpeed->enableControl->CRUISING),
CRUISING =(engineOff->INACTIVE
 |{off,brake,accelerator}
 ->disableControl->STANDBY
 |on->recordSpeed->enableControl->CRUISING),
STANDBY =(engineOff->INACTIVE
 |resume->enableControl->CRUISING
 |on->recordSpeed->enableControl->CRUISING).

11

Cruise Control ModelCruise Control Model

||CONTROL = (CRUISECONTROLLER || SPEEDCONTROL).

Animate to check
particular traces:

However, we need
to analyze for:

- Is control enabled after
the engine is switched
on and the on button is
pressed?

- Is control disabled
when the brake is then
pressed?

- Is control re-enabled
when resume is then
pressed?

Safety: Is the control
disabled when off ,
brake , or
accelerator is
pressed?

Progress: Can every
action eventually be
selected?

12

Model Safet y PropertiesModel Safety Properties

Safety checks are compositional. If there is no violation within a
particular subsystem, then there cannot be a violation when the
subsystem is composed with other subsystems.

This is because if the ERROR state of a particular safety property is
unreachable in the LTS of the subsystem, it remains unreachable in
any subsequent parallel composition which includes the subsystem.

Hence...

Safety properties should be composed with the appropriate
system or subsystem to which the property refers. In order
that the property can check the actions in its alphabet, these
actions must not be hidden in the system.

13

Cruise Control Safet y PropertyCruise Control Safety Property

property CRUISESAFETY =
 ({off,accelerator,brake,disableControl}
 ->CRUISESAFETY
 |{on,resume}->SAFETYCHECK),
SAFETYCHECK =
 ({on,resume}->SAFETYCHECK
 |{off,accelerator,brake}->SAFETYACTION
 |disableControl->CRUISESAFETY
),
SAFETYACTION =(disableControl->CRUISESAFETY).

LTS?

||CONTROL =(CRUISECONTROLLER
 ||SPEEDCONTROL
 || CRUISESAFETY).

Is CRUISESAFETY
violated?

14

Cruise Control Safet y PropertyCruise Control Safety Property

// Control subsystem
||CONTROL =
 (CRUISECONTROLLER || SPEEDCONTROL || CRUISESAFETY)
 @{Sensors,speed,setThrottle}.

// Complete cruise control system
||CRUISECONTROLSYSTEM =
 (CONTROL || SENSORSCAN || INPUTSPEED || THROTTLE).

No deadlocks/errorsDeadlock?
Safety?

Progress?

15

Model Pro gress Pro pertiesModel Progress Properties

Progress checks are not compositional. Even if there is no
violation at a subsystem level, there may still be a violation
when the subsystem is composed with other subsystems.

This is because an action in the subsystem may satisfy prog-
gress yet be unreachable when the subsystem is composed
with other subsystems which constrain its behavior.

Hence...

Progress checks should be conducted on the complete target
system after satisfactory completion of the safety checks.

16

Cruise Control Pro gress Pro pertyCruise Control Progress Property

Progress violation for actions:
{engineOn, engineOff, on, off, brake,
accelerator, resume}
Path to terminal set of states:

engineOn
tau
on
tau
tau
engineOff
engineOn

Actions in terminal set:
{speed, setThrottle, zoom}

Since the cruise control system should always work, we would
expect no action to starve, thus we can use the default progress
property. When a system specifies no progress properties, then LTSA
uses the default progress property; it is equivalent to defining a
progress property for each action.

Hidden actions
appear as tau

17

Cruise Control Pro gress Pro pertyCruise Control Progress Property

Progress violation for actions:
{accelerator, brake, clearSpeed,
disableControl, enableControl, engineOff,
engineOn, off, on, recordSpeed, resume}
Trace to terminal set of states:

engineOn
clearSpeed
on
recordSpeed
enableControl
engineOff
engineOn

Actions in terminal set:
{setThrottle, speed, zoom}

Why is this
happening?

Removing the hidden actions...

18

Minimized Cruise Control LTSMinimized Cruise Control LTS

||CRUISEMINIMIZED =
 (CRUISECONTROLSYSTEM)
 @{Sensors,speed}.

We can easily see here that in state 2, the cruise control
is not disabled when the engine is turned off (via
engineOff).

19

Revised Cruise Control S ystemRevised Cruise Control System

...
CRUISING =(engineOff-> disableControl ->INACTIVE
 |{off,brake,accelerator}->disableControl->STANDBY
 |on->recordSpeed->enableControl->CRUISING),
...

Okay now?

property IMPROVEDSAFETY =
 ({off,accelerator,brake,disableControl, engineOff }
 ->IMPROVEDSAFETY
 |{on,resume}->SAFETYCHECK),
SAFETYCHECK =
 ({on,resume}-> SAFETYCHECK
 |{off,accelerator,brake, engineOff }->SAFETYACTION
 |disableControl->IMPROVEDSAFETY),
SAFETYACTION =(disableControl->IMPROVEDSAFETY).

20

Revised Cruise Control S ystemRevised Cruise Control System

No deadlocks/errorsNo deadlocks/errors

No progress violations
detected.

What about under
adverse conditions?
Check for system
sensitivities.

