
1Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 9:
Safety, Progress, and Fairness

Continued

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – December 18, 2001

2

LivenessLiveness

A safety property asserts that nothing bad happens.

A liveness property, on the other hand, asserts that
something good eventually happens.

Does every car eventually get an
opportunity to cross the bridge
(i.e., make progress)?

Single-lane bridge:

A progress property is a restricted class of liveness properties;
progress properties assert that an action will eventually be
executed. Progress is the opposite of starvation, the name given
to a concurrent programming situation in which an action is
never executed.

3

Specif ying Progress Pro pertiesSpecifying Progress Properties

progress P = {a1,a2..an} defines a progress
property P which asserts that in an infinite execution
of a target system, at least one of the actions a1,
a2..an will be executed infinitely often.

COIN process: progress HEADS = {heads}
progress TAILS = {tails}

LTSA check of COIN process with above progress properties

No progress violations detected.

4

Progress Pro pertiesProgress Properties

Suppose we choose from two coins, a regular coin and a trick coin...

TWOCOINS = (choose->COIN | choose->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).

TWOCOIN process: progress HEADS = {heads}
progress TAILS = {tails}

0 1 2 3 4 5

choose

choose toss toss

toss

heads

heads

tails

5

Progress Anal ysisProgress Analysis

A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions and there is no
transition from within the set to any state outside the set.

0 1 2 3 4 5

choose

choose toss toss

toss

heads

heads

tails

Terminal sets for
TWOCOIN:
 {1,2} and {3,4,5}

Given fair choice, each terminal set represents an execution in which
each transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not
in the set cannot occur infinitely often in all executions of the system
and therefore represents a potential progress violation!

6

Progress Anal ysisProgress Analysis

A progress property is violated if analysis finds a terminal set of states
in which none of the progress set actions appear.

0 1 2 3 4 5

choose

choose toss toss

toss

heads

heads

tails

progress TAILS = {tails} (fails in {1,2})

Default analysis: Given fair choice, every action in the alphabet of the
target system should execute infinitely often. This is equivalent to
specifying a separate progress property for every action.

Default analysis
for TWOCOIN?

7

Progress Anal ysisProgress Analysis

Default analysis for TWOCOIN:

Terminal set {1,2}

Terminal set {3,4,5}

Progress violation for actions:
{choose}
Path to terminal set of states:

choose
Actions in terminal set:
{toss, heads, tails}

Progress violation for actions:
{pick, tails}
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

If the default holds, then every other progress property holds,
i.e., every action is executed infinitely often and the system
consists of a single terminal set of states.

8

Single-lane Brid ge and Pro gressSingle-lane Bridge and Progress

The Single Lane Bridge
implementation can
permit progress violations.
However, if default
progress analysis is
applied to the model then

no violations are detected!
Why not?

Fair choice means that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems we must superimpose some scheduling policy for actions,
which models the situation in which the bridge is congested.

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}
No progress violations detected.

9

Action PrioritiesAction Priorities

Action priority expressions describe scheduling properties

High
Priority
(“<<”)

Low
Priority
(“>>”)

||C = (P||Q) <<{a1,…,an} specifies a composition in
which the actions a1,…,an have higher priority than all other
actions in the alphabet of P||Q including the silent action tau .

In any choice in this system which has one or more of the actions
a1,…,an labeling a transition, the transitions labeled with lower
priority actions are discarded.

||C = (P||Q) >>{a1,…,an} specifies a composition in
which the actions a1,…,an have lower priority than all other ac-
tions in the alphabet of P||Q including the silent action tau .

In any choice in this system which has one or more transitions not
labeled by a1,…,an , the transitions labeled by a1,…,an are
discarded.

10

Progress Pro pertiesProgress Properties

Action priority simplifies the
resulting LTS by discarding lower
priority actions from choices.

NORMAL =(work->play->NORMAL
 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

11

Congested Sin gle-lane Brid ge ModelCongested Single-lane Bridge Model

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?

Could give red cars priority over blue (or vice versa) ?
In practice neither has priority over the other.

Instead we merely encourage congestion by lowering the priority of
the exit actions of both cars from the bridge.

 Progress Analysis ? LTS?

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

12

Congested Single-lane Bridge AnalysisCongested Single-lane Bridge Analysis

Progress violation: BLUECROSS
Path to terminal set of states:

red.1.enter
red.2.enter

Actions in terminal set:
{red.1.enter, red.1.exit, red.2.enter,
red.2.exit, red.3.enter, red.3.exit}

Progress violation: REDCROSS
Path to terminal set of states:

blue.1.enter
blue.2.enter

Actions in terminal set:
{blue.1.enter, blue.1.exit, blue.2.enter,
blue.2.exit, blue.3.enter, blue.3.exit}

This corresponds with the observation that, with more than one car, it is
possible that whichever color car enters the bridge first will continuously
occupy the bridge preventing the other color from ever crossing.

