
1Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 8:
Safety and Liveness Properties

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – December 11, 2001

2

Safety PropertiesSafety Properties

	 What bad things can happen?
� STOP process or deadlocked states (i.e., no out-going arcs)

� ERROR process (-1) used to detect erroneous behavior

ACTUATOR
 =(command->ACTION),
ACTION
 =(respond->ACTUATOR
 |command->ERROR).

Safety analysis using LTSA
Trace to property violation in ACTUATOR:

command
command

A safety property asserts that nothing bad happens.

3

Safety Property SpecificationSafety Property Specification

	 Explicit ERROR conditions in a process specify
behavior that should not occur

	 In complex systems, it is often better to specify safety
properties by stating the behavior that should occur

property SAFE_ACTUATOR
= (command
 -> respond
 -> SAFE_ACTUATOR
).

Can also use LTSA to analyze safety properties

4

Safety Property SpecificationSafety Property Specification

In all states, all the actions in
the alphabet of a property are
eligible choices.

Consider a safety property POLITE, which asserts that is it polite to
knock before entering a room

Traces: knock->enter enter
knock->knock

property POLITE =
 (knock->enter->POLITE).

5

Safety PropertiesSafety Properties

This means that if P is composed with process S, then
valid traces of actions in the alphabet of S that
intersect the alphabet of P must also be valid traces of
P, otherwise ERROR is reachable.

Safety property P defines a deterministic process
that asserts that any trace including actions in the
alphabet of P, is accepted by P.

6

Trans parenc y of Safet y PropertiesTransparency of Safety Properties

Since all actions in the alphabet of a property are
eligible choices, composing a property with a set of
processes does not affect their correct behavior.
However, if a behavior can occur which violates the
safety property, then ERROR is reachable.
Properties must be deterministic to be transparent.

7

Mutual Exclusion Safet y ExampleMutual Exclusion Safety Example

How do we check that a process ensures mutual exclusion?

LOOP = (mutex.down->enter->exit->mutex.up->LOOP).
||SEMADEMO = (p[1..3]:LOOP
 ||{p[1..3]}::mutex:SEMAPHORE(1)).

We construct a safety property to verify mutual exclusion...

property MUTEX = (p[i:1..3].enter->
 ->p[i].exit->MUTEX).
||CHECK = (SEMADEMO || MUTEX).

We can use LTSA to analyze this for correctness;
what happens if semaphore is initialized to 2?

8

Single-lane Brid ge ProblemSingle-lane Bridge Problem

A bridge over a river is only wide enough to permit a
single lane of traffic. Consequently, cars can only move
concurrently if they are moving in the same direction.
A safety violation occurs if two cars moving in
different directions enter the bridge at the same time.

9

Modelin g Single-lane Brid geModeling Single-lane Bridge

	 Events or actions of interest
� enter and exit

	 Identify processes
� CAR and BRIDGE

	 Identify properties
� ONEWAY

	 Define each process and property
� Interactions and structure

10

Car ModelCar Model

const N = 3 // number of each type of car
range T = 0..N // type of car count
range ID= 1..N // car identities

CAR = (enter -> exit ->CAR).

To model the fact that cars cannot pass eadch other on the
bridge, we model a CONVOY of cars in the same direction.
We will have a red and a blue convoy of up to N cars
for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

11

Convo y Model (No Passin g Constraint)Convoy Model (No Passing Constraint)

NOPASS1 = C[1], // preserve entry order
C[i:ID] = ([i].enter-> C[i%N+1]).
NOPASS2 = C[1], // preserve exit order
C[i:ID] = ([i].exit-> C[i%N+1]).

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permitted: 1.enter->2.enter->1.exit->2.exit
Not permitted: 1.enter->2.enter->2.exit->1.exit

(i.e., no passing)

12

Brid ge ModelBridge Model

// bridge is initially empty,
// nr is red count, nb is blue count
BRIDGE = BRIDGE[0][0],
BRIDGE[nr:T][nb:T] =
 (when (nb==0) red[ID].enter->BRIDGE[nr+1][nb]
 |red[ID].exit->BRIDGE[nr-1][nb]
 |when (nr==0) blue[ID].enter->BRIDGE[nr][nb+1]
 |blue[ID].exit->BRIDGE[nr][nb-1]).

Cars can move concurrently on the bridge only if they are
going in the same direction. The bridge counts the number
of blue and red cars on the bridge. Red cars are only allowed
to enter when the blue count is zero and vice-versa.

Even when counters are 0, the exit can decrement
counters. LTSA maps these undefined states to ERROR.

13

One-way Safety PropertyOne-way Safety Property

property ONEWAY =(red[ID].enter->RED[1]
 |blue.[ID].enter->BLUE[1]),
RED[i:ID] = (red[ID].enter->RED[i+1]
 |when (i==1) red[ID].exit->ONEWAY
 |when (i>1) red[ID].exit->RED[i-1]
), // i is a count of red cars on the bridge
BLUE[i:ID]= (blue[ID].enter->BLUE[i+1]
 |when (i==1) blue[ID].exit->ONEWAY
 |when (i>1) blue[ID].exit->BLUE[i-1]
). // i is a count of blue cars on the bridge

Cars can move concurrently on the bridge only if they are
going in the same direction. The bridge counts the number
of blue and red cars on the bridge. Red cars are only allowed
to enter when the blue count is zero and vice-versa.

