
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 21(4), 401–428 (APRIL 1991)

Reactive C: An Extension of C
Reactive Systems

FRÉDÉRIC BOUSSINOT

to Program

Ecole Nationale Supérieure des Mines de Paris, Centre de Mathématiques Appliquées,
Sophia-Antipolis, 06565 Valbonne, France

SUMMARY

Reactive systems are interactive programs that react continuously to sequences of activations coming
from the external world. Reactive programming leads to a new programming style where one programs
in terms of reactions to activations and reasons in a logic of instants. This paper describes an extension
of the C programming language called RC (for ‘Reactive C’) to program reactive systems. The language
RC is described, then some programming examples are given to illustrate the reactive approach. The
main RC notions come directly from the Esterel synchronous programming language. Finally, the Esterel
and RC languages are compared.

KEY WORDS Reactive system C programming language Parallelism

INTRODUCTION

Reactive systems have been defined by Harel and Pnueli as systems that are supposed
to maintain an ongoing relationship with their environment. 1 Such systems do not
lend themselves naturally to description in terms of functions and transformations:
they cannot be described adequately as computing a function from an initial state
to a terminal state. On the contrary, behaviours of reactive systems are better seen
as reactions to external stimuli. The role of reactive systems is to react continuously
to external inputs by producing outputs. For example, man–machine interface hand-
lers or computer games fall into the category of reactive systems.

Recently, several languages have been designed for reactive programming. Among
these reactive languages, we can cite the imperative language Esterel, 2 two data-
flow languages, Lustre 3 and Signal, 4 and the graphical specification formalism State-
charts. 5

These languages do not use an absolute time as is the case, for example, in Ada 6

with the delay statement. Instead, they use a logical time divided into instants, which
are moments when programs react. In Esterel, we would write await 3 S to wait for
the third instant where the signal S is present (no matter what the signal S denotes).
This approach leads to a new programming style where one programs in terms of
reactions to activations and one thinks in a logic of instants.

C 7 is a very widespread and simple programming language. It is used in many
areas and in particular for interactive programs. This paper describes a new extension

0038–0644/91/040401–28$14.00 Received 25 August 1989
© 1991 by John Wiley & Sons, Ltd. Revised 14 December 1989 and 9 May 1990

402 F. BOUSSINOT

of C for reactive programming, * called RC for ‘Reactive C’. The intention is to
show that reactive programming can be done in C in a rather natural way by
introducing only a small set of new concepts. The effort to learn RC, for those who
know C, should be very small. Mainly, RC adds parallelism, exceptions and reactive
statements to C. The semantics of the reactive part of RC are described in a
mathematical framework, using conditional rewriting rules. 8 At present, RC is
implemented as a preprocessor which generates pure C.

In this paper, we first give motivation for reactive programming, then we describe
the RC language. We define in RC some communication mechanisms such as
semaphores, broadcast communications and CCS 9 communication ports. As an
illustration of the RC programming style, we give the complete code for a small
game to test a person’s reflexes, as well as a minimal environment in which to use
it. Another example is given that uses parallelism. We compare the RC solution
with a solution in Ada for the same example. Finally, a comparison of RC with
Esterel is discussed.

MOTIVATION FOR REACTIVE PROGRAMMING

Determinism, parallelism and sequential execution

Most systems decompose naturally into concurrent communicating subsystems. To
reflect this decomposition, concurrency and parallelism have been introduced in
some recent programming languages (Ada, for example). These language and their
compilers become more complex, but programs are clearer and easier to analyse.
In general, parallelism and concurrency give rise to non-determinism: a program can
have several distinct behaviours and the operating system must choose one of them
arbitrarily. Moreover, the semantics of some constructs (e.g. the select in Ada), are
explicitly non-deterministic. On the other hand, parallelism leads to execution-time
overhead: run-time concurrency and task and communication management lower
run-time performance.

There are several advantages if one stays with the deterministic case. Deterministic
programs are simpler: when reasoning, there is no need to take into account the
choices that the operating system will make. Also, deterministic programs have
reproducible behaviours, which is a great advantage for tests and validations. Reac-
tive languages such as Esterel or RC allow parallelism but preserve determinism.
Moreover, programs are executed sequentially: run-time concurrency is not needed.
One of the major gains with the reactive approach is to reconcile parallelism,
determinism and sequential execution.

Termination and cancellation

Concurrency introduces two problems: first, determining a termination notion
common to distinct processes; secondly, giving a way to a process to ‘kill’ another
one. Reactive languages are based on an instant notion that is shared by all processes.

* A first version of this paper has appeared as Reference l0.

REACTIVE C 403

So, termination becomes perfectly clear and means the end of the current instant.
Specific statements to manage instants and to define behaviours by reference to
instants can be introduced in a safe way.

The ‘killing’ ability, the means of cancelling an activity, exists in some languages
as Ada. However, it is well known that the Ada abort statement has complex
semantics which even includes the case where the aborted task continues its execution
forever 11 For example, suppose one has to code in Ada a ‘watchdog’ on a process
P. A solution is to create a task that executes an abort(P) statement. Another solution
is to control P execution by using the ‘rendezvous’ mechanism of Ada. In both cases,
the semantics are complex and there is no guarantee that P will be killed at the right
moment.

