Concurrent Programmin ¢
19530-V (WS01)

Lecture 6:
Introduction to Monitors
and Semaphores

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — November 27, 2001 /Zzzz sam)

Abstractingd-Lockio gdpetails

Recall our discussion of abstracting details

We can hide the locking

constN =4 details of a shared
range T = 0..N resource by hiding its
internal actions and only
VAR = VAR[O0], exposing the desired
VAR[U:T] = (read[u]->VAR[U] external actions (e.g.,
|write[v:T]->VAR[v]). ST D Ui

methods in an object)
LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
->(when (x<N) write[x+1]
->release->increment->INCREMENT

)
)+{read[T],write[T]}.

ICOUNTER = (INCREMENT||LOCK]|VAR) @{increment}

7

Abstraction Leads to Simpler Model

Minimized LTS for synchronize@ OUNTERrocess

increment increment increment ihcrement

® @ ©® @

A simpler process that also describes a synchronized count

COUNTER = COUNTER|[0]
COUNTER|[v:T] = (when (v<N) increment
->COUNTER][v+1]).

This process generates the same LTS as the previous
COUNTERHREefinition, thus they describe the same atomic

increment behavior

[er

Benefits of Abstracted Model

COUNTER = COUNTER|[0]
COUNTER|[v:T] = (when (v<N) increment
->COUNTER][v+1]).

Encapsulates state

The counter variable is no longer directly accessible

Exposes only the allowable actions
In this case, the increment action

Guarantees mutually exclusive access

This is the definition of enonitor

Monitor Conceppt

A monitor is a high-level data abstraction
mechanism for mutual exclusion
Monitors encapsulate state
Monitors provide operations to access and modify the
state
These operations are the only means to modify the state
Monitors guarantee mutual exclusion among

operations

Only one operation can execute at a time, thus the operation
has exclusive access to the state

Monitors sound very similar to what?

Monitors as Java Classes

Monitors are a data abstraction and classes in
Java are also data abstractions

It is possible to implement a monitor using a Java
class by following two simple rules
All data members must be declad/ate

All methods that access data members must be
declaredsynchronized

Why is this high-level?
Because someone using the data encapsulated in the

monitor does not need to worry about mutual
exclusion issues at all

Monitor Exampiie

public class Counter {
private int MAX = 5;
private int count = 0;
public Counter(int max)

{ MAX = max; }

public synchronized void increment()
{ if (count < MAX) count++; }

public synchronized void decrement()

{ if (count > 0) count--; }
public synchronized int getCount()
{ return count; }

}

What are the semantics of this counter?

Counter Monitor Examplple

The counter in this example may ignore an
increment or a decrement if the count is at the
maximum or minimum, respectively.

How do we create a counter that does
ignore increments or decrements?

Naive Monitor Solution

/I Shared counter object
counter = new Counter(MAX);

/[Try to make sure increment is not ignored
while (true) {
if (counter.getCount() < MAX) {
counter.increment();
break;

}
}

This fails because it is not atomic and even if it di
work, it waste CPU cycles with busy waiting. l

(2] AR |

Condition Variable Concepipt

Monitors are usually not used alone, but are combined
with a low-level synchronization mechanism, called
condition variables(also referred to asondition
synchronizatior)

Condition variables
Supportwait andnotify operations, both can only be
called from inside a monitor
This means that in order to use these operations, the
caller must own the monitor lock!
When a processait s on a condition variable, it gives up
the lock and is suspended until another process performs &
notify on the condition variable

Each condition variable hasnaiting queuethat can
have any number of processes waiting on it

-~

Condition Variables in Java

In Javagveryobject can be used as a condition variable

public final void wait()
throws InterruptedException
Calling thread waits to be notified by another thread. The
waiting thread releases the lock associated with the monitor.
When notified, the thread must wait to reacquire the monitor
lock before resuming execution.

public final void notify()

Wakes up a single thread that is waiting on this object's
queue.

public final void notifyAll()
Wakes up all threads that are waiting on this object's queue.

L

(2] AR |

Condition Variables in FSP and Java

FSP when (cond) act -> NEWSTAT

Java| public synchronized void act()
throws InterruptedException {
while (lcond) wait()
/I modify monitor data
notifyAll()

}

Thewhile loop in Java is necessary to re-test the wait

condition to ensure that it is indeed satisfied when the thread
re-enters the monitor.

notify All() is used to awaken other threads that ma)d B
waiting on the object instance's condition variable wait q »
(2] FEEET |

Blocked and Waiting g Mreatdsiddava

If a thread is unable to entesanchronized

method because another threads owns the object

lock, then this thread is said to be blocked
Blocking and unblocking of threads is performed
transparently, we do not worry about this

If a thread owns an object's lock and calls
walit() on that object, then that thread is said to
be waiting on the object's wait queue

Adding and removing threads from the wait queue is
specifically handled by the program using a
combination ofvait() /notify() /notifyAll()

(:

calls

[

Condition Variables in FSP and Java

Counter that does not ignore increments and decrements

public class StrictCounter extends Counter {

public synchronized void increment() {
while (getCount() >= MAX) {try { wait() ;}
catch (InterruptedException ex) { } }
super.increment();
notifyAll()

public synchronized void decrement() {
while (getCount() <=0) { try { wait() ;}
catch (InterruptedException ex) { } }
super.decrement();
notifyAll()

Car Park Examjpie

ol e

Depart
m epartures
T | e

Arrivals

A controller is required for a car park, which only permits
cars to enter when the car park is not full and does not
permit cars to leave when there are no cars in the car park.

