
1Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 10:
Readers and Writers

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – January 8, 2002

2

Readers-Writers Exam pleReaders-Writers Example

A shared database is accessed by two kinds of processes.
Readers execute transactions that examine the database while
Writers both examine and update the database. A Writer must
have exclusive access to the database; any number of Readers
may concurrently access the database.

Light blue
indicates
database
access.

3

Readers-Writers ModelReaders-Writers Model

	 Events or actions of interest?
� acquireRead , releaseRead , acquireWrite ,

releaseWrite

	 Identify processes
� Reader , Writer , and RW_Lock

	 Identify properties.
� RW_Safe

� RW_Progress

	 Define each process
� Interactions and structure

writer[1..Nwrite]:
WRITER

reader[1..Nread]:
READER

READERS
_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite

4

Readers-Writers ModelReaders-Writers Model

set Actions =
 {acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead ->examine-> releaseRead ->READER)
 + Actions
 \ {examine}.

WRITER = (acquireWrite ->modify-> releaseWrite ->WRITER)
 + Actions
 \ {modify}.

Alphabet extension is used to ensure that the other access actions
cannot occur freely for any prefixed instance of the process (as
before).

Action hiding is used since the actions examine and modify
are not relevant for access synchronization.

5

Readers-Writers Lock ModelReaders-Writers Lock Model

const False = 0
const True = 1
range Bool = False..True
const Nread = 2 // Maximum readers
const Nwrite = 2 // Maximum writers

RW_LOCK = RW[0][False],
RW[readers :0..Nread][writing :Bool] =

(when (!writing)
acquireRead -> RW[readers+1][writing]

|releaseRead -> RW[readers-1][writing]
|when (readers==0 && !writing)
 acquireWrite -> RW[readers][True]
|releaseWrite -> RW[readers][False]
).

The lock
maintains a
count of the
number of
readers and a
Boolean for a
single writer.

6

Readers-Writers Safet y PropertyReaders-Writers Safety Property

property SAFE_RW
 = (acquireRead -> READING[1]
 | acquireWrite -> WRITING
),
READING[i:1..Nread]
 = (acquireRead -> READING[i+1]
 |when(i>1) releaseRead -> READING[i-1]
 |when(i==1) releaseRead -> SAFE_RW
),
WRITING = (releaseWrite -> SAFE_RW).

||READWRITELOCK = (RW_LOCK || SAFE_RW).

We can check that RW_LOCK satisfies the safety property…

Safety analysis? LTS?

7

Readers-Writers Safet y PropertyReaders-Writers Safety Property

An ERROR occurs if a reader or writer is badly behaved (release
before acquire or more than two readers).

We can now compose the READWRITELOCK with READER and
WRITER processes according to our structure…

8

Readers-Writers Com positionReaders-Writers Composition

||READERS_WRITERS =
 (reader[1..Nread]:READER
 ||writer[1..Nwrite]:WRITER
 ||{reader[1..Nread],
 writer[1..Nwrite]}::READWRITELOCK).

Safety and progress analysis?

writer[1..Nwrite]:
WRITER

reader[1..Nread]:
READER

READERS
_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite

9

Readers-Writers Safet y PropertyReaders-Writers Safety Property

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

||RW_PROGRESS = READERS_WRITERS
 >>{reader[1..Nread].releaseRead,
 writer[1..Nwrite].releaseWrite}.

Progress analysis? LTS?

WRITE – eventually one of the writers will acquireWrite
READ – eventually one of the readers will acquireRead

How do we model adverse conditions using action priority?
We lower the priority of the release actions for both readers
and writers.

10

Readers-Writers Pro gressReaders-Writers Progress

Progress violation: WRITE
Path to terminal set of states:

reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead, reader.1.releaseRead,
 reader.2.acquireRead, reader.2.releaseRead}

Writer
starvation:
The number of
readers never
drops to zero.

terminal set

11

Readers-Writers Safet y PropertyReaders-Writers Safety Property

interface ReadWrite {
 public void acquireRead()
 throws InterruptedException;
 public void releaseRead();
 public void acquireWrite()
 throws InterruptedException;
 public void releaseWrite();
}

We define an interface that identifies the monitor
methods that must be implemented and develop a
number of alternative implementations of this interface.

First, the safe implementation...

We will concentrate on the monitor implementation

12

Readers-Writers Safet y PropertyReaders-Writers Safety Property

class ReadWriteSafe implements ReadWrite {
 private int readers = 0;
 private boolean writing = false;

 public synchronized void acquireRead()
 throws InterruptedException {
 while (writing) wait();
 ++readers;
 }

 public synchronized void releaseRead() {
 --readers;
 if (readers == 0) notify();
 }

// continued...

Unblock a single writer when
there are no more readers.

13

Readers-Writers Safet y PropertyReaders-Writers Safety Property

// ...continued from previous slide

 public synchronized void acquireWrite()
 throws InterruptedException {
 while (readers > 0 || writing) wait();
 writing = true;
 }

 public synchronized void releaseWrite() {
 writing = false;
 notifyAll();
 }
}

Unblock all readers

This monitor implementation suffers from the WRITE progress
problem: possible writer starvation if the number of readers never
drops to zero.

14

Readers-Writers with Writer Priorit yReaders-Writers with Writer Priority

set Actions = {acquireRead,releaseRead,acquireWrite,
 releaseWrite,requestWrite}

WRITER =(requestWrite->acquireWrite->modify
 ->releaseWrite->WRITER
)+Actions\{modify}.

Strategy:
Block readers
if there is a
writer waiting.

15

Readers-Writers with Writer Priorit yReaders-Writers with Writer Priority

RW_LOCK = RW[0][False][0],
RW[readers:0..Nread][writing:Bool][waitingW :0..Nwrite]
 = (when (!writing && waitingW==0)
 acquireRead->RW[readers+1][writing][waitingW]
 |releaseRead->RW[readers-1][writing][waitingW]
 |when (readers==0 && !writing)
 acquireWrite->RW[readers][True][waitingW-1]
 |releaseWrite->RW[readers][False][waitingW]
 | requestWrite ->RW[readers][writing][waitingW+1]
).

Safety and progress analysis?

16

Readers-Writers with Writer Priorit yReaders-Writers with Writer Priority

Property RW_SAFE

Progress READ and WRITE

No deadlocks/errors

Progress violation: READ
Path to terminal set of states:

writer.1.requestWrite
writer.2.requestWrite

Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
 writer.1.releaseWrite, writer.2.requestWrite,
 writer.2.acquireWrite, writer.2.releaseWrite}

Reader
starvation:
readers might
always wait
for writers.

In practice, this may be satisfactory because there might be
more read access than write and readers generally want the
most up to date information.

17

Readers-Writers with Writer Priorit yReaders-Writers with Writer Priority

class ReadWritePriority implements ReadWrite {
 private int readers = 0;
 private boolean writing = false;
 private int waitingW = 0; // no of waiting Writers

 public synchronized void acquireRead()
 throws InterruptedException {
 while (writing || waitingW>0) wait();
 ++readers;
 }

 public synchronized void releaseRead() {
 --readers;
 if (readers==0) notifyAll();
 }

// continued...

18

Readers-Writers with Writer Priorit yReaders-Writers with Writer Priority

// ...continued from previous slide

 public synchronized void acquireWrite() {
 ++waitingW;
 while (readers>0 || writing) try { wait();}
 catch(InterruptedException e){}
 --waitingW;
 writing = true;
 }

 public synchronized void releaseWrite() {
 writing = false;
 notifyAll();
 }
}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as we did for the Single Lane Bridge.

