Concurrent Programmin ¢
19530-V (WS01)

Lecture 11.:
Model-based Design

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — January 15, 2002

Model-based Desiggn

Concept
requirements> models~> implementation

Models
Allow us to check properties of interest before
implementation
Safetyfor the appropriate (sub)system
Progresson the overall system

Practice

Interpret model behavior to infer actual system
behavior (e.g., which will be composed of threads and
monitors).

=

From ReaquirsmeritsitoMolisis

* goals of the system
Requirements * scenariogUse Case models
* properties of interest

|

 —
[
Any appropriate . identify the main events, actions, and interactions
design approach « identify and define the main processes
can be used. « identify and define the properties of interest

« structure the processes intoanhitecture

Model * check traces of interest
oz * check properties of interest

Cruise Control Reqguireraetits

When the car
ignition is switched
- R e Jl| onand theon button
is pressed, the
current speed is
recorded and the
system is enabled:
it maintains the
speed of the car at
the recorded setting

ignition @ Throttie [| Pressing thérake ,

Brake [| accelerator , or
off button disables
engineldn I engine0ff | accelerate | brake | o_ffl TesLUme | the SyStem' PreSSIng

resume oron re-

buttons ﬂ enables the system.

Cruise Control SyyisteniiHaroweare

Parallel Interface Adapter (PIA) is polled every 100msec. It records the
actions of the sensors:
* but buttonsdn, off |, resume)

buttons
e brake (pressed
brake polled (P)
> PIA e accelerator (pressed)
accelerator CPU - engine (n, off)
engine
wheel interrupt D/A ¥ throtile

Wheel revolution sensor generates interrupts to enable the
carspeedto be calculated.

Output: The cruise control system controls the car speed

by setting thehrottle via the digital-to-analog converter. Y

Model Desicgn(@uitlirze

Outline processeandinteractions

Sensor Scan Cruise Controller

monitors the Sensors triggers clear speed
buttons, brake,— and record speed,

accelerator and and enables or
engine events. disables the speed

control.
l Engine lPrompts

Input Speed Speed Control Throttle
monitors the speed clears and setThrottle sets the
speed when the = recordsthe = ——» actual
engine is on, and speed, and sets throttle.
provides the the throttle
current speed accordingly
readings to speed when enabled.

control.

Model Desiggn(@verdiew

Main processes
SENSORSCANPUTSPEED CRUISECONTROLLER
SPEEDCONTRQandTHROTTLE

Main events, actions, and interactions
engineOn , engineOff |, on, off ,resume , brake ,
andaccelerator (monitored by sensors)
clearSpeed ,recordSpeed ,enableControl ,
disableControl (interact with speed control)
speed andsetThrottle (input/output of speed
control)

Main properties
Safety- system is disabled wher , brake , or

accelerator Is pressed

Cruise Control Structure

The CONTROL CONTROL CRUISE
system is CONTROL
structured as SENSOR [5ensors| W SYSTEM
two processes. SCAN CONTROLLER
L © 5
The main)
actions and Engine Rrompis
interactions are SeUr
as shown. speed THROTTLE
SPEED peed SPEED _set
CONTROL | [Throttie

/I Simplify keeping track of sensor events
set Sensors = {engineOn,engineOff,on,off,

resume,brake,accelerator}

Cruise Control Model

/] "Listen" for all sensor events
SENSORSCAN = ({Sensors}->SENSORSCAN).

// Monitor speed when engine on

INPUTSPEED = (engineOn->CHECKSPEED),

CHECKSPEED = (speed->CHECKSPEED
|engineOff->INPUTSPEED).

/I "Zoom" when throttle set
THROTTLE =(setThrottle->zoom->THROTTLE).

I/ Perform speed control when enabled

SPEEDCONTROL = DISABLED,

DISABLED =({speed,clearSpeed,recordSpeed}->DISABLED
|enableControl->ENABLED),

ENABLED = (speed->setThrottle->ENABLED
|{recordSpeed,enableControl}->ENABLED
|disableControl->DISABLED).

Cruise Control Model

10

/l Enable speed control when cruising,

/Il disable when off, brake or accelerator pressed

CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn->clearSpeed->ACTIVE),

ACTIVE =(engineOff->INACTIVE
|on->recordSpeed->enableControl->CRUISING),

CRUISING =(engineOff->INACTIVE
|{off,brake,accelerator}

->disableControl->STANDBY

|on->recordSpeed->enableControl->CRUISING),

STANDBY =(engineOff->INACTIVE
[resume->enableControl->CRUISING
|on->recordSpeed->enableControl->CRUISING).

11

Cruise Control Model

[[CONTROL = (CRUISECONTROLLER || SPEEDCONTROL).

Animate to check However, we need
particular traces: to anayze for:

- Is control enabled after
the engine is switched
on and the on button is

Safety Is the control
disabled whemff

brake , or
pressed? accelerator is
- Is control disabled
pressed?

when the brake is then
pressed?

