
Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 5:
Introduction to Concurrency in Java

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – November 20, 2001

Operating System ConceptsOperating System Concepts

	 Definition of a process
� An executing program
¤ Similar to an FSP process (i.e., a set of actions that cause

state transformations)

� A conceptual bookkeeping unit for the OS, is used to
keep track of
¤ Program counter

� This keeps track of the next instruction to execute

¤ All CPU register contents
¤ Call stack
¤ Open files
¤ Memory (including actual program text/code)
¤ Any other resources owned by the process

Operating System ConceptsOperating System Concepts

	 Definition of a process
� Paraphrasing the previous slide, a

process can be described as a
resource container combined with
an execution flow

� Given this view of a process, we
can imagine that it might make
sense to conceptually break a
process into these two orthogonal
concepts

program counter

CPU register values

memory (data and text)

open files

call stack

...

Operating System ConceptsOperating System Concepts

	 Assume that we divide a process into two pieces
� A resource container

� An execution flow

	 After making this division, we name the resource
container a process and the execution flow a thread
� A thread cannot exist without a process, thus a process is

also a “container” for threads
� A process may contain multiple threads
� A process with a single thread is equivalent to our

original definition of a process

Operating System ConceptsOperating System Concepts

	 The new process contains resources shared by all its threads,
whereas the thread contains its own private resources

program counter

CPU register values

memory (data and text)

open files

call stack

...

Original process

memory (data and text)

open files

...

New process

program counter value

CPU register values

call stack

Thread

Operating System ConceptsOperating System Concepts

	 Process/thread relationship
� Process contains threads
� Threads share process resources

memory (data and text)

open files

...

program counter value

CPU register values

call stack

Process

Threads
program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

Relationship to FSPRelationship to FSP

Modeling processes as
finite state machines
using FSP/LTS.

Implementing
processes as threads
in Java.

To avoid confusion, the term process is used when
referring to models, and thread when referring to an

implementation in Java.

Threads in JavaThreads in Java

A Thread class manages a single sequential thread of
control. Threads may be created and deleted dynamically.

The Thread class executes instructions from
its method run() . The actual code executed
depends on the implementation provided for
run() in a derived class.

class MyThread extends Thread {
public void run() {

//...
}

}

Thread

 run()

MyThread

 run()

Threads in JavaThreads in Java

Since Java does not permit multiple inheritance, we often implement
the run() method in a class not derived from Thread but from
the interface Runnable .

public interface Runnable {
 public abstract void run();
}

class MyRun implements Runnable {
 public void run() {
 //…
 }
}

Runnable

run()

MyRun

run()

Thread
target

Thread Subclass versus RunnableThread Subclass versus Runnable

	 A Runnable is potentially more re-usable since
other pieces of the Java class library also use the
Runnable interface

	 A Runnable does not "waste" inheritance

	 Although it is arguable, a Runnable may
promote better design
� Separation of concerns – a thread is a flow of

execution that executes some set of actions
¤ This creates a Thread /Runnable distinction where the

Thread is the flow of execution and the Runnable is the
set of actions

Thread Life Cycle in JavaThread Life Cycle in Java

An overview of the life cycle of a thread as state transitions

Created Alive

Terminated

new Thread()

start()

stop() , or
run() returnsstop()

The predicate isAlive() is used to
test if a thread has been started but not
terminated. Once terminated, a thread
cannot be restarted.

start() causes the thread to
call its run() method.

Thread Life Cycle in JavaThread Life Cycle in Java

An “alive” thread has a number of sub-states

Runnable Non-Runnable
suspend()

resume()

yield()

Running

dispatch

suspend()

start()

stop(), or
run() returnswait() makes a Thread non-runnable,

and notify() makes it runnable (both of
these methods are discussed later).

sleep()

Java Thread Life Cycle in FSPJava Thread Life Cycle in FSP

THREAD = CREATED,
CREATED = (start ->RUNNING
 |stop ->TERMINATED),
RUNNING = ({suspend,sleep}->NON_RUNNABLE
 |yield ->RUNNABLE
 |{stop, end} ->TERMINATED
 | run ->RUNNING),
RUNNABLE = (suspend ->NON_RUNNABLE
 | dispatch ->RUNNING
 |stop ->TERMINATED),
NON_RUNNABLE = (resume ->RUNNABLE
 |stop ->TERMINATED),
TERMINATED = STOP.

