
Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 3:
Modeling Continued

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – October 30, 2001

Parallel Composition in FSPParallel Composition in FSP

If P and Q are processes then (P || Q) represents
the concurrent execution of P and Q. The operator ||
is the parallel composition operator.

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)

= (P||Q||R)

Parallel Composition in FSPParallel Composition in FSP

SCRATCH = (scratch->STOP).
TALK = (think->talk->STOP).
||TALK_SCRATCH = (SCRATCH || TALK).

Possible traces

think->talk->scratch
think->scratch->talk
scratch->think->talk

Interleaving of Concurrent ActionsInterleaving of Concurrent Actions

SCRATCH TALK

TALK_SCRATCH
(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

The states of the individual processes
SCRATCH and ITCH, respectively

Another Parallel CompositionAnother Parallel Composition

Clock radio example

LTS? Traces? Number of states?

CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).
||CLOCK_RADIO = (CLOCK || RADIO).

Process Interaction in FSPProcess Interaction in FSP

If processes in a composition have actions in common,
these actions are said to be shared -- shared actions are
used to model process interaction.

	 How is a shared action different than a non-
shared action?
� The execution of non-shared actions may be

arbitrarily interleaved

� Shared actions must be executed at the same time by
all processes that share the action

Process Interaction in FSPProcess Interaction in FSP

MAKE = (make-> ready ->MAKE).
USE = (ready ->use->USE).
||MAKE_USE = (MAKE || USE).

Producer/consumer example

MAKE synchronizes with USE when ready .

Process Handshaking in FSPProcess Handshaking in FSP

MAKEv2 = (make-> ready -> used ->MAKEv2).
USEv2 = (ready ->use-> used ->USEv2).
||MAKE_USEv2 = (MAKEv2 || USEv2).

Handshaking to acknowledge an action by another

3 states
3 states

3 x 3
states?

Interaction
constrains the
overall behavior

4 states

Process Handshaking in FSPProcess Handshaking in FSP

MAKE_A = (makeA-> ready -> used ->MAKE_A).
MAKE_B = (makeB-> ready -> used ->MAKE_B).
ASSEMBLE = (ready ->assemble-> used ->ASSEMBLE).
||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Multi-party synchronization

Composite Processes in FSPComposite Processes in FSP

A composite process is a parallel composition of primitive
processes. These composite processes can be used in the
definition of further compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

Substituting the definition for MAKERS in FACTORY and applying
the commutative and associative laws for parallel composition
results in the original definition for FACTORY in terms of primitive
processes.

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Using Duplicate Processes in FSPUsing Duplicate Processes in FSP

Modeling two light switch processes

SWITCH = (on->off->SWITCH).
||TWO_SWITCH = (SWITCH || SWITCH).

This does not work, why?

All actions are shared, thus the resulting process composition
reduces to a single light switch.

Process Labeling in FSPProcess Labeling in FSP

a:P prefixes each action label in the alphabet of P with a.

Correctly modeling two light switch processes

SWITCH = (on->off->SWITCH).
||TWO_SWITCH = (a:SWITCH || b:SWITCH).

a:SWITCH b:SWITCH

The actions of the process are relabeled with the prefix

Process Labeling in FSPProcess Labeling in FSP

LTS graph of two light switches

An array of light switches

||SWITCHES(N=3) = (s[i:1..N] :SWITCH).

Labeling with a Set of PrefixesLabeling with a Set of Prefixes

{a1,…,ax}::P replaces every action label n in
the alphabet of P with the labels a1.n … ax.n .
Further, every transition (n->X) in the definition
of P is replaced with the transitions
({a1.n,…,ax.n}->X) .

RESOURCE = (acquire -> release ->RESOURCE).
USER = (acquire ->use-> release ->USER).
||RESOURCE_SHARE = (a:USER || b:USER

 || { a, b}::RESOURCE).

Labeling with a set of prefixes are useful for
modeling shared resources in a program

Labeling with a Set of PrefixesLabeling with a Set of Prefixes

a:USER b:USER {a,b}::RESOURCE

RESOURCE_SHARE

How does the model ensure
that the user that acquires
the resource is the same
one that releases it?

Relabeling Actions in FSPRelabeling Actions in FSP

Relabel functions are applied to processes to change the
names of action labels. The general form of the relabel
function is:
/{newlabel1/oldlabel1,… newlabeln/oldlabeln} .

Relabeling to ensure that composed processes
synchronize on particular actions.

CLIENT = (call -> wait ->continue->CLIENT).
SERVER = (request ->service-> reply ->SERVER).
||CLIENT_SERVER = (CLIENT || SERVER)
 /{ call / request , reply / wait }.

Relabeling Actions in FSPRelabeling Actions in FSP

CLIENT SERVER

CLIENT_SERVER

||CLIENT_SERVER = (CLIENT || SERVER)
 /{ call / request , reply / wait }.

Action Hiding in FSPAction Hiding in FSP

When applied to a process P, the hiding operator
\{a1..ax} removes the action names a1..ax from
the alphabet of P and makes these concealed actions
"silent". These silent actions are labeled tau. Silent
actions in different processes are not shared.

Sometimes it is more convenient to specify the set of
labels to be exposed....

When applied to a process P, the interface
operator @{a1..ax} hides all actions in the
alphabet of P not labeled in the set a1..ax .

Action Hiding in FSPAction Hiding in FSP

These processes are equivalent

USER = (acquire->use->release->USER)
 \{use}.

USER = (acquire->use->release->USER)
 @{acquire,release}.

Minimization removes hidden tau
actions to produce an LTS with
equivalent observable behavior.

Why might we do this?

Structure DiagramsStructure Diagrams

• State machine diagrams to depict the dynamic
behavior of processes

• Structure diagrams capture the structure of a
model expressed by the static combination
operators: parallel composition, relabeling,
and hiding

Structure DiagramsStructure Diagrams

P a

b

Process P with
alphabet {a,b}

Parallel Composition
(P||Q)
/{m/a,m/b,c/d}

P a b Q
m

c dc

x xx

P Qa

S

yx
Composite process
||S = (P||Q)
 @{x,y}

Structure DiagramsStructure Diagrams

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).
||TWOBUFF = ?

a:BUFF b:BUFF
a.out

TWOBUFF

outin
inoutin out

||TWOBUFF = (a:BUFF || b:BUFF)
 /{in/a.in,a.out/b.in,out/b.out}
 @{in,out}.

It can be easier to understand relabeling with structure diagrams.

Structure DiagramsStructure Diagrams

CLIENT = (call -> wait ->continue->CLIENT).
SERVER = (request ->service-> reply ->SERVER).
||CLIENT_SERVER = (CLIENT || SERVER).
 /{ call / request , reply / wait }.

CLIENT call request SERVERcall

replywait reply servicecontinue

Structure diagram for client/server example

Structure DiagramsStructure Diagrams

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use
 ->printer.release->USER).
||PRINTER_SHARE = (a:USER||b:USER
 ||{a,b}::printer:RESOURCE).

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

Shared resources are depicted as a rounded rectangle.

