
Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 4:
Interference & Mutual Exclusion

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – November 6, 2001

FSP Concepts ReviewFSP Concepts Review

	 A process is a set of states with transitions
among the various states
� A process defines all possible/allowable transitions
� Transitions are equivalent to actions
� Actions are atomic, which means that they either

happen completely or not at all
¤ i.e., actions cannot be divided or interrupted

	 Processes can be combined to form parallel
compositions
� Parallel compositions are concurrent systems
¤ This means that the combined processes conceptually execute

all at the same time

FSP Concepts ReviewFSP Concepts Review

	 Process interaction occurs when two processes
share the same action
� Shared actions are special because they enable

processes to synchronize with each other
¤ A process cannot execute a shared action by itself, a shared

action can only execute when all processes that share the
action execute it at the same time

� Shared actions constrain a state machine (i.e., they
limit the allowable transitions) since they must
execute at the same time in all processes
¤ Non-shared actions can be arbitrarily interleaved and

therefore do not impose constraints

� Actions can be hidden so that cannot be shared

FSP Concepts ReviewFSP Concepts Review

	 Processes can be re-used by using a label prefix
(e.g., a:USER, b:USER)

	 Labels are also useful when modeling shared
resources, but in this case we must use a set of
prefixes (e.g., {a, b}::PRINTER)

	 In order to define specific process interactions,
actions can be renamed

	 Almost all of these operations are simple textual
substitutions, there is no magic

Now we can start to look at the real issues...

Ornamental Garden ProblemOrnamental Garden Problem

People enter an ornamental garden through either
of two turnstiles. Management wishes to know how
many people are in the garden at any time.

The system model consists of two concurrent
processes and a shared counter process.

Garden

West
turnstile

East
turnstile

Counter Variable ProcessCounter Variable Process

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 |write[v:T]->VAR[v]).

	 How does this process behave?
� It is initialized to zero
� It can hold values in the range of T

� It allows you to read a value from it

� It allows you to write a value to it

Counter Variable ProcessCounter Variable Process

LTS graph for VAR process

Turnstile ProcessTurnstile Process

TURNSTILE = (go->RUN),
RUN = (arrive->INCREMENT
 |end->TURNSTILE),
INCREMENT = (value.read[x:T]
 ->value.write[x+1]->RUN).

	 How does this process behave?
� It is started with go and accepts arrive s or can end

at any time
� Upon an arrival it read s the value of a counter

variable and then write s a new value and then
continues to run

Garden CompositionGarden Composition

value:VAR
display

write

GARDEN

west:
TURNSTILE

value

end
go

arrive

east:
TURNSTILE

value
end
go

arrive

go
end

read

	 The GARDEN composition contains
� Two processes of type TURNSTILE, called

east and west

� One shared process of type VAR, called value

Garden CompositionGarden Composition

||GARDEN = (east:TURNSTILE
 ||west:TURNSTILE
 ||{east,west,display}::value:VAR)
 /{go/{east,west}.go,
 end/{east,west}.end}.

The structure diagram helps us to determine how to
do relabeling for the composition

This is not yet complete, why?

Alphabet ExtensionAlphabet Extension

What is the alphabet of VAR?

What is the alphabet of TURNSTILE?

const N = 4
range T = 0..N

Assume these definitions

{ value.read[T], value.write[T] }

{ go, arrive, end,
 value.read[T], value.write[1..N] }

This causes a problem, why?

Alphabet ExtensionAlphabet Extension

	 Remember that shared actions constrain the
allowable transitions in a FSP

	 Action write[0] is unconstrained since it is
not shared with any other process
� The means that write[0] can happen at any time
� This is clearly not a good thing since it would reset

the variable back to zero whenever it occurred

	 We need some way to constrain write[0]
� This is where alphabet extension is useful

Alphabet ExtensionAlphabet Extension

Process alphabets are extended by adding actions to it

set VarAlpha { value.{read[T], write[T]} }

TURNSTILE = (go->RUN),
RUN = (arrive->INCREMENT
 |end->TURNSTILE),
INCREMENT = (value.read[x:T]
 ->value.write[x+1]->RUN)
 +VarAlpha .

