
Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 6:
Introduction to Monitors

and Semaphores

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – November 27, 2001

Abstractin g Lockin g DetailsAbstracting Locking Details

const N = 4
range T = 0..N

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 |write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
 ->(when (x<N) write[x+1]
 ->release->increment->INCREMENT
)
)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR) @{increment} .

We can hide the locking
details of a shared
resource by hiding its
internal actions and only
exposing the desired
external actions (e.g.,
similar to public
methods in an object)

Recall our discussion of abstracting details

Abstraction Leads to Simpler ModelAbstraction Leads to Simpler Model

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment
 ->COUNTER[v+1]).

Minimized LTS for synchronized COUNTER process

A simpler process that also describes a synchronized counter

This process generates the same LTS as the previous
COUNTER definition, thus they describe the same atomic
increment behavior

Benefits of Abstracted ModelBenefits of Abstracted Model

	 Encapsulates state
� The counter variable is no longer directly accessible

	 Exposes only the allowable actions
� In this case, the increment action

	 Guarantees mutually exclusive access

	 This is the definition of a monitor

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment
 ->COUNTER[v+1]).

Monitor Conce ptMonitor Concept

	 A monitor is a high-level data abstraction
mechanism for mutual exclusion
� Monitors encapsulate state
� Monitors provide operations to access and modify the

state
¤ These operations are the only means to modify the state

� Monitors guarantee mutual exclusion among
operations
¤ Only one operation can execute at a time, thus the operation

has exclusive access to the state

	 Monitors sound very similar to what?

Monitors as Java ClassesMonitors as Java Classes

	 Monitors are a data abstraction and classes in
Java are also data abstractions

	 It is possible to implement a monitor using a Java
class by following two simple rules
� All data members must be declared private

� All methods that access data members must be
declared synchronized

	 Why is this high-level?
� Because someone using the data encapsulated in the

monitor does not need to worry about mutual
exclusion issues at all

Monitor Exam pleMonitor Example

public class Counter {
 private int MAX = 5;
 private int count = 0;
 public Counter(int max)
 { MAX = max; }
 public synchronized void increment()
 { if (count < MAX) count++; }
 public synchronized void decrement()
 { if (count > 0) count--; }
 public synchronized int getCount()
 { return count; }
}

What are the semantics of this counter?

Counter Monitor Exam pleCounter Monitor Example

The counter in this example may ignore an
increment or a decrement if the count is at the
maximum or minimum, respectively.

How do we create a counter that does not
ignore increments or decrements?

Naïve Monitor SolutionNaïve Monitor Solution

// Shared counter object
counter = new Counter(MAX);
...
// Try to make sure increment is not ignored
while (true) {
 if (counter.getCount() < MAX) {
 counter.increment();
 break;
 }
}
...

This fails because it is not atomic and even if it did
work, it waste CPU cycles with busy waiting.

Condition Variable Conce ptCondition Variable Concept

	 Monitors are usually not used alone, but are combined
with a low-level synchronization mechanism, called
condition variables (also referred to as condition
synchronization)

	 Condition variables
� Support wait and notify operations, both can only be

called from inside a monitor
¤ This means that in order to use these operations, the

caller must own the monitor lock!

� When a process wait s on a condition variable, it gives up
the lock and is suspended until another process performs a
notify on the condition variable

� Each condition variable has a waiting queue that can
have any number of processes waiting on it

Condition Variables in JavaCondition Variables in Java

public final void wait()
throws InterruptedException

Calling thread waits to be notified by another thread. The
waiting thread releases the lock associated with the monitor.
When notified, the thread must wait to reacquire the monitor
lock before resuming execution.

public final void notify()
Wakes up a single thread that is waiting on this object's
queue.

public final void notifyAll()
Wakes up all threads that are waiting on this object's queue.

In Java, every object can be used as a condition variable

Condition Variables in FSP and JavaCondition Variables in FSP and Java

when (cond) act -> NEWSTAT

public synchronized void act()
 throws InterruptedException {
 while (!cond) wait() ;
 // modify monitor data
 notifyAll() ;
}

FSP

Java

The while loop in Java is necessary to re-test the wait
condition to ensure that it is indeed satisfied when the thread
re-enters the monitor.

notifyAll() is used to awaken other threads that may be
waiting on the object instance's condition variable wait queue.

Blocked and Waitin g Threads in JavaBlocked and Waiting Threads in Java

	 If a thread is unable to enter a synchronized
method because another threads owns the object's
lock, then this thread is said to be blocked
� Blocking and unblocking of threads is performed

transparently, we do not worry about this

	 If a thread owns an object's lock and calls
wait() on that object, then that thread is said to
be waiting on the object's wait queue
� Adding and removing threads from the wait queue is

specifically handled by the program using a
combination of wait() /notify() /notifyAll()
calls

Condition Variables in FSP and JavaCondition Variables in FSP and Java

public class StrictCounter extends Counter {
 ...
 public synchronized void increment() {
 while (getCount() >= MAX) { try { wait() ; }
 catch (InterruptedException ex) { } }
 super.increment();
 notifyAll() ;
 }
 public synchronized void decrement() {
 while (getCount() <= 0) { try { wait() ; }
 catch (InterruptedException ex) { } }
 super.decrement();
 notifyAll() ;
 }
}

Counter that does not ignore increments and decrements

Car Park Exam pleCar Park Example

Arrivals Departures

A controller is required for a car park, which only permits
cars to enter when the car park is not full and does not
permit cars to leave when there are no cars in the car park.

