Concurrent Programmin g
19530-V (WS01)

Lecture 3:
Modeling Continued

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Z

Concurrent programming — October 30, 2001

Parallel Composition in FSP

TS R - i i

Commutative: (P||Q) = (QlIP)
Associative: (P|[(Q[IR)) = ((PIIQ)IIR)
= (P|IQIIR)

Parallel Composition in FSP

SCRATCH = (scratch->STOP).
TALK = (think->talk->STOP).
||[TALK_SCRATCH = (SCRATCH || TALK).

Possible traces

think->talk->scratch
think->scratch->talk
scratch->think->talk

Interleaving of Concurrent Actions

scratch

think talk
SCRATCH{*?D Ak @ @ @

acratch

TALK_SCRATCH

(0,0) (0,1) 0,2) (1,2
4 talk think

The states of the individual processes
SCRATCHINdITCH, respectively

Another Parallel Composition

Clock radio example

CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

|ICLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?

Process Interaction in FSP

¢ How is a shared action different than a non-
shared action?

¢ The execution of non-shared actions may be
arbitrarily interleaved

¢+ Shared actions must be executed at the same time by
all processes that share the action

Z

Process Interaction in FSP

Producer/consumer example

MAKE = (make-> ready ->MAKE).
USE = (ready ->use->USE).

IMAKE_USE = (MAKE || USE).

MAKEsynchronizes wittUSEwhenready .

rake ready rake

use use

Process Handshaking in FSP

Handshaking to acknowledge an action by another

MAKEV2 = (make-> ready -> used ->MAKEV2).
USEv2 =(ready ->use-> used ->USEv2).

IMAKE_USEV2 = (MAKEV2 || USEV2).

rake readsy use

Interaction
constrains the
overall behavior

used

Process Handshaking in FSP

Multi-party synchronization

MAKE_A = (makeA-> ready -> used ->MAKE_A).
MAKE_B = (makeB-> ready -> used ->MAKE_B).
ASSEMBLE = (ready ->assemble-> used ->ASSEMBLE).
||[FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Composite Processes in FSP

A composite process is a parallel composition of primitive
processes. These composite processes can be used in the
definition of further compositions.

IIMAKERS = (MAKE_A || MAKE_B).

|IFACTORY = (MAKERS || ASSEMBLE).

Substituting the definition faAKERSNn FACTORYand applying
the commutative andassociativelaws for parallel composition
results in the original definition fdFACTORYnN terms of primitive
processes.

|IFACTORY = (MAKE_A || MAKE_B || ASSEMBLE). I

Using Duplicate Processes in FSP

Modeling two light switch processes
SWITCH = (on->off->SWITCH).
[|[TWO_SWITCH = (SWITCH || SWITCH).

All actions are shared, thus the resulting process composition
reduces to a single light switch.

an

off’

Process Labeling in FSP
a:P prefixes each action label in the alphabe @fith a. I

Correctly modeling two light switch processes

SWITCH = (on->0ff->SWITCH).

[TWO_SWITCH = (a:SWITCH|| b:SWITCH).

The actions of the process are relabeled with the prefix
a:SWITCH b:SWITCH

aon on

a.off b.off

Process Labeling in FSP

LTS graph of two light switches

An array of light switches

ISWITCHES(N=3) = (s[i1..N] :SWITCH).

Labeling with a Set of Prefixes

Labeling with a set of prefixes are useful for
modelingsharedresources in a program

RESOURCE = (acquire ->release ->RESOURCE).
USER =(acquire ->use-> release ->USER).
||RESOURCE_SHARE = (a:USER || b:USER

Il { a, b}::RESOURCE).

Labeling with a Set of Prefixes

aacouire ause b acouire b.use b.acguire

o

arelease b release arelease
b release

a:USER b:USER {a,b}::RESOURCE

How does the model ensure
that the user that acquires beequre
the resource is the same
one that releases it?

arelease =
RESOURCE_SHARE -

Relabeling Actions in FSP

Relabeling to ensure that composed processes
synchronize on particular actions.

CLIENT = (call ->wait ->continue->CLIENT).
SERVER = (request ->service-> reply ->SERVER).
[|[CLIENT_SERVER = (CLIENT || SERVER)

K call /request , reply /wait }.

Relabeling Actions in FSP

T TR a i i

[|[CLIENT_SERVER = (CLIENT || SERVER)
K call /request , reply /wait }.

call reply call service

D P

contirme reply

CLIENT SERVER

call Fervice reply

cottinue
CLIENT_SERVER

Action Hiding in FSP

TS R - i

Sometimes it is more convenient to specify the set of
labels to beexposed..

_

Action Hiding in FSP

These processes are equivalent

USER = (acquire->use->release->USER)
\{use}.
USER = (acquire->use->release->USER)
@{acquire,release}.

acjuire tan

Minimization removes hiddeiau

actions to produce an LTS with

equivalent observable behavior.
% aceuire

release

Structure Diagrams

» State machine diagrams to depict the dynamic
behavior of processes

» Structure diagrams capture the structure of a
model expressed by the static combination
operators; : |
and

Structure Diagrams

Process with
alphabefa,b}

Parallel Composition

(PIIQ)
{m/a,m/b,c/d}

Composite process
IS = (PIIQ)
@{x,y}

Structure Diagrams

range T =0..3
BUFF = (in[i:T]->out[i]->BUFF).
[[TWOBUFF = ?

It can be easier to understand relabeling with structure diagrams.

b:BUFF
Oin out O

[[TWOBUFF = (a:BUFF || b:BUFF)
Hin/a.in,a.out/b.in,out/b.out}
@({in,out}.

Structure Diagrams

A i

CLIENT =(call ->wait ->continue->CLIENT).
SERVER = (request ->service-> reply ->SERVER).
||CLIENT_SERVER = (CLIENT || SERVER).

K call /request , reply /wait }.

Structure diagram for client/server example

Structure Diagrams
RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use

->printer.release->USER).
[|PRINTER_SHARE = (a:USER]|b:USER
|{a,b}::printer:RESOURCE).

Shared resources are depicted as a rounded rectangle.

printer (3
printer:
RESOURCE
ryacquire

b:USER P\ release
printer ¢y