Reactive programming is also an attempt to solve the cancellation problem: for
example, ‘watchdogs’ are directly included as first-class concepts, with precise and
simple semantics.

RC DESCRIPTION

The time in RC

RC programs are pieces of code made from reactive statements. Executing a
reactive statement makes it react: reaction means execution. A sequence of reactions
is produced when the reactive statement is executed, then executed a second time,
and so on. More precisely, a set of control points is associated with each reactive
statement. These control points retain their values from one execution to the next
(they can be viewed as C static variables). Execution of a reactive statement starts
from the actual control points and reaches new control points from which the
execution will restart at the next execution. Thus, reactive statements do not necess-
arily behave in the same way at each execution, even if the environment has not
changed.

In RC we have a logical notion of time; time is made of instants that are the
moments where reactive statements are executed. An instant begins when the
execution starts and it is finished when the execution ends. With this underlying
notion of time, we can speak of the first instant of a reactive statement, i.e. the first
time it is executed. Similarly, we can speak of the second instant, the third instant,
etc. The behaviour of a reactive statement is defined completely when one can
describe how it behaves at the first instant (when it is executed for the first time),
at the second instant (when it is executed for the second time), at the third instant,
and so on.

In RC as in C, there is nothing that corresponds to the ‘real’ time, i.e. the time
we use in everyday life, and that is counted, for example, in seconds. To deal with
real-time problems, one must be able to associate the logical time with the real one,
i.e. to ‘generate instants’ (to execute and re-execute the program continuously) with
a sufficient rapidity.

Termination in RC

Some reactive statements have a limited lifetime: they terminate. To execute a
terminated statement does nothing at all: it produces the empty reaction. A termin-

404 F. BOUSSINOT

ated reactive statement remains terminated unless it is reset. When reset, a reactive
statement behaves as if this is its first instant. Some other reactive statements, for
example infinite loops, never terminate. There is a special case, when a reactive
statement terminates during the first instant (that is, it terminates the first time it is
executed): in this case, we say that the statement terminates instantaneously.

In a sequence of reactive statements, the control leaves a terminated component
and during the same instant reaches the next component. For example, in the
sequences S1 S2 the control reaches S2 when (and if) s1 terminates. Moreover, s2
begins execution at the same instant s1 terminates.

We now give an informal semantics of reactive statements, i.e. we define how
they behave at each instant, and when they terminate.

Reactive procedures

Reactive procedures are built from reactive statements and indicate the way to
execute them. Reactive procedure instants are identified with their calls.

To illustrate the reactive-procedure notion, consider the following C function that
prints

Now,
hello,

‘hello, world’ at each call:

hello(){
printf(″ hello, world\n ″);

}

suppose one wants to print ‘hello, world’ during the first call and ‘I repeat:
world’ during the second call. One writes in RC

rproc Hello(){
printf(″ hello, world\n ″);
stop;
printf(″ I repeat: hello, world\n ″);

}

The rproc keyword introduces a reactive procedure definition. The stop statement is
the first example of a reactive statement. It stops the execution for the current instant.
Execution will restart at the next instant from the statement that follows stop.
Therefore, the reactive procedure Hello reacts at the first instant by printing ‘hello,
world’. At the second instant, it prints ‘I repeat: hello, world’ and terminates. At
the next instant, nothing will be printed because the procedure is terminated.

C expressions such as C functions calls are considered to be instantaneously-
terminating reactive statements. One can identify the stop reactive statement in Hello
with its control point (in general, there is more than one control point associated
with a reactive statement, because of the RC parallel operator (described later) that
splits the control into several flow paths).

Reactive procedures are called using the exec statement.* For example, to call
the previous reactive procedure, one just writes

* We choose to use a specific keyword to distinguish reactive procedure calls from C functions calls, to insist on
their difference (even though they are related notions). It also simplifies the preprocessor implementation,

REACTIVE C 405

exec Hello();

In a sequence of reactive statements,
as the previous component terminates.
defined by

rproc Bye(){
stop ;
printf(″ Bye!\n ″);

control reaches the next component as soon
Suppose that the Bye reactive procedure is

}

To execute Bye after Hello, one can write:

rproc Seq(){
exec Hello();
exec Bye();

}

The procedure Seq prints ‘hello, world’ at the first instant. The control point becomes
the stop in Hello. At the second instant, Seq prints ‘I repeat: hello, world’ and then
Hello terminates. In the same instant, the procedure Bye is started and the new
control point becomes the stop statement in Bye. At the third instant, Seq prints
‘Bye!’ and terminates. We can represent Seq behaviour by the drawing in Figure 1.

Looping statements

Loops are essential to code interactive programs that run forever. In RC, there
are three kinds of loops: infinite loops, every loops, and finite repeat loops. Infinite
loops never terminate, and raising an exception is the only way to exit from them
(see below).

loop. Infinite loops are coded with the loop construct: when the body of a loop
terminates, it is immediately reset and executed another time. Consider for example
the following reactive statement:

loop exec Hello();

The message ‘hello, world’ is printed at the first instant and the control point
becomes the stop statement in Hello. At the second instant, execution starts from

Figure 1.