21

Cruise Control SensitivitiesCruise Control Sensitivities

Progress violation for actions:
{engineOn, engineOff, on, off, brake,
accelerator, resume, setThrottle, zoom}
Path to terminal set of states:

engineOn
tau

Actions in terminal set:
{speed}

The system may be
sensitive to the priority
of the action speed .

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

22

Model Inter pretationModel Interpretation

Models can be used to indicate system sensitivities.

If it is possible that erroneous situations detected in the
model may occur in the implemented system, then the
model should be revised to find a design which ensures
that those violations are avoided.

However, if the real system will not exhibit this behavior,
then no further model revisions are necessary.

Model interpretation and correspondence to the
implementation are important in determining the
relevance and adequacy of the model design and its
analysis.

23

Central Role of a Desi gn ArchitectureCentral Role of a Design Architecture

Behavioural View Implementation View

Architecture

Analysis Program Construction

Performance View

Design architecture describes the overall organization and
structure of the system in terms of its components; we have been
using FSP and structure diagrams for our design architecture.

We consider that the models for analysis and the
implementation should be considered as elaborated
views of this basic design structure.

24

Models to Im plementationsModels to Implementations

Model

Java

• Identify the main active entities
- Implemented as threads

• Identify the main (shared) passive entities
- Implemented as monitors

• Identify the interactive display environment
- Implemented as associated classes

• Structure the classes as a class diagram

25

Cruise Control Class Dia gramCruise Control Class Diagram

enableControl()
disableControl()
recordSpeed()
clearSpeed()

Applet

CruiseControl

Controller

brake()
accelerator()
engineOff()
engineOn()
on()
off()
resume()

SpeedControl

CarSimulator

CarSpeed

setThrottle()
getSpeed()

Runnable

CruiseDisplay

car

control

sc

disp

disp

cs

SpeedControl
interacts with the
car simulation via
interface
CarSpeed .

26

Controller ClassController Class

class Controller {
 final static int INACTIVE = 0;
 final static int ACTIVE = 1;
 final static int CRUISING = 2;
 final static int STANDBY = 3;
 private int controlState = INACTIVE; // Initial state
 private SpeedControl sc;

 Controller(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs,disp);
 }

 synchronized void brake() {
 if (controlState == CRUISING)
 { sc.disableControl(); controlState=STANDBY; }
 }

 synchronized void accelerator() {
 if (controlState == CRUISING)
 { sc.disableControl(); controlState = STANDBY; }
 }

// continued on next slide...

Controller is a
passive entity - it
reacts to events;
hence we implement
it as a monitor

27

Controller ClassController Class

// continued from previous slide...
 synchronized void engineOff() {
 if (controlState != INACTIVE) {
 if (controlState == CRUISING) sc.disableControl();
 controlState = INACTIVE;
 }
 }
 synchronized void engineOn() {
 if (controlState == INACTIVE)
 { sc.clearSpeed(); controlState=ACTIVE; }
 }
 synchronized void on() {
 if (controlState != INACTIVE)
 { sc.recordSpeed(); sc.enableControl(); controlState=CRUISING; }
 }
 synchronized void off() {
 if (controlState == CRUISING)
 { sc.disableControl(); controlState = STANDBY; }
 }
 synchronized void resume() {
 if (controlState == STANDBY)
 { sc.enableControl(); controlState = CRUISING; }
 }
}

This is a direct
translation from the
model.

28

SpeedControl ClassSpeedControl Class

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // Speed control states
 final static int ENABLED = 1;
 private int state = DISABLED; // Initial state
 private int setSpeed = 0; // Target speed
 private Thread speedController;
 private CarSpeed cs; // Interface to car
 private CruiseDisplay disp;

 SpeedControl(CarSpeed cs, CruiseDisplay disp) {
 this.cs = cs; this.disp = disp; disp.disable(); disp.record(0);
 }

 synchronized void recordSpeed() {
 setSpeed = cs.getSpeed(); disp.record(setSpeed);
 }

 synchronized void clearSpeed() {
 if (state == DISABLED) { setSpeed = 0; disp.record(setSpeed); }
 }

// continued on next slide...

SpeedControl is
an active entity -
when enabled, a new
thread is created
which periodically
obtains car speed and
sets the throttle.

29

SpeedControl ClassSpeedControl Class

// continued from previous slide...
 synchronized void enableControl() {
 if (state == DISABLED)
 { disp.enable(); speedController = new Thread(this);
 speedController.start(); state = ENABLED; }
 }
 synchronized void disableControl() {
 if (state==ENABLED)
 { disp.disable(); state = DISABLED; }
 }
 public void run() { // the speed controller thread
 try {
 while (state == ENABLED) {
 Thread.sleep(500);
 if (state == ENABLED) synchronized(this) {
 double error = (float)(setSpeed-cs.getSpeed())/6.0;
 double steady = (double)setSpeed/12.0;
 cs.setThrottle(steady+error); // feed back control
 }
 }
 } catch (InterruptedException e) { }
 speedController=null;
 }
}

SpeedControl is
an example of a class
that combines both
synchronized access
methods (to update
local variables) and a
thread.

30

Summar ySummary

	 Concepts
� Design process
Æ from requirements to models to implementations

� Design architecture

	 Models
� Check properties of interest
¤ Safety: compose safety properties at appropriate (sub)system
¤ Progress: apply progress check on the final system model

	 Practice
� Model interpretation to infer actual system behavior
� Implement using threads and monitors