- Is control re-enabled
when resume is then
pressed?

Progress Can every
action eventually be
selected?

12

Model SafetyPropertes

Safey checks areompositional If there is no violation within a
particular subgstem, then there cannot be a violation when the
subystem is corposed with other sulgstems.

This is because if theRROFstate of garticular safet property is
unreachable in the LTS of the syb®m, it remains unreachable in
ary subsguentparallel conposition which includes the sumtem.

Hence...

Safey properties should be coposed with the propriate
system or subgstem to which th@roperty refers. In order
that theproperty can check the actions in itghbbet, these
actions must not be hidden in thestem.

Cruise Control Safety yirogerty

13

property CRUISESAFETY =
({off,accelerator,brake,disableControl}
->CRUISESAFETY
[{on,resume}->SAFETYCHECK),

({on,resume}->SAFETYCHECK
|{off,accelerator,brake}->SAFETYACTION
|disableControl->CRUISESAFETY

),
SAFETYACTION =(disableControl->CRUISESAFETY).

SAFETYCHECK = LT

S?

[[CONTROL =(CRUISECONTROLLER
|ISPEEDCONTROL b
I CRUISESAFETY. violated?

Is CRUISESAFET

Cruise Control Safety yirogerty

14

/I Control subsystem

[[CONTROL =
(CRUISECONTROLLER || SPEEDCONTROL || CRUISESAFETY)
@{Sensors,speed,setThrottle}.

/I Complete cruise control system
[[CRUISECONTROLSYSTEM =
(CONTROL || SENSORSCAN || INPUTSPEED || THROTTLE).

Deadlock?
Safety?

No deadlocks/errors

Progress?

15

Model ProgyeessHPrp piérties

Progress checks aret compositional Even if there is no
violation at a subsystem level, there may still be a violation
when the subsystem is composed with other subsystems.

This is because an action in the subsystem may satisfy prog-
gress yet be unreachable when the subsystem is composed
with other subsystems which constrain its behavior.

Hence...

Pragress checks should be conducted on thepbetentaget
system after satisfactprconpletion of the safgtchecks.

16

Cruise Control Progigress Procperty

Since the cruise controystem should alwgs work, we would
expect no action to starve, thus we can useltifault progress
property. When a system specifies no progress properties, then LTSA
uses thelefault progress properfyt is equivalent to defining a
progress property for each action.

Progress violation for actions:
{engineOn, engineOff, on, off, brake,
accelerator, resume}

Path to terminal set of states:

engineOn

tau

on . .

tau Hidden actions
tau appear agau
engineOff

engineOn

Actions in terminal set:
{speed, setThrottle, zoom}

17

Cruise Control Progigaress Procperty

Removirg the hidden actions...

Progress violation for actions:
{accelerator, brake, clearSpeed,
disableControl, enableControl, engineOff,
engineOn, off, on, recordSpeed, resume}
Trace to terminal set of states:

engineOn

clearSpeed

on

recordSpeed

enableControl

engineOff

engineOn . .
Actions in terminal set: Why is this

{setThrottle, speed, zoom} hegppening?
| v

18

Minimized Cruise Control LTS

engineOff

engineCin on { accelerator, brake, off}

i

engineCin

o, speed} speed

[|ICRUISEMINIMIZED =
(CRUISECONTROLSYSTEM)
@{Sensors,speed}.

engineOff

We can easjl see here that in statethe cruise control
is not disabled when the gine is turned off (via e
engineOff).

Revised Cruise Control Sysystem

19

property IMPROVEDSAFETY =

({off,accelerator,brake,disableControl, engineOff }

->|IMPROVEDSAFETY
[{on,resume}->SAFETYCHECK),
SAFETYCHECK =
({on,resume}-> SAFETYCHECK
[{off,accelerator,brake, engineOff }>SAFETYACTION
|disableControl->IMPROVEDSAFETY),
SAFETYACTION =(disableControl->IMPROVEDSAFETY).

CRUISING =(engineOff-> disableControl ->INACTIVE
|{off,brake,accelerator}->disableControl->STANDBY
|on->recordSpeed->enableControl->CRUISING),

Okay now?

Revised Cruise Control Sysystem

engineion, on {accelerator, brake, off}

No deadlocks/errors What about under
adverseconditions?

Check for gstem
sensitivities.

No progress violations
detected.

20

21

Cruise Control Sensitivities

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions:
{engineOn, engineOff, on, off, brake,
accelerator, resume, setThrottle, zoom}
Path to terminal set of states:
engineOn
tau
Actions in terminal set:

{speed}
The ystem mg be
sensitive to theriority
of the actiorspeed .
22
Model Interqpeétation

Models can be used to indicate system sensitivities.