406 F. BOUSSINOT

the previous control point and ‘I repeat: hello, world’ is printed. Now, Hello is
terminated; it is immediately reset and restarted and ‘hello, world’ is printed again.
Therefore, at each instant except the first one, ‘I repeat: hello, world’ then ‘hello,
world’, are printed in this order. This gives the drawing in Figure 2.

This example shows that it is mandatory to be able to reset reactive statements.
Otherwise, once the Hello procedure has terminated for the first time, the overall
loop would loop forever without printing anything.†

Warning! The execution of a loop construct loops forever during the same instant
if its body always terminates instantaneously, as (for example) C expressions do.
Thus, the following reactive statement loops forever at the first instant:

loop printf(″ looping ! ″);

Its equivalent in C would be:

1: printf(″ looping ! ″); goto 1;

every. In reactive programming, one often wants to repeat an action every time
a condition is true. The every reactive statement accomplishes this. Execution of the
body of an every statement begins at the first instant the associated condition is true.
The body is reset and restarted every time the condition is true, even if it was not
terminated. Consider the following reactive statement:

every (Cond) exec Hello();

The execution of Hello begins at the first instant Cond is true and ‘hello, world’ is
printed at that instant.

(a) If Cond is false at the next instant, ‘1 repeat: hello, world’ is printed at that
instant. The procedure Hello will be restarted at the first instant Cond will
become true.

(b) If Cond is again true at the next instant, Hello is reset and restarted and ‘hello,
world’ is printed one more time.

Figure 3 shows an example of this behaviour.

Figure 2.

† We choose not to use the C for(; ;) construct to code reactive loops to simplify RC implementation
(otherwise, the body of the loop must be analysed to decide if it is a reactive loop, i.e. one that must
reset its body when it terminates).

REACTIVE C 407

Figure 3.

repeat. Finite loops are coded using the repeat statement. For example, the Work
procedure is executed ten times in

repeat (10) exec Work();

Control statements

When programming in a reactive style, we often want to control at each instant
the execution of some reactive statements. In RC, the two reactive statements
watching and select do this job. In the watching statement, control means supervision;
in the select statement, it means choice.

watching. The watching statement allows the definition of ‘watchdogs’ in RC. A
watching statement supervises its body in accordance with a boolean condition: it
‘kills’ its body as soon as the condition becomes true. It terminates either when its
body terminates or when the condition is true. For example, consider:

watching (END) exec Work();

This statement terminates instantaneously if END is true at the first instant. Other-
wise, Work is started. If Work terminates at the first instant, the watching statement
also terminates. The behaviour is similar at the next instants: if END is true the
overall statement terminates; otherwise, Work execution is resumed. So, Work is
‘killed’ as soon as END is true.

To wait for a condition Cond to be true, one can write

watching (Cond) loop stop;

This statement terminates if and only if Cond is true. More simply, one can use the
await reactive statement which does exactly this job: the previous statement is in
fact equivalent to the reactive statement:

408 F. BOUSSINOT

await(Cond);

A ‘last will’ statement can be defined for the body: this statement is executed
when the body is killed. It is prefixed by the timeout keyword because, often, ‘killing’
conditions reflect timing constraints. For example, suppose the ‘last will’ of Hello is
to say ‘Bye!’:

watching (END) exec Hello();
timeout exec Bye();

There are three possibilities:

1. END is true at the first instant. Then the overall statement behaves as Bye.
2. END is neither true at the first instant nor at the second instant. Then the

overall statement behaves as Hello.
3. END is false at the first instant, but true at the second instant. Then the overall

statement prints ‘hello, world’ at the first instant. At the second instant, END
is true so the execution of Hello is aborted and execution of Bye is started.
Therefore, the overall statement prints nothing at the second instant. Finally,
it prints ‘Bye!’ at the third instant and then terminates.

The behaviour in this last case is shown in Figure 4.
select. The select statement has two components and at each instant it selects

which component is to be executed, with respect to a boolean condition. By contrast
to if conditionals that make selection only at the first instant, select does it at all
instants. The select statement terminates when the selected statement terminates.
For example, the two reactive procedures P1 and P2 are executed alternately by

select (x = !x)
exec P1();
exec P2();

Suppose one wants to suspend the execution of a reactive procedure P when SUSP
becomes true, and to resume it when RST becomes true. One can simply write

select (Control(SUSP, RST))
exec P();
loop stop;

Figure 4.

REACTIVE C

with the C function Control defined by

int Control(S, R)
int S,R;
{

static act = TRUE;
if (act && S) return act = FALSE;
if (!act && R) return act = TRUE;
return act;

}

Exceptions

A general exception mechanism is defined
When such an exceptional case is encountered,

409

in RC, to treat ‘exceptional’ cases.
one executes a raise statement which

halts the current execution. Control is then recovered at the same instant by the
nearest surrounding catch statement. For example, in the following statement, the
error exception is raised if the variable X becomes equal to zero before the variable
Y:

watching (X= =0)
{ watching (Y= =0) loop stop; }

timeout raise error;

To handle an exception named abnormal, when it is raised, one writes

catch abnormal
exec Work();

handle exec ReportError();

If Work terminates, the catch statement also terminates. ReportError is executed onlv
if the abnormal exception is raised during Work execution.

