Concurrent Programmin g
- 19530-V (WS01)

Lecture 10:
Readers and Writers

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — January 8, 2002

Readers-Writers Examptele

ol G R GE . e R

Light blue
indicates

database
. . access.

il_'-' -- ¥ — r--
mun] piuee|] pauna] " un] e |

A shared database is accessgdtilm kinds ofprocesses.
Readersexecute transactions that examine the database while
Writers both examine andpdate the database.\Ariter must
have exclusive access to the databasgnamber ofReaders
—
may concurrenty access the database. ‘-

Readers-Writers Model

Events or actions of interest?

acquireRead ,releaseRead ,acquireWrite
releaseWrite

|dentify processes
Reader , Writer , andRW _Lock

|dentify properties.
RW_Safe
RW_Progress

reader[1..Nread]: writer[1..Nwrite]:
READER WRITER

~N Z

READERS & READWRITELOCK

_WRITERS acquireRead acquireWrite
releaseRead releaseWrite

Define each process
Interactions and structure

Readers-Writers Model

set Actions =
{acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead ->examine-> releaseRead ->READER)
+ Actions

\ {examine}.

WRITER = (acquireWrite ->modify-> releaseWrite ->WRITER)
+ Actions

\ {modify}.

Alphabet extensions used to ensure that the other access actions
cannot occur freely for any prefixed instance of the process (as
before).

Action hiding is used since the actioagsamine andmodify
are not relevant for access synchronization. —

Readers-Writers Lock Model

const False =0

const True =1

range Bool = False..True

const Nread =2 // Maximum readers
const Nwrite = 2 // Maximum writers

RW_LOCK = RWD][False],

RWlreaders :0..Nread] writing :Bool] =
(when (lwriting)

).

acquireRead -> RW[readers+1][writing

[releaseRead -> RW[readers-1][writing

[when (readers==0 && lwriting)
acquireWrite -> RW[readers][True]

[releaseWrite -> RW[readers][False]

|
The lock
maintains a
count of the
number of
readers and a
Boolean for a
single writer.

]
]

Readers-Writers Safety y’Rropérty

property SAFE_RW
=(acquireRead -> READING] 1]
| acquireWrite -> WRITING

),
READING]Ji:1..Nread]
=(acquireRead ->READING[i+1]

[when(i==1) releaseRead ->SAFE_RW

WRITING = (releaseWrite -> SAFE_RW).

[when(i>1) releaseRead ->READING[i-1]

We can check thd&W_LOCIsatisfies the safety property...

IREADWRITELOCK = (RW_LOCK || SAFE_RW).

Safety analysis? LTS?

Readers-Writers Safety y’Rropérty

wpambem
— —
_jqu Wres 3 aorrel e
i _-p—_ i\ e
I LV B
'- .. - .-I-I
é - 5, -'_ — .E " |'
F k ".- rrlowFand _.
rr:n'l'l'rl.ll "2
"'\ e e g
', ".__:Inﬂuhl asellead
d T —— =
: e, R __.-""
s e
= Lo
ey bam
e Wiiin

An ERROFoccurs if a reader or writer is badly behavedsase
beforeacquireor more than two readers).

We can now compose tlie=ADWRITELOCWith READEFRand
VIRITER processes according to our structure...

Readers-Writers Comppasition

reader[1..Nread]: writer[1..Nwrite]:
READER WRITER

AN Z

READERS E READWRITELOCK

_WRITERS acquireRead acquireWrite
releaseRead releaseWritet

[|READERS_WRITERS =
(reader[1..Nread]:READER
||writer[1..Nwrite] WRITER
|{reader[1..Nread],

writer[1..Nwrite]};:READWRITELOCK).

Safety and progress analysis?

Readers-Writers Safety y’Rropérty

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

VRITE — eventually one of the writers wiltquire\Write
READ- eventually one of the readers witiquireRead

How do we model adverse conditions using action priority?
We lower thepriority of the release actions for both readers
and writers.

[IRW_PROGRESS = READERS_WRITERS
>>{reader[1..Nread].releaseRead,
writer[1..Nwrite].releaseWrite}.

Progress analysis? LTS?

