Concurrent Programmin ¢
19530-V (WS01)

Lecture 8:
Safety and Liveness Properties

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — December 11, 2001 /Zzzz . sam)

Safety IPrgpreties

A safety propertyasserts that nothing bad happens.

Whatbadthings can happen?
STOPprocess or deadlocked states (i.e., no out-going arcs
ERROPRprocess (-1) used to detect erroneous behavior

cormraand

ACTUATOR
=(command->ACTION),
ACTION
=(respond->ACTUATOR
|command->ERROR). —

Safety analysis using LTSA coraand

Trace to property violation in ACTUATOR:
command
command




Safety IPrgprettys8p ecifieation

Explicit ERRORonditions in a process specify
behavior that shouldot occur

In complex systems, it is often better to specify safety
properties by stating the behavior tkabuld occur

corrnand

property SAFE_ACTUATOR
= (command
-> respond
-> SAFE_ACTUATOR
).

cornroand
Can also use LTSA to analyze safety properties

Safety IPrgprettys8p ecifieation

Consider a safgtproperty POLITE, which asserts that ispblite to
knock before entergna room

Traces:  knock->enter M enter @%

knock->knock

property  POLITE =
(knock->enter->POLITE). knock

In all statesall the actions in
the alphabet of a property art
eligible choices.




Safety IPrgpreties

Safety property’ defines a deterministic process

that asserts that any trace including actions in the
alphabet of, is accepted biy.

This means that P is composed with processthen
valid traces of actions in the alphabet®that
intersect the alphabet ¢t must also be valid trace$ o
P, otherwiseERROHAS reachable.

TransprarsnyyooC8afEL v IPjoeeties

Since all actions in the alphabet of a property are
eligible choices, composing a property with a set of
processes does not affect theirrectbehavior.
However, if a behavior can occur which violates|the
safety property, theBRROHRs reachable.
Properties must be deterministic to be transparent.




Mutual Exclusion Safety g &xample

How do we check that a process ensures mutual exclusion?

LOOP = (mutex.down->enter->exit->mutex.up->LOOP).
||ISEMADEMO = (p[1..3]:LOOP

[{p[1..3]}::mutex: SEMAPHORE(1)).

We construct a safety property to verify mutual exclusion...

property MUTEX = (p[i:1..3].enter->
->p[i].exit->MUTEX).
||ICHECK = (SEMADEMO || MUTEX).

We can use LTSA to analyze this for correctness;
what happens if semaphore is initialized to 2? ‘

E

Singyledtame Brid) g ¢’ Rroblem

Freeze | Restart I Ore Car | Twi Cars | Three Cars I ¥ Sate [ Fair

A bridge over a river is oglwide enogh topermit a
single lane of traffic. Consgiently, cars can oglmove
concurreny if they are movirg in the same direction.
A safey violation occurs if two cars mowpin —
different directions enter the bgd at the same time. ‘-




ModelinggSiny¢desaneSBrigege

Events or actions of interest
enter andexit

Identify processes
CARandBRIDGE

Identify properties
ONEWAY

Define each process and property
Interactions and structure

10
Car Model
constN =3 /I number of each type of car
range T = 0..N I/ type of car count
range ID=1..N /I car identities
CAR = ( enter ->exit ->CAR).

To model the fact that cars cannot pass eadch other on the
bridge, we model &ONVO6f cars in the same direction.
We will have aed and alue convoy of up td\ cars

for each direction:

ICARS = (red:CONVOY || blue:CONVOY).




11

Convoy/\WMuobttel([(NoFRassimy § CGornsiraint)

NOPASS1 =C[1], Il preserve entry order
C[i:ID] = ([i].enter-> C[i%N+1]).
NOPASS2 = C[1], I preserve exit order

Cli:zID] = ([i].exit-> C[i%N+1]).

ICONVOY = ([ID]:CAR||NOPASS1||[NOPASS?2).

1 enter 2.enter 1 et et

¢ T De 9 ®

3enter 3edt

Permitted: 1.enter->2.enter->1.exit->2.exit

Not permitted: 1.enter->2.enter->2.exit->1.exit
(i.e., no passing)‘ .

12

Bridayre\Wabie!

Cars can move concurrently on the bridge only if they are
going in thesame direction The bridge counts the number
of blue and red cars on the bridge. Red carsaieallowed
to enterwhen the blue count is zerod vice-versa

// bridge is initially empty,

/I nris red count, nb is blue count

BRIDGE = BRIDGE]O0][0],

BRIDGE[nr:T][nb:T] =
(when (nb==0) red[ID].enter->BRIDGE[nr+1][nb]
[red[ID].exit->BRIDGE[nr-1][nb]
|[when (nr==0) blue[ID].enter->BRIDGE[nr][nb+1]
|blue[ID].exit->BRIDGE[nr][nb-1]).

Even when counters are O, #dt can decrement
counters. LTSA mps these undefined statesERROR




13

One-waly SdfaiyrPeppesty

Cars can move concurrently on the bridge only if they are
going in thesame direction The bridge counts the number
of blue and red cars on the bridge. Red carsiaieallowed
to enterwhen the blue count is zesod vice-versa

property ONEWAY =(red[ID].enter->RED[1]
|blue.[ID].enter->BLUE[1]),

REDIi:ID] = (red[ID].enter->RED][i+1]

|[when (i==1) red[ID].exit->ONEWAY

|[when (i>1) red[ID].exit->REDJi-1]

, /l'iis a count of red cars on the bridge
BLUE]Ji:ID]= (blue[ID].enter->BLUE[i+1]

|[when (i==1) blue[ID].exit->ONEWAY

|[when (i>1) blue[ID].exit->BLUE[i-1]

). /Il iis a count of blue cars on the bridge

14

Singyledlame Brit) g & Comgrosition

[|SingleLangeBridge = (CARS || BRIDGE || ONEWAY).

property
ONEWAY

1% O
Single red[ID]. blue[ID].
Lane {enter,exit} {enter,exit}

Bridge BRIDGE




Single{fane Brit) g e Analbysis

[|SingleLangeBridge = (CARS || BRIDGE || ONEWAY).