Parallelism

The par reactive statement introduces parallelism into RC:
several reactive statements during the same instant. However,

it allows execution of
the order of execution

of the two components of a parallel statement is fixed and specified by the syntax
of the par statement. A control point is associated with each component of a par
statement. At each instant, the first component is executed, followed by the second
component. At the next instant, the execution restarts from the two control points
where the execution has been stopped previously. Execution of a parallel statement
is halted as soon as an exception is
its two components are themselves

par
exec Hello();
exec Bye();

raised. A parallel statement is- terminated when
terminated. Consider the statement

410 F. BOUSSINOT

At the first instant, it prints ‘hello, world’. At the second instant it prints ‘I repeat:
hello, world’ and ‘Bye!’, in this order. Then, the reactive procedures hello and Bye
are both terminated, so the par statement is also terminated. The behaviour is shown
in Figure 5.

If one component of a par statement never terminates, the par statement also
never terminates. For example, the following statement never terminates (except if
Work raises an exception):

par
loop stop;
exec Work();

However, when only one component terminates, the parallel construct behaves in
the same way as the other component. For example, suppose Cfunct is a C function.
Then

par
Cfunct();
exec Work();

is equivalent to the sequence

Cfunct(); exec Work();

Warning! Executing a reactive procedure in parallel with itself can lead to unclear
situations.* For example, consider the following statement:

par
exec Hello();
exec Hello();

The Hello procedure is called twice at the first instant (and it is not reset between
the two calls). The two messages ‘hello, world’ and ‘I repeat: hello, world’ are both
printed at the first instant and the statement terminates instantaneously (remember
that in contrast, Hello prints ‘hello, world’ at the first instant, ‘I repeat: hello, world’
at the second instant, and then terminates).

Figure 5.

* Perhaps it would be wise to prohibit such situations. The present RC implementation does not.

REACTIVE C 411

Micro instants

RC gives a way to break one instant into several micro instants. Conversely, micro
instants can be joined together to form one unique instant. The suspend reactive
statement suspends the execution for the current instant. But instead of compulsorily
creating a new instant as stop does, execution can be restarted in the same instant,
using the close statement. The close statement ‘jumps over’ the suspend statements
that are in its body. It can be seen as the dual of suspend: it generates one unique
instant (called ‘macro instant’) from several micro instants. Execution of the body
of a close statement is pursued while there exists a control flow path that is suspended
on some suspend statement. There is an implicit closure at the outermost level of
an executable program, i.e. in the main function, so that micro instants are in fact
not observable (which justifies the use of the term ‘micro instant’). As example,
consider the following parallel statement:

par
{ suspend; printf(″ 1 ″); }

printf(″ 2 ″);

This statement prints 2 at the first instant. At the second instant, it prints 1 then
terminates. The behaviour is shown in Figure 6.

Up to this point, suspend behaves as stop. But consider the closure of the previous
statement:

close
par

{ suspend; printf(″ 1 ″); }
printf(″ 2 ″);

Now, the close statement terminates instantaneously after printing 2 then 1, in this
order. Execution is as follows: the first branch is suspended and the second one is
executed, so 2 is printed. Then, the first branch is resumed so 1 is printed, and the
par statement terminates. Now, the behaviour becomes as shown in Figure 7.

Figure 6.

Figure 7.

412 F. BOUSSINOT

The real usefulness of suspend comes from parallelism. Suppose that there are
two processes placed in parallel in a system, and that each process has to monitor
the other process to detect its failure. Here is the code using suspend for the first
process

rproc P1 (){
par

exec 0bserveP2():
loop { OK1=1;

}

rproc 0bserveP2(){
loop{

suspend;
if(OK2) OK2=0;
stop;

stop; }

else printf(″ P2 out ″);

}
}

The code for the second process is similar:

rproc P2(){
par

exec ObserveP1 ();
loop { OK2=1; stop; }

}

rproc ObserveP1 (){
loop{

suspend;
if(OK1) OK1 =0; else printf(″ PI out ″);
stop;

}
}

Now the two processes can be put in parallel in any order. A possible version of
the overall system is:

rproc System(){
par

exec P1 ();
exec P2();

}

A failure is detected by a process if the other process does not set its OK variable.
Using suspend, each process tests the OK variable after the other has the possibility
of setting it. Thus, the order of execution of P1 and P2 becomes irrelevant and each
process is able to detect immediately the failure of the other one.

REACTIVE C 413

The next section gives more examples of the use of suspend, in particular to code
several communication and synchronization mechanisms.

COMMUNICATION MECHANISMS

Because of the presence of parallelism in RC, reactive statements can communicate
and synchronize. We now describe several communication and synchronization mech-
anisms in RC. First we define basic semaphores. The division of time into instants
leads to new synchronous semaphores which are coded using suspend.