Modelingytttre(Carn-Pakk

Actions of interest
arrive anddepart

Processes of interest
ARRIVALS, DEPARTURESINdCARPARKCONTROL

Define processes and interactions (structure)

CAR PARK

ARRIVALS arrive CARPARK depart DEPARTURES
CONTROL

Car Park Model

CARPARKCONTROL(N=4) = SPACES|N],
SPACES]i:0..N] =

(when(i=0) arrive->SPACES]Ji-1]

| when(i<N) depart->SPACES][i+1]).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

ICARPARK =
(ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actionsare used to contrelrrive anddepart .

Car Park Proggeam

In the FSP model all entities are processes interacting by
actions

For the program we need to identify threads and monitors
» Thread- active entity which initiates actions
* Monitor - passive entity which responds to actions

This is easy in the case of the car park...

CAR PARK

ARRIVALS arrive CARPARK depart DEPARTURES
CONTROL

Process Monitor Process

Car Park Class Diaggzam

Slightly simplified
view of the actual
implementation

2 3

arrivals,

depart N
CarPark }—H s ThreadPanel l———> Arrivals k;lcarpark

|

| |

carDisplay I I
|

CarParkControl
arrive()
depart()

ﬁ{ CarParkCanvas }4—d|§p—— DisplayCarPark

Car Park Proggeam

Arrivals andDepartures implementRunnable

CarParkControl provides the control (condition
synchronization).

Instances of these are created bystaet() method
of theCarPark applet

public void start() {
CarParkControl c =
new DisplayCarPark(carDisplay,Places);
arrivals.start(new Arrivals(c));
departures.start(new Departures(c));

) |

-

(2] FEEET |

Car Park Arrival Thread

class Arrivals implements Runnable {

CarParkControl carpark;
Arrivals(CarParkControl ¢) {carpark = c;}

while (true) {
ThreadPanel.rotate(330);

carpark.arrive();
ThreadPanel.rotate(30);

} catch (InterruptedException e){}

public void run() {
try { Departures
works similarly,
except it calls

depart()

How do we implementarParkControl

?

Car Park Control Monitor

class CarParkControl {
int spaces; int capacity;

CarParkControl(int capacity) {capacity = spaces = n;}

synchronized void arrive()
throws InterruptedException {

while (spaces==0) wait();
--spaces;

notify();
}

synchronized void depart()

throws InterruptedException {
while (spaces==capacity) wait();
++spaces;

}

notify();
} Why is it safe_to useotify()
rather thamotifyAll()

?

here i

Summany :\Matel tolWomitor

Active entities (that initiate actions) are implementedasads.
Passiveentities (that respond to actions) are implementedcasiors.

Each guarded action in the model of a monitor is
implemented as synchronized method which
uses a while loop andait() to implement the
guard. The while loop condition is the negation of|the
model guard condition.

Changes in the state of the monitor are signaled to
waiting threads usingotify() or notifyAll()

Semaphores

SemaphoregDijkstram 1968) are widely used for dealing with
inter-process synchronization in operating systems. A semaphore
is an integer variable that can hold only non-negative values

The only operations permitted smmreup(s) (V = vrijgeven =
release) andown(s)(P = passeren = pass). Blocked processes
are held in a FIFO queue.

down(s) if (s>0)then decrement
else block execution of the calling process

up(sy if (processes blocked ahthen awaken one of them
else increments —

B

(2] FEEET |

Modelingy<&enaaypbhozes

To ensure analyzability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard
this as arcRROR N is the initial value.

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],

SEMA[v:Int] = (up->SEMA[v+1]
|when(v>0) down->SEMA[v-1]),

SEMA[Max+1] = ERROR

LTS?

Modelingy<Senaapbhozes

Action down is only accepted when value
of the semaphore is greater than O.

Action up is not guarded.

Trace to a violation
up = up = up 2> up

Semaphore Exarmipie

Three processgg1..3] use a sharediuiexsemaphore to
ensure mutually exclusive accesstoical region (i.e., access to
some shared resource).

LOOP = (mutex.down ->critical-> mutex.up ->LOOP).
[[SEMADEMO = (p[1..3]:LOOP
[I{p[1..3]}::mutex: SEMAPHORE(1)).