	 Alphabet extension adds an action to a process' alphabet,
even if the process never performs the action

	 The added action, if shared with other process, constrain
the state machine like normal shared actions

Complete Garden ExampleComplete Garden Example

const N = 4
range T = 0..N
set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 |write[v:T]->VAR[v]).

TURNSTILE = (go->RUN),
RUN = (arrive->INCREMENT
 |end->TURNSTILE),
INCREMENT = (value.read[x:T]
 ->value.write[x+1]->RUN
) +VarAlpha .

||GARDEN = (east:TURNSTILE
 ||west:TURNSTILE
 ||{east,west,display}::value:VAR)
 /{go/{east,west}.go,
 end/{east,west}.end}.

The alphabet of
TURNSTILE is
extended with
VarAlpha to
ensure there are no
unintended free
actions in VAR, i.e.,
all actions in VAR
must be controlled
by a TURNSTILE.

Garden ImplementationGarden Implementation

Suppose that we actually implemented the GARDEN
example in Java and we let each turnstile receive 20
arrive actions, but in the end the counter displays 31
instead of 40. It appears as if some increments have
been lost.

Why?

Process InterferenceProcess Interference

	 We model concurrency as the arbitrary
interleaving of action from multiple processes

	 If processes access a shared object, sometimes
the state of the shared object can become
incorrect due to certain patterns of action
interleaving
� This is known as interference

	 The whole point of concurrent programming is
dealing with interference

Finding Errors in ModelsFinding Errors in Models

Exhaustive checking - compose the model with a
TEST process which sums the arrivals and checks
against the display value

TEST = TEST[0],
TEST[v:T] =
 (when (v<N){east.arrive,west.arrive}->TEST[v+1]
 |end->CHECK[v]),
CHECK[v:T] =
 (display.value.read[u:T]->
 (when (u==v) right ->TEST[v]
 |when (u!=v) wrong -> ERROR
)
)+{display.VarAlpha}.

||TESTGARDEN = (GARDEN || TEST).

Like STOP, ERROR
is a predefined FSP
local process (state),
numbered -1 in the
LTS graph.

Finding Errors in ModelsFinding Errors in Models

Using the LTSA tool, we can run a safety check on the
TESTGARDEN process and see if LTSA can find the
problem in our GARDEN process

Trace to property violation in TEST:
go
east.arrive
east.value.read.0
west.arrive
west.value.read.0
east.value.write.1
west.value.write.1
end
display.value.read.1
wrong

This error occurs because the increment
operation in TURNSTILE is not atomic

Avoiding Interference ErrorsAvoiding Interference Errors

	 Mutual exclusion
� Mutual exclusion is a high-level process

synchronization concept
� Mutual exclusion means that a shared resource can

only be accessed by one process at a time
¤ i.e., processes are not given access to a shared resource if any

other process currently has access to that resource

� Mutual exclusion is achieved with locks
¤ A lock is modeled as a process that allows an acquire

action followed by a release action

Avoiding Interference with LocksAvoiding Interference with Locks

Create a locking VAR for the GARDEN process

LOCK = (acquire -> release ->LOCK).
||LOCKVAR = (LOCK || VAR).
set VarAlpha = {value.{read[T],write[T],
 acquire , release }}

Modify TURNSTILE to use the lock

TURNSTILE = (go->RUN),
RUN = (arrive->INCREMENT
 |end->TURNSTILE),
INCREMENT = (value. acquire
 ->value.read[x:T]->value.write[x+1]
 ->value. release ->RUN)
 +VarAlpha.

Abstracting Locking DetailsAbstracting Locking Details

const N = 4
range T = 0..N

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 |write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
 ->(when (x<N) write[x+1]
 ->release->increment->INCREMENT
)
)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR) @{increment} .

We can hide the locking
details of a shared
resource by hiding its
internal actions and only
exposing the desired
external actions (e.g.,
similar to public
methods in an object)

Abstracting Locking DetailsAbstracting Locking Details

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment
 ->COUNTER[v+1]).

Minimized LTS for synchronized COUNTER process

A simpler process that also describes a synchronized counter

This process generates the same LTS as the previous
COUNTER definition, thus they describe the same atomic
increment behavior