Usually, communication in high-level formalisms such as CSP 12 or Ada is based on
a ‘hand shaking’ mechanism: to communicate, processes must synchronize themselves
explicitly and are suspended until the ‘rendezvous’ takes place. On the contrary,
reactive formalisms, (Esterel, for example) are based on a broadcast communication
mechanism. Broadcasting can be viewed as ‘hand raising’: to communicate, I raise
my hand (with possibly a notice in it) and everybody can see it (and can read
information on the notice). Moreover, raising my hand does not prevent me from
carrying on with my job. Now, the question is: when may I lower my hand? The
partition of time into instants allows a simple answer to this question: I lower my
hand at the end of the current instant. We describe in RC two different kinds of
broadcast. The first one comes directly from Esterel and is based on signals. The
main difference with Esterel is that correct access to signals is dynamically checked
in RC. These signals will be used to code the reflex game described later. The
second form of broadcast, which we call ‘radio’, does not need dynamic checking,
as emissions and receptions take one instant.

Finally, we consider an alternative to broadcasting that is a one–one communi-
cation through ‘ports’, and we show how to code it in RC.

Semaphores

Semaphores are well-known in parallel programming. 13 A semaphore is free or in
use (initially, it is free). To use a semaphore S, a process must execute P(S). If the
semaphore is free, the process can continue; if it is already being used by another
process, it is stopped. A semaphore S becomes free when the process using it
executes V(S). Semaphores can be defined by

typedef int Semaphore;

#define P(sem) {await(!sem); sem = 1;}

#define V(sem) sem = 0;

There is a problem with semaphores as defined previously: situations exist where
a process waiting for a semaphore cannot take it at the instant it becomes free. For
example, consider the following statement, where S is a semaphore:

par
{ stop; P(S); exec R(); V(S); }
{ P(s); stop; v(s); }

414 F BOUSSINOT

The execution of R does not begin at the second instant although S is released during
this instant: this is because S is released after the first parallel branch has tried to
use it.

Synchronous semaphores eliminate the previous problem: they can be taken as
soon as they are released. They are coded using suspend:

typedef int SyncSemaphore;

#define SyncP(sem)
catch Go

loop
{suspend; if(sem) stop; else raise Go;}

handle sem = 1;

#define SyncV(sem) sem = 0;

Signals

Signals define global data with restricted access. A signal can be emitted, read
and reset. There is the dynamically checked restriction that once a signal has been
read, no emission of it is allowed unless it is reset. Hence, all emissions must be
performed before the signal is read, and all readers necessarily read the same
information. Signals therefore implement a broadcast communication mechanism.
More precisely, a signal is an object on which the following operations are defined:

1. Emission: emit(S).
2. Cancellation of previous emissions: reset(S).
3. Presence test: present(S) is an expression whose value is 1 if signal S has been

emitted; otherwise its value is 0.
4. Valued emission: emitval(S,exp); The signal S is emitted and its value becomes

the value of exp. Signal values are always of integer type int.
5. Use of value: valof(S) returns the value of S.

The restriction on signal use is that all emissions must be performed before the first
test for the presence of a signal and before the first use of its value. A run-time error
is raised when this restriction is violated. This is the case for the following three
statements:

if (present) emit(S);

await (present(S)); emit(S);

emitval(DISPLAY, valof(DISPLAY)+1);

The _sigabort function is called every time the signal restriction of use is violated.
It can be user-defined, and in the default case it aborts execution by calling the C
function abort.

Multiple emissions

A signal can be emitted several times during the same instant, with possibly
different values. For example, consider

REACTIVE C 415

emitval(SIG,1); emitval(SlG,2);

By default, the last emission overrides the previous ones. So, in the example, the
value of SIG would be 2. As in Esterel, one gives the user the possibility to change
this situation by associating a combine function with a signal. Then, emitted values
will be combined using this function. One associates a combine function f with a
signal S by executing the call

combine(S,f);

Now, if S has been emitted already and has the value v,emitval(S,e) changes the value
to f(v,e). As an example, if plus denotes addition, the value of SIG is 3 after executing

combine(SIG, plus);
emitval(SIG,1);
emitval(SlG,2);

Single signals

Following Esterel, one calls single a signal that cannot be emitted more than once
without been reset. S becomes single after:

combine(S,abort);

Notice that, in contrast with Esterel, single signals emitted more than once are
checked at run-time.

Counting signal occurrences

In RC, it is possible to react to several signal occurrences using an auxiliary
counting variable. For example in the following statement, the error exception is
raised if READY is not present in less than LIMIT occurrences of the signal MS:

watching (present(MS) && 0 = = LIMIT- -)
await (present(READY))

timeout raise error;

(Notice that LIMIT- - is executed only when MS is present, because of the semantics
of && in C.)

Boolean expressions on signals

One easily expresses statements reacting to boolean expressions made of several
signal-presence tests. For example, in the following statement, P is executed each
time S is absent:

every (! present(S)) exec P();

In the following statement, P is killed if S3 is present or if S1 and S2 are simul-
taneously present:

416 F. BOUSSINOT

watching((present(S1) && present) present(S3))
exec P();

Radio

The radio communication mechanism we now define implements another form of
broadcast communication. Contrary to the previous mechanism based on signals,
dynamic checking is no more needed to preserve the broadcast discipline. To emit
or to read information in ‘radio’ mode takes one instant. More precisely, radio
communication has the following characteristics:

1.