13

Congested Single-lane Bridge AnalysisCongested Single-lane Bridge Analysis

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving
car entry to the bridge high priority?

Can congestion occur if there is only one car moving in each
direction?

14

Revised Sin gle-lane Brid ge ModelRevised Single-lane Bridge Model

The bridge needs to know whether or not cars are waiting to cross.

Modify CAR:

Modify BRIDGE:

Red cars are only allowed to enter the bridge if there are no
blue cars on the bridge and there are no blue cars waiting to
enter the bridge.

Blue cars are only allowed to enter the bridge if there are no red
cars on the bridge and there are no red cars waiting to enter
the bridge.

CAR = (request ->enter->exit->CAR).

15

Revised Sin gle-lane Brid ge ModelRevised Single-lane Bridge Model

/* nr – number of red cars on the bridge
 wr – number of red cars waiting to enter
 nb – number of blue cars on the bridge
 wb – number of blue cars waiting to enter */
BRIDGE = BRIDGE[0][0][0][0],
BRIDGE[nr:T][nb:T][wr :T][wb:T] =
 (red [ID]. request -> BRIDGE[nr][nb][wr+1][wb]
 |when (nb==0 && wb==0)
 red [ID]. enter -> BRIDGE[nr+1][nb][wr-1][wb]
 | red [ID]. exit -> BRIDGE[nr-1][nb][wr][wb]
 | blue [ID]. request -> BRIDGE[nr][nb][wr][wb+1]
 |when (nr==0 && wr==0)
 blue [ID]. enter -> BRIDGE[nr][nb+1][wr][wb-1]
 | blue [ID]. exit -> BRIDGE[nr][nb-1][wr][wb]).

Is it okay now?

16

Revised Sin gle-lane Brid ge Anal ysisRevised Single-lane Bridge Analysis

The trace is the scenario in
which there are cars waiting at
both ends, and consequently,
the bridge does not allow either
red or blue cars to enter.

Solution?

Introduce some asymmetry in the problem (e.g., dining philosophers).

This takes the form of a boolean variable (bt), which breaks the
deadlock by indicating whether whose turn it is to enter the bridge,
either a blue car or red car.

Arbitrarily, bt is set to true giving blue initial precedence.

Trace to DEADLOCK:
red.1.request
red.2.request
red.3.request
blue.1.request
blue.2.request
blue.3.request

17

Revised Sin gle-lane Brid ge ModelRevised Single-lane Bridge Model

const True = 1
const False = 0
range B = False..True
/* bt - true indicates blue turn, false indicates red turn */
BRIDGE = BRIDGE[0][0][0][0][True],
BRIDGE[nr:T][nb:T][wr :T][wb:T][bt :B] =
 (red [ID]. request -> BRIDGE[nr][nb][wr+1][wb][bt]
 |when (nb==0 && (wb==0|| !bt))
 red [ID]. enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
 | red [ID]. exit -> BRIDGE[nr-1][nb][wr][wb][True]
 | blue [ID]. request -> BRIDGE[nr][nb][wr][wb+1][bt]
 |when (nr==0 && (wr==0 || bt))
 blue [ID]. enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
 | blue [ID]. exit -> BRIDGE[nr][nb-1][wr][wb][False]
).

Is it okay now? Yes.

18

Revised Bridge ImplementationRevised Bridge Implementation

class FairBridge extends Bridge {

 private int nred = 0; // number of red cars on bridge
 private int nblue = 0; // number of blue cars on bridge
 private int waitblue = 0; // number of blue cars waiting
 private int waitred = 0; // number of blue cars waiting
 private boolean blueturn = true; // blue's turn

 synchronized void redEnter() throws InterruptedException {
 ++waitred;
 while (nblue>0||(waitblue>0 && blueturn)) wait();
 --waitred;
 ++nred;
 }

 synchronized void redExit(){
 --nred;
 blueturn = true;
 if (nred==0)notifyAll();
 }
 // continued on next slide...

19

Revised Brid ge ImplementationRevised Bridge Implementation

 // continued from previous slide...

 synchronized void blueEnter(){
 throws InterruptedException {
 ++waitblue;
 while (nred>0||(waitred>0 && !blueturn))
 wait();
 --waitblue;
 ++nblue;
 }

 synchronized void blueExit(){
 --nblue;
 blueturn = false;
 if (nblue==0) notifyAll();
 }
}

Notice that we did not need to add a request monitor method; the
existing enter methods were modified to increment wait counts before
testing whether or not the caller can access the bridge.