Java Thread Life Cycle in LTSJava Thread Life Cycle in LTS

end , run ,
dispatch are
not methods of
class Thread .

States 0 to 4 correspond to CREATED, TERMINATED, RUNNING,
RUNNABLE, and NON_RUNNABLE respectively.

Java Thread Life Cycle in FSPJava Thread Life Cycle in FSP

public class Hello implements Runnable {
 public void run() {
 System.out.println(“Hello”);
 try {
 Thread.sleep(1000);
 } catch (Exception ex) { }
 }

 public static void main(String[] argv) {
 new Thread(new Hello()).start();
 System.out.println(“World”);
 }
}

Countdown Timer Example in JavaCountdown Timer Example in Java

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

(when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0) beep->STOP

|stop->STOP).

How do we implement this in Java?

Countdown Timer Example in JavaCountdown Timer Example in Java

public class CountDown implements Runnable {
 int i = 0;
 final static int N = 10;
 boolean stopping = false;
 AudioClip beepSound = null, tickSound = null;
 NumberCanvas display = null;

 public void start() {...}
 public void stop() {...}
 public void run() {...} // Runnable
 private void tick() {...}
 private void beep() {...}
}

High-level implementation approach

Countdown Timer Example in JavaCountdown Timer Example in Java

public void start() {
 i = N;
 stopping = false;
 new Thread(this).start();
}

public void stop() {
 stopping = true;
}

public void run() {
 while(true) {
 if (stopping) return;
 if (i>0) { tick() ; --i; }
 if (i==0) { beep() ; return;}
 }
}

start action

stop action

COUNTDOWN[i] process recursion
as a while loop

 STOP

 when(i>0) tick->CD[i-1]

 when(i==0) beep->STOP

STOP occurs when
run() returns

Countdown AppletCountdown Applet

public class CountDownApplet extends Applet {
 CountDown counter = null;
 NumberCanvas display = null;

 public void init() {
 add(display=new NumberCanvas("CountDown"));
 display.setSize(150,100);
 counter = new CountDown(display);
 }

 public void start() {
 counter. start() ;
 }

 public void stop() {
 counter. stop() ;
 }
}

Multiple Threads in JavaMultiple Threads in Java

	 In the previous Java thread examples, we only
created one thread, Java programs can create
many threads

	 Actually, every Java program has multiple
threads
� A program starts with its own thread that calls

main()

� Various background threads exist, like the garbage
collector

	 Creating multiple threads is as simple as creating
multiple Thread instances using new

Recall the Ornamental GardenRecall the Ornamental Garden

const N = 4
range T = 0..N
set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 |write[v:T]->VAR[v]).

TURNSTILE = (go->RUN),
RUN = (arrive->INCREMENT
 |end->TURNSTILE),
INCREMENT = (value.read[x:T]
 ->value.write[x+1]->RUN
)+VarAlpha.

||GARDEN = (east:TURNSTILE
 ||west:TURNSTILE
 ||{east,west,display}::value:VAR)
 /{go/{east,west}.go,
 end/{east,west}.end}.

Ornamental Garden in JavaOrnamental Garden in Java

The Turnstile thread simulates the periodic arrival of a visitor to
the garden every second by sleeping for a second and then invoking
the increment() method of the counter object.

setvalue()

NumberCanvas

Applet

init()
go()

Garden

Thread

Turnstile

run()

Counter

increment()

displaydisplay

east,west people

eastD,
westD,
counterD

Ornamental Garden in JavaOrnamental Garden in Java

private void go() {
 counter = new Counter(counterD);
 west = new Turnstile(westD,counter);
 east = new Turnstile(eastD,counter);
 west.start();
 east.start();
}

The Counter object and Turnstile threads are created by the
go() method of the Garden applet:

Note that counterD , westD and eastD are objects of
NumberCanvas used in CountDown example.