2.

3.
4.

5.

The

EM IT(radio, n): the (integer) message n is emitted on radio and this takes one
instant.
LISTEN(radio,x): one listens for radio and the variable x receives its value. This
takes one instant.
Values of messages emitted during the same instant are added.
When no message is emitted during an instant, the value that listeners observe
is 0. Messages are lost when not caught at the instant they are emitted.
Messages are broadcast: everybody receives the same information at the same
instant.

precise definition of the radio communication is:

typedef struct radio{ int val; int em; } radio;

#define EMIT(radio,exp) {
radio. em = 1; radio. val += exp; suspend;
suspend; radio.val = 0; radio.em = 0; stop;

}

#define LISTEN(radio.var) {
suspend; if(radio, em) var = radio; stop;

}

To emit on a radio, one first notices that there is an emission (radio.em set to 1) and
then one suspends execution for two instants. Thus, all emitters have the possibility
to emit and all receivers detect that there are emissions and take the same value,
after all emissions are concluded. In the end, the radio is reset by all emitters. The
ending stop statements in LISTEN and EMIT imply that to listen for a radio or to emit
on a radio takes one instant. This feature avoids the necessity of dynamic checking
as needed for the other modes of signaling.

Ports

In contrast to broadcasting, CCS 9 communication is one–one. Processes communi-
cate through ports; a sender process and a receiver process are associated with each
port. Communication is instantaneous and is blocking: the sender must wait for the
receiver to be ready to continue; in the same way, the receiver is blocked when the
sender is not ready. The coding of ports uses the synchronous semaphores defined
above.

REACTIVE C 417

typedef struct port{
int val;
SyncSemaphore send;
SyncSemaphore ret;

} port;

#define lNIT(port) port. send = port. rec = 1;

#define SEND(port,exp) {
port,val = exp;
SyncV(port.rec)
SyncP(port.send)

}

#define RECEIVE(port,var) {
SyncV(port.send)
SyncP(port.ret)
var = port.val;

}

To illustrate the port communication, consider the following procedure which prints
1 and terminates instantaneously:

port p;

rproc Com(){
static int z,z1;
lNIT(p)
par

{ RECEIVE(p,z) SEND(p,z+1) }
{ SEND(p,0) RECEIVE(p,z1) }

printf(″ %d ″, z1);

}

The value 0 is sent then received in z; then 1 is added to z and the new value once
more sent and received in z1. All these actions are done in the same (macro) instant.

FIRST EXAMPLE: A REFLEX GAME

In this section we present a small example to illustrate the RC programming style.
The example is a reflex measuring game which has a simple normal behaviour and
several exception cases. * We describe the RC code for the reflex game. Then, to
illustrate how to interface it, we give the C code that has been used to run it.

There are two buttons, three lamps, a bell and a numerical display. The game
consists of testing player reflexes by a series of measurements. Each measure is as
follows: when ready, the player presses a button; after a while, the game lights up

* This example is coded in Esterel in Reference 14.

418 F. BOUSSINOT

a lamp; then the player must press a button as fast as he can. More precisely, the
player controls the game with three commands:

(a) putting a coin in a COIN slot starts the game
(b) pressing the READY button indicates that the player is ready to play
(c) pressing the END button ends a measure.

The game reacts in the following way:

1. The GO lamp lights up to signal the beginning of a measure.
2. Reflex times measured are displayed on DISPLAY.
3. The GAME-OVER lamp lights up at the end of a series a measures, i.e. when

the game is finished.
4. The TILT lamp lights up and the game is finished when the player tries to cheat

or when he abandons the game.
5. The bell RING_BELL rings when the player makes a mistake by confusing the

READY and END buttons.

Moreover:

(i) A new game is started afresh every time a coin is inserted.
(ii) Each game is composed of a fixed number MEASURE_NUMBER of measures.

When all measurements have been carried out, the average reflex time is
displayed.

(iii) Once READY has been pressed, GO lights up after a random delay. The time
measure begins when GO lights up and ends when the player presses END.

(iv) The player abandons if he takes more than LIMIT_TIME instants to press the
right button. The player cheats if, after he has pressed READY, he presses
END before GO lights up.

RC code

We use the previously-defined signals (in a file rcsignal. h) to represent the buttons,
the lamps and the bell.

#include ″ rcsignal.h ″

signal READY, COIN, END,
DISPLAY, GO, GAME_OVER, TILT, RING_ BELL;

There are three external integer variables: MEASURE_NUMBER, LIMIT_TIME and
PAUSE_LENGTH, which holds the delay before the final display of the average
measured time:

extern MEASURE_NUMBER, PAUSE_ LENGTH, LIMIT_TIME;

The reactive procedure GAME is the main procedure. We count instants that we
identify with GAME calls, and display numbers of instants. The variable TOTAL_TIME
holds the sum of the numbers of instants the player has taken.

