Concurrent Programmin ¢
19530-V (WS01)

Lecture 9:
Safety, Progress, and Fairness
Continuel

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — December 18, 2001 /Zzzz . sam)

Liveness

A safety propertyasserts that nothingad happens

A liveness propertyon the other hand, asserts that
somethingyoodeventuallyhappens.

Single-lane bridie: Does every caeventuallyget an
opportunity to cross the bridge
(i.e., make progress)?

A progress propertys a restricted class of livenga®perties;
progressproperties assert that an action wllentually be
executed Pragress is thepposite of starvatiojthe namegiven
to a concurrenprogrammirg situation in which an action is
never executed.




Specifyinmg-Pro gress’ Rioquesties

progress P = {al,a2..an} defines a progress
propertyP which asserts that in an infinite execution
of a target system, at least one of the actidns
a2..an will be executed infinitely often.

COIN process: progress HEADS = {heads} M
progress TAILS = {tails} M

LTSA check of COINorocess with abovprogressproperties

No progress violations detected. \

Progyress Proopertes

Syppose we choose from two coins;egyular coinand arick coin...

TWOCOINS = (choose->COIN | choose->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).

choose

heads

TWOCOINrocess: progress HEADS = {heads} M
progress TAILS = {tails} X




Progyress Amnal/ysis

A terminal set of stateis one in which every state is reachable from
every other state in the set via one or more transitions and there is no
transition from within the set to any state outside the set.

choose

Terminal setdor
TWOCOIN

{1,2} and{3,4,5}

heads

Givenfair choicg each terminal set represents an execution in which
each transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action thai is

in the set cannot occur infinitely often in all executions of the sysi‘
and therefore representgaiential progress violatidn )
(2] AR |

Progyress Amnal/ysis

A progress property igiolatedif analysis finds a terminal set of states
in whichnoneof the progress set actions appear.

I][Il:> progress TAILS = {tails} (fails in {1,2})

Default analysis: Given fair choicegveryaction in the alphabet of the
target system should execute infinitely often. This is equivalent to
specifying aseparate progress property for every action

choose

:> Default ana}sis
! for TWOCOIR




Progyress Amnal/ysis

Default ana}sis forTWOCOIN

Progress violation for actions:

{choose}

Terminal set {3 4 5}|]|]|:“> Path to terminal set of states:
T choose

Actions in terminal set:

{toss, heads, tails}

Progress violation for actions:

{pick, tails}

Terminal set {112}|||]|:“> Path to terminal set of states:
pick

Actions in terminal set:

{toss, heads}

If the default holds, then every other progress property holds
i.e., every action is executed infinitely often and the system
consists of a single terminal set of states.

Singyledtamne Brid) g eand’ Rrorg sess

The Single Lane Bridge

implementation can '
permit progress violations. . :

However, if default “ . :

progress analysis is ﬂ ‘

applied to the model then . a
no violations are detected!_.-,'_'

Why not? [P Maswt| OvaCar| TooCun| ThasCas|F san T ra

|||]|:> progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}
No progress violations detected.

Fair choicemeans that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems we must superimpose sarmgeduling policfor actions,
which models the situation in which the bridgedsigested




Action Priorities

Action priority expressions describe schedwiproperties

High
Priority
(“ <<H

Low
Priority
(“ >>H

[IC = (P||Q) <<{al,...,an} specifies a compaosition in
which the actiongl,...,an havehigher priority than all other
actions in the alphabet 8i|Q including the silent actiotau .

In any choice in this system which has one or more of the actions
al,...,an labeling a transition, the transitions labeled with lower

priority actions areliscarded

[IC = (P|IQ) >>{al,...,an} specifies a composition in
which the actiongal,...,an havelower priority than all other ac
tions in the alphabet &||Q including the silent actiotau .

In any choice in this system which has one or more transitior
labeled byal,...,an , the transitions labeled Ia,...,an are
discarded

Progyress Proopertes

NORMAL =(work->play->NORMAL
|sleep->play->NORMAL).

Action priority simplifies the "

resultirg LTS by discardirg lower
priority actions from choices.

|[HIGH =(NORMAL)<<{work}. .‘ .{‘T:"

ILOW =(NORMAL)>>{work}. 0 (1

10




11

Congestet SimiiedaneSBridage ddedel

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

BLUECROSSeventually one of thielue cars will be able to enter
REDCROSSeventually one of the=d cars will be able to enter
Congestion using action priority

Could giveredcars priority oveblue (or vice versa) ?
In practice neither has priority over the other.

Instead we merely encourage congestioihyering the priority
theexit actions of both cars from the bridge

[|CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

Progress Analysi® LTS?

12

Congested Single-lane Bridge Analysis

Progress violation: BLUECROSS
Path to terminal set of states:
red.l.enter
red.2.enter
Actions in terminal set:
{red.1.enter, red.1l.exit, red.2.enter,
red.2.exit, red.3.enter, red.3.exit}

Progress violation: REDCROSS
Path to terminal set of states:
blue.l.enter
blue.2.enter
Actions in terminal set:
{blue.l.enter, blue.l.exit, blue.2.enter,
blue.2.exit, blue.3.enter, blue.3.exit}

This corresponds with the observation that, withre than one carit is
possible that whichever color car enters the bridge first will coatisly
occupy the bridge preventing the other color from ever crossing.