10

Readers-Writers Proggress

Progress violation: WRITE Writer

Path to terminal set of states: darvation:
reader.1.acquireRead '

Actions in terminal set: The number b

{reader.1.acquireRead, reader.1.releaseRead, readersnever
reader.2.acquireRead, reader.2.releaseRead} drops to zero.
reader.1 acouireRead
terminal set

reader. 2 acquireRead

writer. 1 acuire Write

/ ~
writer 2 acquireWrite reader.] acquireFead reader.dreleaseRead
witer 2 release Write reader.] releaseRead reader 2 accuireRead ‘

writer.] releaseWrite

11

Readers-Writers Safety y’Rropérty

We will concentrate on the monitor jpleementation

interface ReadWrite {
public void acquireRead()
throws InterruptedException;
public void releaseRead();
public void acquireWrite()
throws InterruptedException;
public void releaseWrite();

We define annterfacethat identifies the monitor
methods that must be piemented and devgia
number of alternative iplementations of this interface.

First, thesafeimplementation...

12

Readers-Writers Safety y’Rropérty

class ReadWriteSafe implements ReadWrite {
private int readers = 0;
private boolean writing = false;

public synchronized void acquireRead()
throws InterruptedException {
while (writing) wait();

++readers;

}

public synchronized void releaseRead() {
--readers;
if (readers == 0) notify();

}

/I continued...

Unblock asingle writerwhen
there are no more readers.

13

Readers-Writers Safety y’Rropérty

/I ...continued from previous slide

public synchronized void acquireWrite()
throws InterruptedException {
while (readers > 0 || writing) wait();
writing = true;

}

public synchronized void releaseWrite() {
writing = false;
notifyAll();
}

}

Unblockall readers

This monitor implementation suffers from thé: I TE progress —

problem:possible writer starvation if the number of readers neve‘

drops to zero

14

Readers-Writers with Writer Priority y

8 "

Strategy:
Block readers
if there is a
writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,
releaseWrite,requestWrite}

WRITER =(requestWrite->acquireWrite->modify
->releaseWrite->WRITER
)+Actions\{modify}.

Readers-Writers with Writer Priority y

RW_LOCK = RWI[0][False][0],
RW][readers:0..Nread][writing:Bool][waitingW :0..Nwrite]
= (when ('writing && waitingW==0)
acquireRead->RW/[readers+1][writing][waitingW]
[releaseRead->RW/[readers-1][writing][waitingW]
[when (readers==0 && !writing)

acquireWrite->RW/readers][True] waitingW-1]
[releaseWrite->RW][readers][False][waitingW]
| requestWrite ->RW][readers][writing][waitingW+1]

).

Safety and progress analysis?

15

16
Readers-Writers with Writer Priority 'y
Property RW_ SAFE
No deadlocks/errors
ProgressREADand WRITE
Progress violation: READ Reader
Path to terminal set of states: starvation:
writer.1.requestWrite readersnight
writer.2.requestWrite alwavs wait
Actions in terminal set: f y't
{writer.1.requestWrite, writer.1.acquireWrite, Or Wrters.
writer.1.releaseWrite, writer.2.requestWrite,
writer.2.acquireWrite, writer.2.releaseWrite}

In practice, this may be satisfactory because there might be

more read access than write and readers generally want the

most up to date information.

17

Readers-Writers with Writer Priority y

class ReadWritePriority implements ReadWrite {
private int readers = 0;
private boolean writing = false;
private int waitingW = 0; /I no of waiting Writers

public synchronized void acquireRead()
throws InterruptedException {
while (writing || waitingW>0) wait();
++readers;

}

public synchronized void releaseRead() {
--readers;
if (readers==0) notifyAll();

/I continued... —

18

Readers-Writers with Writer Priority y

/I ...continued from previous slide

public synchronized void acquireWrite() {
++waitingW;
while (readers>0 || writing) try { wait();}
catch(InterruptedException e){}
--waitingW;
writing = true;

}

public synchronized void releaseWrite() {
writing = false;
notifyAll();
}
}

Both READand\WRITE progressproperties can be satisfie¢/b
introducirg aturn variable as we did for the Sjle Lane Bridje. | %=

