
Concurrent Programmin gConcurrent Programmin g
19530-V (WS01)19530-V (WS01)

Lecture 2:
Modeling Introduction

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Concurrent programming – October 23, 2001

Our Approach to ConcurrencyOur Approach to Concurrency

	 Start with concurrency concepts
� Processes are units of sequential execution

� Complex system is a set of simpler activities, each
represented as a process, that execute concurrently

	 Use models to define concepts more clearly
� Finite state machines / finite state processes / label

transition systems
	 Use Java to implement our models
� We will discuss Java in a few weeks

ModelingModeling

	 Models are simplified representations of real-
world entities

	 We model something to better understand it
� Focus on interesting aspects

� Visualize potential outcomes

� Create mechanisms to test and verify an approach

	 We can use models in concurrent programs to
achieve all of these goals

Modeling a ProcessModeling a Process

	 A real process
� Consists of
¤ Explicit variables (e.g., programmer declarations)
¤ Implicit variables (e.g., program counter, registers)

� As a process executes, it transforms its state by
executing program statements
¤ Each statement is composed of a set of atomic actions

	 Our simplified model of a process
� Has a state that is modified by indivisible actions

� An action transitions the current state to the next state

� Allowable transitions from one state to the next must
be completely specified

Modeling a ProcessModeling a Process

	 A process model for a light switch (Lichtschalter)
� There are two states for a light switch (OFF / ON),

which we number consecutively

� There are two allowable actions that transition back
and forth between the two states

0 1

on

off

The LTS Modeling TechniqueThe LTS Modeling Technique

	 In general, we have created a finite state machine
model of a light switch

	 Specifically we have a label transition system
(LTS), since transition arcs have labels

	 LTS is good for modeling because it is easy to
understand and visualize
� Unfortunately, LTS graphs do not scale for large

processes

� Instead, we will use an algebraic representation called
finite state processes (FSP) that can be mapped to
LTS

Finite State Process (FSP)Finite State Process (FSP)

If x is an action and P a process then (x->P) de-
scribes a process that initially engages in the action x
and then behaves exactly as described by P.

ONESHOT = (fire->STOP).

0 1

fire

Convention:
Actions are written in lowercase,
processes are written in uppercase

FSP and RepetitionFSP and Repetition

	 Recursion is used to model repetition

	 Substitution is used to simplify expressions

	 Further substitution

SWITCH = OFF,
OFF = (on->ON),
ON = (off->OFF).

SWITCH = OFF,
OFF = (on->(off->OFF)).

SWITCH = (on->(off->SWITCH)).

Another FSP ExampleAnother FSP Example

Modeling a traffic light

LIGHT = RED,
RED = (yellow->YELLOWGREEN),
YELLOWGREEN = (green->GREEN),
GREEN = (yellow->YELLOWRED),
YELLOWRED = (red->RED).

LIGHT = (yellow->green->yellow->red->LIGHT).

Expressing Choice in FSPExpressing Choice in FSP

	 The “choice” is made by the environment or the
process itself

	 Order has no significance

If x and y are actions then (x->P | y->Q) de-
scribes a process which initially engages in either of
the actions x or y . After the first action has occurred,
the subsequent behavior is described by P if the first
action was x and Q if the first action was y .

Expressing Choice in FSPExpressing Choice in FSP

DRINKS = (red->coffee->DRINKS
 |blue->tea->DRINKS).

Modeling a drink vending machine

Non-deterministic Choice in FSPNon-deterministic Choice in FSP

	 It is not possible to predict the choice
	 Can use to model non-deterministic failure

A choice in the form of (x->P|x->Q) is non-deter-
ministic since after action x , the process may behave as
either P or Q.

Non-deterministic Choice in FSPNon-deterministic Choice in FSP

Modeling a non-deterministic coin toss

COIN = (toss->HEADS | toss->TAILS),
HEADS = (heads->COIN),
TAILS = (tails->COIN).

Indexed Actions and Process Indexed Actions and Process
Parameters in FSPParameters in FSP
System that echoes its input from range 0 to 3

ECHO=(in0->out0->ECHO
 |in1->out1->ECHO
 |in2->out2->ECHO
 |in3->out3->ECHO).

Similar echo system using indexed actions

ECHO=(in[0]->out[0]->ECHO
 |in[1]->out[1]->ECHO
 |in[2]->out[2]->ECHO
 |in[3]->out[3]->ECHO).

Why have indexed actions?

Indexed Actions and Process Indexed Actions and Process
Parameters in FSPParameters in FSP
Short-hand equivalent echo using index range

ECHO=(in[i:0..3]->out[i]->ECHO).

Also equivalent using process parameters

ECHO(N=3)=(in[i:0..N]->out[i]->ECHO).

Constants and Ranges in FSPConstants and Ranges in FSP

System that calculates the sum of two numbers
const N = 1
range T = 0..N
range R = 0..2*N
SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

Guarded Actions in FSPGuarded Actions in FSP

The choice (when B x->P | y->Q) means that x
cannot be chosen unless B is true. If B is true then
either x or y are eligible to be chosen.

COUNT(N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]).

System that increments/decrements from 0 to 3

Guarded Actions in FSPGuarded Actions in FSP

TIMER(N=3) = (start->TIMER[N]),
TIMER[i:0..N] = (when(i>0) tick->TIMER[i-1]
 |when(i==0) beep-> STOP
 |stop-> STOP).

Timer that can be stopped and beeps at zero

0 1 2 3 4 5

start tick tick tick beep

stop

stop

stop
stop

Process AlphabetProcess Alphabet

TIMER(N=3) = (start->TIMER[N]),
TIMER[i:0..N] = (when(i>0) tick->TIMER[i-1]
 |when(i==0) beep-> STOP
 |stop-> STOP).

Timer example again

The alphabet of a process is the set of actions in which
the process can engage.

Alphabet of the process

{ start, stop, tick, beep }

Concurrency and ParallelismConcurrency and Parallelism

	 Concurrency is the logical simultaneous
execution of multiple processes
� This may or may not include multiple physical

processors
� Simultaneous execution can be approximated by

interleaving process execution on a single processor
(e.g., preemptive multitasking)

	 Parallelism is the actual simultaneous execution
of multiple processes
� Multiple physical processors are required

Both concurrency and parallelism require controlled
access to shared resources to avoid conflicts; for our
intents these two concepts are interchangeable.

Concurrency Modeling IssuesConcurrency Modeling Issues

	 How do we model process execution speed?
� Speed and time are abstracted

	 How do we model concurrency?
� Arbitrary relative order of actions from different

processes (preserves order of each process' actions)

	 What is the result?
� A general model independent of scheduling

(asynchronous model of execution)

Parallel Composition in FSPParallel Composition in FSP

SCRATCH = (scratch->STOP).
TALK = (think->talk->STOP).
||TALK_SCRATCH = (SCRATCH || TALK).

Possible traces

think->talk->scratch
think->scratch->talk
scratch->think->talk

Interleaving of Parallel ActionsInterleaving of Parallel Actions

SCRATCH TALK

TALK_SCRATCH
(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

The states of the individual processes
SCRATCH and ITCH, respectively