GAME begins by printing a quick description of the game, using the external C
function PrintOut. As the game is started afresh whenever a coin is inserted, GAME

REACTIVE C 419

is coded with an every(present(COIN)) statement. The exception processing is naturally
coded with a catch statement that calls the C function abnormal_game_over in case
of error. A normal game is a series of measures coded with a repeat statement. The
game ends with execution of finalDisplay.

static int TOTAL_TIME;

rproc GAME(){
PrintOut(″ A reflex game ... c to start, q to stop. \r\n ″);
PrintOut(″ Press e as fast as possible after GO! ,\r\n ″);
every (present(COIN))

catch error
{ repeat (MEASURE_NUMBER) exec measure();

exec finalDisplay();

handle abnormal_game_over();
}

In case of error, the two signals TILT and GAME_OVER are emitted and TOTAL_TIME
is reset to 0.

abnormal_game_over(){
TOTAL_TIME = 0;
emit(TILT);
emit(GAME_OVER);

}

A measure consists of two phases. During the first phase, one waits for READY.
During the second phase, one waits for END. A prompt message is printed at the
beginning of each measure. To avoid interference with score printing, this is not
done at the first instant but at the second (using a stop statement).

rproc measure(){
stop;
PrintOut(″ press r when ready\r\n ″);
exec phase1(); exec phase2();

}

In phase1, one waits for READY during at most LIMIT_TIME instants. To count
instants, we declare the variable COUNTER, which must absolutely be static, otherwise
its value would not be retained from one instant to the next. At each instant,
COUNTER is decremented and tested for zero by a watching statement. During the
waiting, the player’s mistakes are detected (reactive procedure beepOn). After READY
has been pressed, one waits for a random number of instants (call of the external
C function RANDOM). During the waiting, the player’s cheatings and mistakes are
detected (reactive procedure testEnd).

rproc phase1 (){
static COUNTER;

420 F. BOUSSINOT

COUNTER = LIMIT_TIME;
watching (0 == COUNTER- -)

{ watching (present(READY)) loop exec beepOn(END); }
timeout raise error;
COUNTER = RANDOM();
watching (0 = = COUNTER- -) { stop; loop exec testEnd(); }

}

The reactive procedure beepOn has a parameter which is a signal. After one instant,
the bell rings if the parameter is present.

rproc beepOn(s)
signal s;
{

stop;
if (present(s)) emit(RING_BELL);

}

The reactive procedure testEnd performs two actions: the exception error is raised if
END is pressed and the bell rings if READY is pressed.

rproc testEnd(){
if(present(END)) raise error;
exec beepOn(READY);

}

In phase2 one begins by lighting up the GO lamp. Then, one waits for END during
at most LIMIT_TIME instants. During the waiting, player mistakes are detected
(reactive procedure beepOn). This behaviour is similar to the one in phase1 except
that END and READY are exchanged. Finally, the reflex time is displayed and is
added to TOTAL_Tl M E.

rproc phase2(){
static COUNTER;
COUNTER = 0;
emit(GO);
watching (LIMIT_TIME == COUNTER++)

{ watching (present(END)) loop
timeout raise error;
emitval(DISPLAY,COUNTER);
TOTAL_TIME + = COUNTER;

}

After PAUSE_LENGTH instants, the average
is displayed and GAME_OVER is emitted.

rproc finalDisplay(){
static COUNTER;

exec beepOn(READY); }

time TOTAL_TIME / MEASURE_NUMBER

}

Simulation

COUNTER = 0;
await (COUNTER+ + ==
PrintOut(″ **** final ″);
emitval(DISPLAY, TOTAL_
emit(GAME_OVER);
TOTAL_TIME = 0;

of the reflex game

REACTIVE C

PAUSE_LENGTH);

TIME / MEASURE_NUMBER);

421

We now show the C code that supplies input for the reflex game and that processes
its outputs. This simulation environment runs under Unix 4.2BSD.

One first gives suitable values to PAUSE_LENGTH and LIMIT_TIME constants, and
to values returned by RANDOM.

#include(stdio.h)
#include(sys/types.h)
#include(sys/time.h)
#include ″ rcsignal.h ″

struct timeval t;

int MEASURE_NUMBER = 4;
int PAUSE_ LENGTH = 1000;
int LIMIT_TIME = 100000;

RANDOM(){ return random()% 10000; }
extern signal READY, COIN, END, DISPLAY,

GO, GAME_OVER, TILT, RING_BELL;

Instants are calls of the reactive procedure GAME, so the main function is naturally
a for(;;) C loop whose body represents one instant. Each instant consists of the
following steps: input processing, GAME activation, output processing and then reset
of all the signals:

main(){
TheBeginning();
for(;;){

lnputProcessing();
exec GAME();
OutputProcessing();
ResetSignals();

}
}

The ‘c’ key represents COIN, the ‘r’ key represents READY and the ‘e’ key represents
END. One terminates the simulation session by typing the ‘q’ key. InputProcessing
scans the standard input; it does not block when there is no character in this input
(C function select is used with appropriate arguments).