Ornamental Garden in JavaOrnamental Garden in Java

class Turnstile extends Thread {
 NumberCanvas display;
 Counter people;

 Turnstile(NumberCanvas n,Counter c)
 { display = n; people = c; }

 public void run() {
 try{
 display.setvalue(0);
 for (int i=1;i<=Garden.MAX;i++){
 Thread.sleep(500); // sleep
 display.setvalue(i);
 people.increment();
 }
 } catch (InterruptedException e) {}
 }
}

The run()
method exits
and the thread
terminates after
Garden.MAX
visitors have
entered.

Ornamental Garden in JavaOrnamental Garden in Java

class Counter {
 int value=0;
 NumberCanvas display;

 Counter(NumberCanvas n) {
 display=n;
 display.setvalue(value);
 }

 void increment() {
 int temp = value; // read
 Simulate.HWinterrupt();
 value=temp+1; // write
 display.setvalue(value);
 }
}

Hardware interrupts can occur
at arbitrary times.

The counter simulates a
hardware interrupt during an
increment() , between
reading and writing to the
shared counter value . Inter-
rupt randomly calls
Thread.yield() to force
a thread switch.

Ornamental Garden in JavaOrnamental Garden in Java

Remember that we found a bug in our FSP implementation of
the Ornamental Garden; the same bug exists in our Java
implementation

This bug results from the threads interfering with each
other...how do we solve this problem in Java?

Avoiding Interference in ProgramsAvoiding Interference in Programs

// global space

Value v = new Value(0);

boolean lock = false;

// Thread 1

while (lock) { } // wait

lock = true; // lock

x = v.read();

v.write(x + 1);

System.out.println(v.read());

lock = false;

…

// Thread 2

while (lock) { } // wait

lock = true; // lock

x = v.read();

v.write(x + 1);

System.out.println(v.read());

lock = false;

…

Naïve Solution
This will not work, even if setting
“lock” is atomic, due to arbitrary
instruction interleaving -- a thread
may jump ahead of current one

Avoiding Interference in ProgramsAvoiding Interference in Programs

	 What is the programmatic solution?
� It is not generally possible using conventional

programming language constructs
� Must have special support for synchronization
¤ Either language support or library support
¤ Actually, solution is provided through hardware support

� Atomic “test-and-set” instruction (or similar)

¤ This “special” support provides a means to guarantee that
some minimal instruction can be done atomically

¤ From this minimal atomic instruction, it is possible to build
higher level synchronization concepts

Mutual Exclusion in JavaMutual Exclusion in Java

Java associates a lock with each object. Concurrent
activations of a method in Java can be made mutually
exclusive by prefixing the method with the keyword
synchronized .

We correct�COUNTER�class by deriving a class from it and
making the increment method synchronized

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n)
 {super(n);}

 synchronized void increment() {
 super.increment();
 }
}

Mutual Exclusion in JavaMutual Exclusion in Java

The Java compiler inserts code to acquire the lock before
executing the body of the synchronized method and code to
release the lock before the method returns. Concurrent threads are
blocked until the lock is released.

Synchronized Methods are RecursiveSynchronized Methods are Recursive

public synchronized void increment(int n) {
 if (n > 0) {
 value++;
 increment(n - 1);
 }
}

Once a thread has access to a synchronized method, it can
enter the method again and again (since it already has the lock),
for example:

Conceptually, each entry into the synchronized method
increments a lock counter and each exit decrements the lock
counter. When the conceptual lock counter reaches zero then
the lock is once again free.

Java Synchronized StatementJava Synchronized Statement

synchronized (object) { statements }

synchronized (counter) {counter.increment();}

Access to an object may also be made mutually exclusive by using
the synchronized statement

A less elegant way to correct the garden example would be to
modify the Turnstile.run() method