If it is possible that erroneous situations detected in the
model may occur in the implemented system, then the
model should be revised to find a design which ensures
that those violations are avoided.

However, if the real system wiilot exhibit this behavior,
then no further model revisions are necessary.

Model interpretation and correspondence to the
Implementation are important in determining the
relevance and adequacy of the model design and its
analysis. =

23

Central Role of a Desiggi\Architecture

Design architecturedescribes the overall ganization and
structure of theystem in terms of its coponents; we have been
using FSP and structure djgams for our degn architecture.

Architecture

BN

Behavioural View Performance View Implementation View

B [{6

Analysis Program Construction

We consider that the models for analysis and the
implementation should be considered as elaborated
views of this basic design structure.

24

Models to ImpHemematons

Model I
Identify the main active entities

O
- Implemented as threads
Identify the main (shared) passive entities

- Implemented as monitors

Identify the interactive display environment
- Implemented as associated classes

* Structure the classes as a class diagram

Java I

Cruise Control Class Diagrgram

25

CarSpeed <
setThrottle()
getSpeed()
disp
————————
brake() !
accelerator() sc cs
engineOff() SpeedControl
engineOn() enableControl()
on() disableControl()
off() recordSpeed()
resume() clearSpeed() SpeedControl
d_ interacts with the
Lo} CruiseDisplay =0 car simulation via
interface
CarSpeed .
| —
(2] AR |
26
class Controller {
final static int INACTIVE = 0;
final static int ACTIVE =1,
final static int CRUISING = 2;
final static int STANDBY = 3;
private int controlState = INACTIVE; /I Initial state
private SpeedControl sc;
Controller isa

Controller(CarSpeed cs, CruiseDisplay disp) {
sc = new SpeedControl(cs,disp);

}

synchronized void brake() {
if (controlState == CRUISING)

}

synchronized void accelerator() {
if (controlState == CRUISING)

}

/I continued on next slide...

{ sc.disableControl(); controlState=STANDBY; }

{ sc.disableControl(); controlState = STANDBY; }

passive entity - it
reacts to events;
hence we implement

it as amonitor

LI

Controller Class

27

/I continued from previous slide...
synchronized void engineOff() {
if (controlState != INACTIVE) {

controlState = INACTIVE;
}
}
synchronized void engineOn() {
if (controlState == INACTIVE)
{ sc.clearSpeed(); controlState=ACTIVE; }
}
synchronized void on() {
if (controlState != INACTIVE)

}
synchronized void off() {

if (controlState == CRUISING)

{ sc.disableControl(); controlState = STANDBY; }

}
synchronized void resume() {

if (controlState == STANDBY)

{ sc.enableControl(); controlState = CRUISING; }
}

}

if (controlState == CRUISING) sc.disableControl();

{ sc.recordSpeed(); sc.enableControl(); controlState=CRUISING; }

This is a direct
translation from the
model.

SpeedControl Class

28

class SpeedControl implements Runnable {
final static int DISABLED = 0; // Speed control states
final static int ENABLED =1;
private int state = DISABLED; // Initial state
private int setSpeed = 0; // Target speed
private Thread speedController;
private CarSpeed cs; // Interface to car
private CruiseDisplay disp;

SpeedControl(CarSpeed cs, CruiseDisplay disp) {
this.cs = cs; this.disp = disp; disp.disable(); disp.record(0);
}

synchronized void recordSpeed() {
setSpeed = cs.getSpeed(); disp.record(setSpeed);
}

synchronized void clearSpeed() {
if (state == DISABLED) { setSpeed = 0; disp.record(setSpeed); }
}

/I continued on next slide...

SpeedControl s

an active entity -
when enabled, aew
threadis created
which periodically
obtains car speed and
sets the throttle.

L]

29

SpeedControl Class

/I continued from previous slide...
synchronized void enableControl() {

if (state == DISABLED) SpeedControl is

{ disp.enable(); speedController = new Thread(this); an example of a class
speedController.start(); state = ENABLED; } that combines both
synchronized access
synchronized void disableControl() { methods (to update
if (Zt.ate;.:EEIAB.LEtDt) - DISABLED: local variables) and a
{ disp.disable(); state = ! thread.
public void run() { /I the speed controller thread
try {

while (state == ENABLED) {
Thread.sleep(500);
if (state == ENABLED) synchronized(this) {
double error = (float)(setSpeed-cs.getSpeed())/6.0;
double steady = (double)setSpeed/12.0;
cs.setThrottle(steady+error); /I feed back control

}

}
} catch (InterruptedException €) { }

speedController=null; L
}
)]
p— e
30
Summany

Concepts

Design process
- from requirements to models to implementations

Design architecture

Models
Check properties of interest
Safety compose safety properties at appropriate (sub)system
Progress apply progress check on the final system model
Practice
Model interpretationto infer actual system behavior
Implementusing threads and monitors ‘

