Concurrent Programmin g
19530-V (WS01)

Dr. Richard S. Hall
rickhall@inf.fu-berlin.de

Concurrent programming — October 23, 2001 /i teww)

Our Approach to Concurrency

Start with concurrency concepts
are units of sequential execution

is a set of simpler activities, each
represented as a process, that execute concurrently

Use models to define concepts more clearly

Finite state machines / finite state processes / label
transition systems

Use Java to implement our models
We will discuss Java in a few weeks

Modeling

Models are simplified representations of real-
world entities
We model something to better understand it
Focus on interesting aspects
Visualize potential outcomes
Create mechanisms to test and verify an approach

We can use models in concurrent programs to
achieve all of these goals

Modeling a Process

A real process

Consists of
Explicit variables (e.g., programmer declarations)
Implicit variables (e.g., program counter, registers)

As a process executes, it transforms its state by
executing program statements
Each statement is composed of a set of atomic actions

Our simplified model of a process
Has a state that is modified by indivisible actions
An action transitions the current state to the next state

Allowable transitions from one state to the next‘i
be completely specified ——

Modeling a Process

A process model for a light switch (Lichtschalter)

There are two states for a light switch (OFF / ON),
which we number consecutively

There are two allowable actions that transition back
and forth between the two states

on

off

The LTS Modeling Technique

=4

In general, we have created a finite state machine
model of a light switch

Specifically we have &

(LTS), since transition arcs have labels

LTS is good for modeling because it is easy to
understand and visualize

Unfortunately, LTS graphs do not scale for large
processes

Instead, we will use an algebraic representation called
(FSP) that can be mapped to
LTS

Finite State Process (FSP)

ONESHOT = (fire->STOP). I

fire

o

Convention:
Actions are wrltte_n in I_owercase, ‘——
processes are written in uppercase

FSP and Repetition

© Recursion is used to model repetition

SWITCH = OFF,
OFF = (on->0ON),

ON = (off->OFF).

o Substitution is used to simplify expressions

SWITCH = OFF,
OFF = (on->(off->OFF)).

e Further substitution

SWITCH = (on->(off->SWITCH)). l

Another FSP Example

Modeling a traffic light

LIGHT = RED,

RED = (yellow->YELLOWGREEN),
YELLOWGREEN = (green->GREEN),
GREEN = (yellow->YELLOWRED),
YELLOWRED = (red->RED).

LIGHT = (yellow->green->yellow->red->LIGHT). I

wellowr Sreet wellor

red

Expressing Choice in FSP

o The “choice” is made by the environment or the
process itself
¢ Order has no significance

Expressing Choice in FSP

Modeling a drink vending machine

DRINKS = (red->coffee->DRINKS
|blue->tea->DRINKS).

blue

red

coffee

7

Non-deterministic Choice in FSP

o Itis not possible to predict the choice
© Can use to model non-deterministic failure

Non-deterministic Choice in FSP

Modeling a non-deterministic coin toss

COIN = (toss->HEADS | toss->TAILS),
HEADS = (heads->COIN),
TAILS = (tails->COIN).

heads

Indexed Actions and Process
Parameters in FSP
System that echoes its input from range 0 to 3

ECHO=(in0->out0->ECHO
lin1->outl->ECHO
lin2->out2->ECHO

[in3->0ut3->ECHO).

Similar echo system usingdexed actions

ECHO=(in[0]->out[0]->ECHO
[in[1]->out[1]->ECHO

[in[2]->out[2]->ECHO

[in[3]->out[3]->ECHO).

Indexed Actions and Process
Pararmeters in FSP

Short-hand equivalent echo using index range

ECHO=(in[i:0..3]->out[i]->ECHO). I

Also equivalent usingrocess parameters

ECHO(N=3)=(in[i:0..N]->out[i]->ECHO).

Constants and Ranges in FSP

System that calculates the sum of two numbers

constN=1

range T = 0..N

range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[atb]),
TOTAL[s:R] = (out[s]->SUM).

Guarded Actions in FSP

System that increments/decrements from O to 3

COUNT(N=3) = COUNTIOQ],
COUNTTi:0..N] = (when(i<N) inc->COUNT]i+1]
|[when(i>0) dec->COUNTIi-1]).

Guarded Actions in FSP

Timer trhat can be stopped and beeps at zero

TIMER(N=3) = (start->TIMER[N]),
TIMER]i:0..N] = (when(i>0) tick->TIMER]i-1]

|[when(i==0) beep-> STOP
|stop-> STOB.

stop

tick

Process Alphabet

The alphabet of a process is the set of actions in which
the process can engage.

Timer example again

TIMER(N=3) = (start->TIMER[N]),

TIMER(i:0..N] = (when(i>0) tick->TIMER][i-1]
|when(i==0) beep->

|stop->).

Alphabet of the process
{ start, stop, tick, beep }

Concurrency and Parallelism

Concurrency is the logical simultaneous
execution of multiple processes
This may or may not include multiple physical

processors
Simultaneous execution can be approximated by

interleaving process execution on a single processor
(e.g., preemptive multitasking)
Parallelism is the actual simultaneous execution

of multiple processes
Multiple physical processors are required

Both concurrency and parallelism require controlled

access to shared resources to avoid conflicts; fo 'ﬁ
intents these two concepts are interchangeable. 7 l

Concurrency Modeling Issues

How do we model process execution speed?
Speed and time are abstracted

How do we model concurrency?

Arbitrary relative order of actions from different
processes (preserves order of each process' actions)

What is the result?

A general model independent of scheduling
(asynchronous model of execution)

Parallel Composition in FSP

SCRATCH = (scratch->STOP).
TALK = (think->talk->STOP).
||[TALK_SCRATCH = (SCRATCH || TALK).

Possible traces

think->talk->scratch
think->scratch->talk
scratch->think->talk

Interleaving of Parallel Actions

scratch

think talk
SCRATCH{*?D AWk @ @ @

acratch

TALK_SCRATCH

(0,0) (0,1) (0,2)
4 talk think

The states of the individual processes
SCRATCHINdITCH, respectively