Modelin g the Car ParkModeling the Car Park

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CAR PARK

	 Actions of interest
� arrive and depart

	 Processes of interest
� ARRIVALS, DEPARTURES, and CARPARKCONTROL

	 Define processes and interactions (structure)

Car Park ModelCar Park Model

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] =
 (when(i>0) arrive->SPACES[i-1]
 | when(i<N) depart->SPACES[i+1]).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

||CARPARK =
 (ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actions are used to control arrive and depart .

Car Park Pro gramCar Park Program

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CAR PARK

Process Monitor Process

For the program we need to identify threads and monitors
• Thread - active entity which initiates actions
• Monitor - passive entity which responds to actions

This is easy in the case of the car park...

In the FSP model all entities are processes interacting by
actions

Car Park Class Dia gramCar Park Class Diagram

Applet
Runnable

ThreadPanel

CarParkControl

Arrivals

Departures

DisplayCarParkCarParkCanvas

CarPark

arrivals,
departures

arrive()
depart()

carDisplay

carpark

disp

Slightly simplified
view of the actual
implementation

Car Park Pro gramCar Park Program

Arrivals andDepartures implementRunnable �

CarParkControl provides the control (condition
synchronization).

Instances of these are created by thestart() method
of theCarPark applet

public void start() {
 CarParkControl c =
 new DisplayCarPark(carDisplay,Places);
 arrivals.start(new Arrivals(c));
 departures.start(new Departures(c));
}

Car Park Arrival ThreadCar Park Arrival Thread

How do we implement CarParkControl ?

class Arrivals implements Runnable {
 CarParkControl carpark;

 Arrivals(CarParkControl c) {carpark = c;}

 public void run() {
 try {
 while (true) {
 ThreadPanel.rotate(330);
 carpark.arrive();
 ThreadPanel.rotate(30);
 }
 } catch (InterruptedException e){}
 }
}

Departures
works similarly,
except it calls
depart()

Car Park Control MonitorCar Park Control Monitor

class CarParkControl {
 int spaces; int capacity;

 CarParkControl(int capacity) {capacity = spaces = n;}

 synchronized void arrive()
 throws InterruptedException {
 while (spaces==0) wait();
 --spaces;
 notify();
 }

 synchronized void depart()
 throws InterruptedException {
 while (spaces==capacity) wait();
 ++spaces;
 notify();
 }
}

Why is it safe to use notify() here
rather than notifyAll() ?

Summar y: Model to MonitorSummary: Model to Monitor

Each guarded action in the model of a monitor is
implemented as a synchronized method which
uses a while loop and wait() to implement the
guard. The while loop condition is the negation of the
model guard condition.

Active entities (that initiate actions) are implemented as threads.
Passive entities (that respond to actions) are implemented as monitors.

Changes in the state of the monitor are signaled to
waiting threads using notify() or notifyAll() .

SemaphoresSemaphores

Semaphores (Dijkstram 1968) are widely used for dealing with
inter-process synchronization in operating systems. A semaphore s
is an integer variable that can hold only non-negative values.

down(s): if (s >0) then decrement s
else block execution of the calling process

up(s): if (processes blocked on s) then awaken one of them
else increment s

The only operations permitted on s are up(s) (V = vrijgeven =
release) and down(s) (P = passeren = pass). Blocked processes
are held in a FIFO queue.

Modelin g SemaphoresModeling Semaphores

To ensure analyzability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard
this as an ERROR. N is the initial value.

const Max = 3

range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]),
SEMA[Max+1] = ERROR.

LTS?

Modelin g SemaphoresModeling Semaphores

Action down is only accepted when value v
of the semaphore is greater than 0.

Action up is not guarded.

Trace to a violation
up ÆÆ up ÆÆ up ÆÆ up

Semaphore Exam pleSemaphore Example

LOOP = (mutex.down ->critical-> mutex.up ->LOOP).
||SEMADEMO = (p[1..3]:LOOP
 ||{p[1..3]}::mutex:SEMAPHORE(1)).

Three processes p[1..3] use a shared mutex semaphore to
ensure mutually exclusive access to critical region (i.e., access to
some shared resource).

For mutual exclusion, the semaphore initial value is 1. Why?

Is the ERROR state reachable for SEMADEMO?

Is a binary semaphore sufficient (i.e., Max=1) ?

LTS?