For mutual exclusion, the semaphore initial valug. ig/hy?
Is theERROFstate reachable fSEMADEMD

Is abinary semaphore sufficient (i.djax=1) ?

LTS?

Semaphore Examipie

p.1rutex.down

p.2 rtez.dowrn

p.3rmtexdown p.3.cntical p.2.critival p.1 critical

P2 rutexup

p.1 mutex.up

Semaphores lin Java

Semaphores are
passive objects, public class Semaphore {
therefore private int value;
implemented as public Semaphore (int initial)
monitors. {value = initial;}
(In practice, public synchronized void up() {
semaphores are aloyy ~ Value;
level mechanism notify();
often used in }
implementing the public synchronized void down()
higher-level monitor throws InterruptedException {
construct.) while (value == 0) wait();
--value;
}
}

A bounded buffer consists of a fixed number of slots. Items are put
into the buffer by aroducerprocess and removed byanisumer
process. It can be used to smooth out transfer rates between the
producerandconsumer

Z

Bounded Buffer Model

The behavior oBBOUNDEDBUFFER independent of the actual
data values, and so can be modeled in a data-independent manner

BUFFER(N=5) = COUNTIO],
COUNT]i:0..N]
= (when (i<N) put->COUNTI[i+1]
|[when (i>0) get->COUNT]i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

IBOUNDEDBUFFER = (PRODUCER
|IBUFFER(5)||CONSUMER).

(see the Car Park example)

Bounded Buffer Monitor
public interface Buffer {...} '
We create a
class Bufferlmpl implements Buffer { separate buffer -
interface to permit
alternative
public synchronized void put(Object o) implementations.

throws InterruptedException {
while (count == size) wait();
buf[in] = o; ++count; in = (in+1) % size;
notify();
}

public synchronized Object get()
throws InterruptedException {
while (count == 0) wait();
Object o = buflout];
buf[out] = null; --count; out = (out+1) % size;
notify();

return (0);

LI

Bounded Buffer Monitor

class Producer implements Runnable {
Buffer buf;
String alphabet = "abcdefghijkimnopgrstuvwxyz";

Producer(Buffer b) {buf = b;} Consumer is
similar but calls
public void run() { buf.get()
try {
intai =0;

while(true) {
ThreadPanel.rotate(12);
buf.put(new Character(alphabet.charAt(ai)));
ai = (ai+1) % alphabet.length();
ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

Alternative Bounded Buffer

Suppose that, in place of using teunt variable and condition
synchronization directly, we instead use two semaplioles
andempty to reflect the state of the buffer.

class SemaBuffer implements Buffer {

Semaphore full; //counts number of items
Semaphore empty; //counts number of spaces

SemaBuffer(int size) {
this.size = size; buf = new Object[size];
full = new Semaphore(0);
empty = new Semaphore(size);

Alternative Bounded Buffer

empty is decremented during thieit() operation, which is
blocked ifempty is zero;full is decremented by thget()
operation, which is blocked ifill is zero.

public synchronized void put(Object 0)
throws InterruptedException {
empty.down();
buflin] = o;
++count; in = (in+1) % size;
full.up();
}

public synchronized Object get()
throws InterruptedException{
full.down();
Object o = buf[out]; buflout] = null;
--count; out = (out+1) % size;
empty.up();
return (0);

Alternative Bounded Buffer Model

const Max =5
range Int = 0..Max

SEMAPHORE ...as before...

BUFFER = (put -> empty.down -> full.up ->BUFFER
|get -> full.down -> empty.up ->BUFFER
).

PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).

[|[BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
||lempty:SEMAPHORE(5)
[[full: SEMAPHORE(0))
@{put,get}.

Does this behave as desired?

Nested Monitor Problem

LTSA analysis predicts a possilileadlock

Composing
potential DEADLOCK

States Composed: 28 Transitions: 32 in 60ms
Trace to DEADLOCK:
get

TheConsumer tries toget a character, but the buffer is empty. It
blocks and releases the lock on the semapiudire . The

Producer tries toput a character into the buffer, but also blocks.
Why?

This situation is known as thieested monitor problem ——

Nested Monitor Prog grani Fix

The only way to avoid it in Java is by careful design. In this
example, the deadlock can be removed by ensuring that the monitor

lock for the buffer is not acquired unéfter semaphores are
decremented.

public void put(Object 0)
throws InterruptedException {
empty.down();

synchronized (this)}{
buffin] = o; ++count;
in = (in+1) % size;

}
full.up();
}

Nested Monitor Model Fix

BUFFER = (put-> BUFFER
|get -> BUFFER).
PRODUCER =

(empty.down ->put-> fullup ->PRODUCER).
CONSUMER =

(fulldown ->get-> empty.up ->CONSUMER).

The semaphore actions have been moved to the producer and
consumer. This is exactly as in the implementation where
the semaphore actions are outside the monitor .

Does this behave as desired?

