Concurrent Programming 19530-V (WS01)

Lecture 2: Modeling Introduction

Dr. Richard S. Hall rickhall@inf.fu-berlin.de

Concurrent programming – October 23, 2001

Modeling

- Models are simplified representations of realworld entities
- We model something to better understand it
 - Focus on interesting aspects
 - Visualize potential outcomes
 - Create mechanisms to test and verify an approach
- We can use models in concurrent programs to achieve all of these goals

Guarded Actions in FSP

The choice (when $\mathbf{B} \times -> \mathbf{P} \mid \mathbf{y} -> \mathbf{Q}$) means that \mathbf{x} cannot be chosen unless \mathbf{B} is true. If \mathbf{B} is true then either \mathbf{x} or \mathbf{y} are eligible to be chosen.

System that increments/decrements from 0 to 3

Process Alphabet

The alphabet of a process is the set of actions in which the process can engage.

Timer example again

Alphabet of the process

{ start, stop, tick, beep }

Concurrency Modeling Issues

- How do we model process execution speed?
 - Speed and time are abstracted
- How do we model concurrency?
 - Arbitrary relative order of actions from different processes (preserves order of each process' actions)
- What is the result?
 - A general model independent of scheduling (asynchronous model of execution)