Semaphore Exam pleSemaphore Example

Semaphores in JavaSemaphores in Java

public class Semaphore {
 private int value;

 public Semaphore (int initial)
 {value = initial;}

 public synchronized void up() {
 ++value;
 notify();
 }

 public synchronized void down()
 throws InterruptedException {
 while (value == 0) wait();
 --value;
 }
}

Semaphores are
passive objects,
therefore
implemented as
monitors.

(In practice,
semaphores are a low-
level mechanism
often used in
implementing the
higher-level monitor
construct.)

Bounded Buffer Exam pleBounded Buffer Example

A bounded buffer consists of a fixed number of slots. Items are put
into the buffer by a producer process and removed by a consumer
process. It can be used to smooth out transfer rates between the
producer and consumer.

Bounded Buffer ModelBounded Buffer Model

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N]

= (when (i<N) put->COUNT[i+1]
 |when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER
 ||BUFFER(5)||CONSUMER).

The behavior of BOUNDEDBUFFER is independent of the actual
data values, and so can be modeled in a data-independent manner.

(see the Car Park example)

Bounded Buffer MonitorBounded Buffer Monitor
public interface Buffer {…}

class BufferImpl implements Buffer {
…

 public synchronized void put(Object o)
 throws InterruptedException {
 while (count == size) wait();
 buf[in] = o; ++count; in = (in+1) % size;
 notify();
 }

 public synchronized Object get()
 throws InterruptedException {
 while (count == 0) wait();
 Object o = buf[out];
 buf[out] = null; --count; out = (out+1) % size;
 notify();
 return (o);
 }
}

We create a
separate buffer
interface to permit
alternative
implementations.

Bounded Buffer MonitorBounded Buffer Monitor

class Producer implements Runnable {
 Buffer buf;
 String alphabet = "abcdefghijklmnopqrstuvwxyz";

 Producer(Buffer b) {buf = b;}

 public void run() {
 try {
 int ai = 0;
 while(true) {
 ThreadPanel.rotate(12);
 buf.put(new Character(alphabet.charAt(ai)));
 ai = (ai+1) % alphabet.length();
 ThreadPanel.rotate(348);
 }
 } catch (InterruptedException e){}
 }
}

Consumer is
similar but calls
buf.get() .

Alternative Bounded BufferAlternative Bounded Buffer

class SemaBuffer implements Buffer {
 …

 Semaphore full; //counts number of items
 Semaphore empty; //counts number of spaces

 SemaBuffer(int size) {
 this.size = size; buf = new Object[size];
 full = new Semaphore(0);
 empty = new Semaphore(size);
 }
…
}

Suppose that, in place of using the count variable and condition
synchronization directly, we instead use two semaphores full
and empty to reflect the state of the buffer.

Alternative Bounded BufferAlternative Bounded Buffer

public synchronized void put(Object o)
 throws InterruptedException {
 empty.down();
 buf[in] = o;
 ++count; in = (in+1) % size;
 full.up();
 }

 public synchronized Object get()
 throws InterruptedException{
 full.down();
 Object o = buf[out]; buf[out] = null;
 --count; out = (out+1) % size;
 empty.up();
 return (o);
 }

empty is decremented during the put() operation, which is
blocked if empty is zero; full is decremented by the get()
operation, which is blocked if full is zero.

Alternative Bounded Buffer ModelAlternative Bounded Buffer Model

const Max = 5
range Int = 0..Max

SEMAPHORE ...as before...

BUFFER = (put -> empty.down -> full.up ->BUFFER
 |get -> full.down -> empty.up ->BUFFER
).

PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
 ||empty:SEMAPHORE(5)
 ||full:SEMAPHORE(0))
 @{put,get}.

Does this behave as desired?

Nested Monitor ProblemNested Monitor Problem

LTSA analysis predicts a possible deadlock:

Composing
 potential DEADLOCK
States Composed: 28 Transitions: 32 in 60ms
Trace to DEADLOCK:

get

The Consumer tries to get a character, but the buffer is empty. It
blocks and releases the lock on the semaphore full . The
Producer tries to put a character into the buffer, but also blocks.
Why?

This situation is known as the nested monitor problem.

Nested Monitor Pro gram FixNested Monitor Program Fix

The only way to avoid it in Java is by careful design. In this
example, the deadlock can be removed by ensuring that the monitor
lock for the buffer is not acquired until after semaphores are
decremented.

public void put(Object o)
 throws InterruptedException {
 empty.down();
 synchronized (this){
 buf[in] = o; ++count;
 in = (in+1) % size;
 }
 full.up();
}

Nested Monitor Model FixNested Monitor Model Fix

The semaphore actions have been moved to the producer and
consumer. This is exactly as in the implementation where
the semaphore actions are outside the monitor .

Does this behave as desired?

BUFFER = (put -> BUFFER
 |get -> BUFFER).
PRODUCER =
 (empty.down ->put-> full.up ->PRODUCER).
CONSUMER =
 (full.down ->get-> empty.up ->CONSUMER).

