
Concurrent ProgrammingConcurrent Programming
19530-V (WS01)19530-V (WS01)

Dr. Richard S. Hall
 rickhall@inf.fu-berlin.de

Valerie Bures
bures@inf.fu-berlin.de

Christof Lutteroth
lutterot@inf.fu-berlin.de

Concurrent programming – October 16, 2001

Meetings TimesMeetings Times

� Vorlesung
R Dienstag 12 – 14, SR 005

� Übungen
R Dienstag 10 – 12, SR 053 (Hall)
R Dienstag 10 – 12, SR 051 (Lutteroth)
R Dienstag 14 – 16, SR 053 (Bures)

� Sprechstunden
R Mittwoch 10 – 12, 106 (Hall)
R Arrange with tutors

Purpose of this ClassPurpose of this Class

� Discuss the unique characteristics of designing
and implementing concurrent software systems
R Practical software engineering perspective
� General approach and methodology

R Technological perspective
� Java programming language

� Provide students with sufficient background on
current programming so that they can write
reasonably complex concurrent programs

ExpectationsExpectations

� Benoteter Schein based on
R Exercises (Übungen)
� 40% of grade
� Approximately one assignment per week
� Collected and graded
� Students will present solutions in their Übungen

R Project
� 20% of grade
� Broken into parts over the last few weeks

R Klausur
� 40% of grade
� Important!!!

The Klausur will be the last day of class, Februar 12
R Scores on all three will be averaged, 60% needed to

pass the class

ÜbungenÜbungen

� There will be no exercises for this lecture
� The first exercises will be handed out next week
� This means that the Übungen do not meet this

week or the next week
� Übungen start next week on 23.10.2001
R Organizational issues

Reading ListReading List

� Concurrency: State Models & Java Programs
R Jeff Magee and Jeff Kramer, Wiley, 1999.

(This is the main textbook for the class.)

� Foundations of Multithreaded, Parallel and Distributed
Computing
R Gregory A. Andrews, Addison-Wesley, 2000.

� Concurrent Programming in Java, Second Edition
R Doug Lea, Addison-Wesley Publishing, 2000.

What is Sequential Programming?What is Sequential Programming?

� Instructions occur in a predictable “sequence”
every time they are executed

� For example, we can always predict what the
following output will be, knowing the input

� Why do we know the output?
R Command execution is repeatable and sequential

Int x = 0, y = 0;
x = read(); // input 5
if (x > 0)
 y = 100;
else
 y = -100
System.out.println(y);

Confusing TerminologyConfusing Terminology

� In the English language, concurrent means
“happening at the same time as something else”

� In computer science, concurrent means
“happening in non-sequential order”
R This does not generally mean that things are

happening at the same time, although they could be

� In English and computer science, parallel means
“happening at the same time as something else”
R Everything in concurrent programming applies to

parallel programming as well

What is Concurrent Programming?What is Concurrent Programming?

� Concurrent programming implies doing more one
thing at a time
R Essentially, two or more independent sets of

instructions that interact (generally) through shared
state

R These are called threads of execution
� As a result of shared state, the behavior of

concurrent programs cannot always be predicted
accurately
R The result depends on the order of instruction

execution among the threads of execution

What is Concurrent Programming?What is Concurrent Programming?

� Since threads of execution have shared state, they
can access the same variables

� What is the execution path?
R (A, B, C, D, E, F) or (A, D, B, E, C, F) or ...

int x = …; // global space

…

// Thread 1

x = read(); // input -5

x = absolute(x);

System.out.println(x);

…

// Thread 2

if (x < 0)

 x = (x * -2);

System.out.println(x);

…

A

B

C

D

E

F

How do we achieve concurrency?How do we achieve concurrency?

� Multiple computers

� Multiple processes

� Multiple threads

R We will learn more about this later

� Any combination of the above

Why do we want concurrency?Why do we want concurrency?

� Performance - multi-processor machines

� Responsiveness - user interfaces

� Efficiency - blocking calls

� Naturalness - related, but separate activity
streams

Class Discussion OverviewClass Discussion Overview

� Over the course of this class we will discuss
many topics, including but not limited to
R Finite State Processes / Label Transition Systems
R Atomicity
R Mutual exclusion
R Semaphores
R Monitors
R Synchronization
R Condition variables
R Deadlock
R Safety and liveness
R Concurrent programming in Java