14

Single-lane Brid ge CompositionSingle-lane Bridge Composition

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property
ONEWAY

CARS

Single
Lane
Bridge

||SingleLangeBridge = (CARS || BRIDGE || ONEWAY).

15

Single-lane Brid ge Anal ysisSingle-lane Bridge Analysis

Trace to property violation in ONEWAY:
red.1.enter
blue.1.enter

No deadlocks/errorsIs safety property
ONEWAY violated?

||SingleLangeBridge = (CARS || BRIDGE || ONEWAY).

||SingleLangeBridge = (CARS || ONEWAY).

Without the BRIDGE
constraints, is safety
property ONEWAY
violated?

16

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

Runnable

RedCar BlueCar

BridgeCanvas

controlcontrol

Bridge

Safe
Bridge

displaydisplay

ThreadApplet

Single
Lane
Bridge

blue,
red

Active entities (cars) are
implemented as threads.
Passive entity (bridge) is
implemented as a monitor.
BridgeCanvas enforces
no overtaking.

17

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

An instance of BridgeCanvas class is created by SingleLaneBridge applet
– reference is passed to RedCar and BlueCar objects.

class BridgeCanvas extends Canvas {

 public void init(int ncars) {…} // set number of cars

 // move red car with the identity i one step;
 // returns true for the period from just before,
 // until just after car on bridge
 public boolean moveRed(int i)
 throws InterruptedException{…}

 // move blue car with the identity i one step;
 // returns true for the period from just before,
 // until just after car on bridge
 public boolean moveBlue(int i)
 throws InterruptedException{…}

 public synchronized void freeze(){…} // freeze display
 public synchronized void thaw(){…} // unfreeze display
}

18

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

class RedCar implements Runnable {

 BridgeCanvas display; Bridge control; int id;

 RedCar(Bridge b, BridgeCanvas d, int id) {
 display = d; this.id = id; control = b;
 }

 public void run() {
 try {
 while(true) {
 while (!display.moveRed(id)); // not on bridge
 control.redEnter(); // request access to bridge
 while (display.moveRed(id)); // move over bridge
 control.redExit(); // release access to bridge
 }
 } catch (InterruptedException e) {}
 }
}

Similarly for BlueCar

19

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

class Bridge {
 synchronized void redEnter()
 throws InterruptedException {}
 synchronized void redExit() {}
 synchronized void blueEnter()
 throws InterruptedException {}
 synchronized void blueExit() {}
}

Class Bridge provides a null implementation of the access
methods, i.e., no constraints on the access to the bridge.

What is the result?

20

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

How can we make the bridge safe?

21

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

class SafeBridge extends Bridge {

 private int nred = 0; // number of red cars on bridge
 private int nblue = 0; // number of blue cars on bridge

 // Monitor Invariant: (nred >= 0) and (nblue >=0) and
 // not ((nred > 0) and (nblue > 0))

 synchronized void redEnter()
 throws InterruptedException {
 while (nblue>0) wait();
 ++nred;
 }

 synchronized void redExit(){
 --nred;

if (nred==0) notifyAll();
 }
 // continued on next slide...

This is a direct
translation from the
BRIDGE model.

22

Single-lane Brid ge ImplementationSingle-lane Bridge Implementation

 // continued from previous slide...

 synchronized void blueEnter()
 throws InterruptedException {
 while (nred>0) wait();
 ++nblue;
 }

 synchronized void blueExit(){
 --nblue;
 if (nblue==0) notifyAll();
 }
}

To avoid unnecessary thread switches, we use conditional
notification to wake up waiting threads only when the number of
cars on the bridge is zero, i.e., when the last car leaves the bridge.

But does every car eventually get an opportunity to cross?

23

LivenessLiveness

A safety property asserts that nothing bad happens.

A liveness property, on the other hand, asserts that
something good eventually happens.

Does every car eventually get an
opportunity to cross the bridge
(i.e., make progress)?

Single-lane bridge:

A progress property is a restricted class of liveness properties;
progress properties assert that an action will eventually be
executed. Progress is the opposite of starvation, the name given
to a concurrent programming situation in which an action is
never executed.

24

Progress and Fair ChoiceProgress and Fair Choice

Fair Choice: If a choice over a set of transitions is
executed infinitely often, then every transition in the
set will be executed infinitely often.

If a coin were tossed an
infinite number of times,
we would expect that
heads would be chosen
infinitely often and that
tails would be chosen
infinitely often.

This requires fair choice!

COIN =(toss->heads->COIN
 |toss->tails->COIN).

25

Specif ying Progress Pro pertiesSpecifying Progress Properties

progress P = {a1,a2..an} defines a progress
property P which asserts that in an infinite execution
of a target system, at least one of the actions a1,
a2..an will be executed infinitely often.

COIN process: progress HEADS = {heads}
progress TAILS = {tails}

LTSA check of COIN process with above progress properties

No progress violations detected.

26

Progress Pro pertiesProgress Properties

Suppose we choose from two coins, a regular coin and a trick coin...

TWOCOINS = (choose->COIN | choose->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).

TWOCOIN process: progress HEADS = {heads}
progress TAILS = {tails}

0 1 2 3 4 5

choose

choose toss toss

toss

heads

heads

tails

27

Progress Pro pertiesProgress Properties

LTSA finds progress
violation:

progress HEADSorTAILS = {heads,tails}

Progress violation: TAILS
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

This property is satisfied

0 1 2 3 4 5

choose

choose toss toss

toss

heads

heads

tails