Is safety property \ No deadlocks/errors

ONEWAYiolated?

[|SingleLangeBridge = (CARS || ONEWAY).

15

WIthOUt. theBRlDGE Trace to property violation in ONEWAY:
constraints, is safety red.1.enter

property ONEWAY blue.1.enter

violated?

Singledlame Brid) g éimplementation

Applet Thread Runnable
Z> ?:ée' display Jxﬁ display
Single RedCar BlueCar
Lane control control
Bridge
. . Safe

Active entities (cars) are Bridge

implemented as threads.

Passive entity (bridge) is

implemented as a monitor. BridgeCanvas
BridgeCanvas enforces

no overtaking.

16




17

Singledlame Brid) g éimplementation

An instance oBridgeCanvas class is created I§ingleLaneBridge
— reference is passedRedCar andBlueCar obijects.

applet

class BridgeCanvas extends Canvas {
public void init(int ncars) {...} /I set number of cars

/l move red car with the identity i one step;
[ returns true for the period from just before,
/[ until just after car on bridge
public boolean moveRed(int i)
throws InterruptedException{...}

/l move blue car with the identity i one step;
[ returns true for the period from just before,
/[ until just after car on bridge
public boolean moveBlue(int i)
throws InterruptedException{...}

public synchronized void freeze(){...} I freeze display
public synchronized void thaw(){...} /I unfreeze display

i

18

Singledlame Brid) g éimplementation

class RedCar implements Runnable {
BridgeCanvas display; Bridge control; int id;
RedCar(Bridge b, BridgeCanvas d, int id) {
display = d; this.id = id; control = b;

public void run() {

try {
while(true) {
while (!display.moveRed(id)); // not on bridge
control.redEnter(); /I request access to bridge
while (display.moveRed(id)); /I move over bridge
control.redExit(); /I release access to bridge

} catch (InterruptedException e) {}

Similarly for BlueCar —I‘;
([ |




Singledlame Brid) g éimplementation

class Bridge {
synchronized void redEnter()
throws InterruptedException {}
synchronized void redExit() {}
synchronized void blueEnter()
throws InterruptedException {}
synchronized void blueExit() {}

}

Class Bridje provides a null ipplementation of the access
methods, i.e., no constraints on the access to thgebrid

What is the result?

19

Freeze I Restart I One Car | Two Cars | Three Cars I [ [Safel T Fair

How can we make the bridge safe?




Singledlame Brid) g éimplementation

class SafeBridge extends Bridge {

private int nred = 0; I number of red cars on bridge
private int nblue = 0; /l number of blue cars on bridge

/I Monitor Invariant: (nred >= 0) and (nblue >=0) and
1l not ((nred > 0) and (nblue > 0))

synchronized void redEnter()
throws InterruptedException {
while (nblue>0) wait();

++nred;
}

hronized void redExi — :
sy.r.‘ﬁréﬁ;”'ze vord redExtOt This is a direct

if (nred==0) notifyAll(); translation from the
} BRIDGEmodel.

/I continued on next slide...

21

Singledlame Brid) g éimplementation

}

// continued from previous slide...

synchronized void blueEnter()
throws InterruptedException {
while (nred>0) wait();
++nblue;

}

synchronized void blueExit(){
--nblue;
if (nblue==0) notifyAll();

}

To avoid unnecessathread switches, we usenditional
notification to wake p waiting threads ol when the number of
cars on the brige is zero, i.e., when the last car leaves thegbrid

22

—
But does every car eventually get an opportunity to cross? ‘
([ |




23

Liveness

A safety propertyasserts that nothingad happens

A liveness propertyon the other hand, asserts that
somethinggoodeventuallyhappens.

Single-lane bridie: Does every caeventuallyget an
opportunity to cross the bridge
(i.e., make progress)?

A progress propertys a restricted class of livenga®perties;
progressproperties assert that an action wllentually be
executed Pragress is thepposite of starvatiojthe namejiven
to a concurrenprogrammirg situation in which an action is
never executed.

24

Progress and Fair Ohoice

Fair Choice If a choice over a set of transitions is
executed infinitely often, then every transition inthe
set will be executed infinitely often.

If a coin were tossed an | ~qN =(toss->heads->COIN

infinite number of times, |toss->tails->COIN).
we would eyect that
heads would be chosen toss

infinitely oftenand that
tails would be chosen

infinitely often.
(0 (2
This reguiresfair choicd

toss




25

Specifyinmg-Pro gress’ Rioquesties

progress P = {al,a2..an} defines a progress
propertyP which asserts that in an infinite execution
of a target system, at least one of the actidns
a2..an will be executed infinitely often.

COIN process: progress HEADS = {heads} M
progress TAILS = {tails} M

LTSA check of COINorocess with abovprogressproperties

No progress violations detected. \

26

Progyress Proopertes

Syppose we choose from two coins;egyular coinand arick coin...

TWOCOINS = (choose->COIN | choose->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).

choose

TWOCOINrocess: progress HEADS = {heads} M
progress TAILS = {tails} X




27

Progyress Proopertes

choose

heads

LTSA finds progress Progress violation: TAILS
violation: Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

This property is satisfied
progress HEADSOITAILS = {heads,tails} M