13

Congested Single-lane Bridge Analysis

[|[CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

red. 1 enter

blue l.enter blue 2enter bluelemt bluelenter

hilue 2 et red 2 exit

red 2enter  redleat  redlenter

Will the results be the same if we model congestion by giving
car entry to the bridgehigh priority?

Can congestion occur if there is only one car moving in each
direction?

14

Revised Sinogte dare=Biid < & Mbdel

The bridge needs to know whether or not cars\as€ing to cross.
Modify CAR

CAR = ( request ->enter->exit->CAR).

Modify BRIDGE

Redcars are onglallowed to enter the brig if there are no
bluecars on the brgk and there are nblue cars waitingto
enter the brige.

Blue cars are onlallowed to enter the brig if there are noed

cars on the brige and there are noed cars walitingto enter
the bridye.




Revised Sincgtedare=Biid < & Mbdel

/* nr —number of red cars on the bridge

wr — number of red cars waiting to enter
nb — number of blue cars on the bridge
wb —  number of blue cars waiting to enter 4
BRIDGE = BRIDGE[0][O][  O][ 0],
BRIDGE|[nr:T][nb:T][ wr:T][ whT] =
( red[ID]. request ->BRIDGE][nr][nb] wr+1][ wh]
[when (nb==0 && wh==0)
red [ID]. enter ->BRIDGE[nr+1][nb][ wr-1 ][ wh]
| red[ID]. exit -> BRIDGE[nr-1][nb][ wr][ whb]
| blue [ID]. request ->BRIDGE[nr][nb][ wr][ wb+1]
[when (nr==0 && wr==0)
blue [ID]. enter ->BRIDGE[nr][nb+1][ wr][ wb-1]
| blue [ID]. exit -> BRIDGE[nr][nb-1] wr][ wh]).

I's it okay now?

15

Revised Sincydetiamre Biig @& Anatyzsis

Trace to DEADLOCK:
red.l.request
red.2.request
red.3.request
blue.1.request
blue.2.request
blue.3.request

Introduce some.symmetry in the problem (e.g., dining philosophers).

The trace is the scenario in
which there are cars waitjrat
both ends, and conggentl,

the bricge does not allow either
red or blue cars to enter.

Solution?

This takes the form of a boolean variakiie ), which breaks the

deadlock by indicating whether whose turn it is to enter the bridge,

either abluecar orred car.

Arbitrarily, bt is set to true givinglueinitial precedence.

16




Revised Sincgtedare=Biid < & Mbdel

17

const True =1

const False =0

range B = False..True

/* bt -trueindicatesblueturn, falseindicatesredturn */
BRIDGE = BRIDGE[0][0]]  O][ O][ True],

BRIDGE|[nr:T][nb:T][ wr:T][ wb:T][ Dbt :B]=
( red [ID]. request ->BRIDGE[nr][nb][ wr+1][ wh][ bt]
[when (nb==0 && ( wb==0|| bt ))

red [ID]. enter ->BRIDGE[nr+1][nb][ wr-1 [ wh][ bt]
| red [ID]. exit -> BRIDGE[nr-1][nb][ wr][ wb][ True]
| blue [ID]. request ->BRIDGE[nr][nb][ wr][ wb+1][ bt]
[when (nr==0 && ( wr==0]| bt))

blue [ID]. enter ->BRIDGE[nr][nb+1][ wr][ wb-1][ bt]
| blue [ID]. exit -> BRIDGE[nr][nb-1] wr][ wb][ False ]
).

I's it okay now? Yes.

Revised Bridge Implementation

18

class FairBridge extends Bridge {

private int nred = 0;
private int nblue = 0;
private int waitblue = 0;
private int waitred = 0O;

private boolean blueturn = true;

/ number of red cars on bridge
/l number of blue cars on bridge
/l number of blue cars waiting
/ number of blue cars waiting
/Il blue's turn

synchronized void redEnter() throws InterruptedException {

++waitred;

while (nblue>0||(waitblue>0 && blueturn)) wait();

--waitred;
++nred;

}

synchronized void redExit(){

--nred;

blueturn = true;

if (nred==0)notifyAll();
}

/I continued on next slide.

i




Revised Bridggé i/ emetiation

19

// continued from previous slide...

synchronized void blueEnter(){
throws InterruptedException {
++waitblue;
while (nred>0||(waitred>0 && !blueturn))
wait();
--waitblue;
++nblue;

}

synchronized void blueExit(){
--nblue;
blueturn = false;
if (nblue==0) notifyAll();
}
}

Notice that we did not need to addrequestmonitor method; t
existing enter methods were modified to increment wait counts
testing whether or not the caller can access the bridge.

-