422 F. BOUSSINOT

lnputProcessing(){
int mask = (1((fileno(stdin));
if(select(1,&mask,0,0, &t)){

switch(getchar()){
case ′ c ′ : emit(COIN); break;
case ′ r ′ : emit(READY); break;
case ′ e ′ : emit(END); break;
case ′ q ′ : TheEnd();

}
}

}

Output messages are printed in accordance with the signals that are present.

OutputProcessing(){
if(present(DISPLAY)){

printf(″ score: %d ″ ,valof(DlSPLAY));
PrintOut(″ \r\n ″);

)
if(present(GO)) PrintOut(″ GO !\r\n ″);
if(present(TILT)) PrintOut(″ \07TlLT! !\r\n ″);
if(present(GAME_OVER)) PrintOut(

″ Game over, Press c to restart, q to stop, \r\n ″);
if(present(RING_ BELL)) PrintOut(″ \07 ″);

}

All signals are reset at the

ResetSignals(){
reset(READY);
reset(COIN);
reset(END);
reset(DISPLAY);
rest(GO);

end of each instant.

reset(GAME_OVER);
reset(RING_BELL);
reset(TILT);

}

The two C funtions TheBeginning and TheEnd are used to set the appropriate options
on the terminal. For good printing, PrintOut flushes the output buffer.

TheBeginning(){
system(″ stty raw -echo ″);
t,tv_sec = t,tv_usec = 0;

}

TheEnd(){

REACTIVE C

PrintOut(″ It’s more fun to compete ...\r\n ″).
system(″ stty -raw echo ″); exit(0);

}

P r i n t o u t
char* ch;
{

printf(″ %s ″, ch);
fflush(stdout);

}

423

SECOND EXAMPLE: THE USE OF PARALLELISM

In this section we present an example using parallelism. After giving the RC code,
we compare it with a solution in Ada.

The system we want to code has a very simple specification: inputs are sequences
of TOP (synchronization) and REQ (request). Outputs are:

(a) OK for the first REQ between two TOPS, and NOK for the others REQs
(b) ALARM when there is no REQ between two TOPS.

Figure 8 shows how the system behaves.
There is no REQ between the two first TOPS, so ALARM is raised in response to

the second TOP. There is only one REQ between the second and the third TOPS, so
OK is emitted in response to REQ and no alarm is raised. Two REQs are present
between the third and the fourth TOPS, so OK is emitted in response to the first REQ
and NOK is emitted in response to the second. As there are REQs, there is no ALARM.

RC approach

We choose to represent
equally well use signals, as
of each instant, the output

input and output events as simple variables (we could
in the reflex game). We suppose that, at the beginning
variables OK, NOK and ALARM, and the input variables

that correspond to absent events, are set to 0. Conversely, we suppose that the input
variables corresponding to present events are set to 1.

We give a modular solution: a request handler, an alarm handler and the global
system that places the two previous handlers in parallel.

Figure 8.

424 F. BOUSSINOT

The request handler has the following behaviour: at each TOP, it waits for a REQ
and then sets OK to 1. Then, after the next instant, it sets NOK to 1 each time there
is a new REQ. The RC code is

rproc REQ_HANDLER(){
every(TOP){

await(REQ);
O K = 1 ;
stop;
every(REQ) NOK = 1;

}
}

The alarm handler has the following behaviour: if TOP arrives before OK, then it
sets ALARM to 1. In the opposite case, it waits for a TOP. This behaviour is restarted
in the instant that follows the arrival of TOP.

rproc ALARM_HANDLER(){
loop{

w a t c h i n g {
await(TOP);
ALARM = 1 ;

}timeout await(TOP);
stop;

}
}

The request handler and the alarm handler are placed in parallel in the global
system. The alarm handler uses the OK variable to test if there has been a REQ. At
each instant, the request processing must therefore precede the alarm processing.
The code is the following:

rproc TOP_REQ_HANDLER(){
par

exec REQ_HANDLER();
exec ALARM_HANDLER();

}

It is important to note that to invert the order of the two exec statements would be
incorrect.

Ada approach

A modular solution in Ada defines two tasks, one to process requests, the other
to process alarms. This architecture leads to two problems:

1. The scheduling of tasks generates non-determinism. There is no assurance that
the program will always respect the order of events. For example, it may be
possible that the program treats a REQ before a TOP even though the TOP has

REACTIVE C 425

arrived before the REQ. This can lead in some cases to forget an ALARM when
two TOPS are present without any REQ between them.

2. Run-time task concurrency is necessarily time-consuming and things become
worse when tasks communicate. The example exhibits two logically concurrent
processes that are better implemented by an equivalent sequential code: this
code is more efficient and respects determinism. In this case, run-time con-
currency is neither mandatory nor desirable. The problem with Ada is that
there is no way to produce sequential code from concurrent tasks. The user is
forced to pay for run-time concurrency as soon as tasking is used.

The comparison with Ada shows the benefit gained with the reactive approach:

(a) Reactive statements such as ‘watchdogs’ are directly present. There is no
need to code them in a more or less unnatural way.

(b) Parallelism can be used to code logically concurrent processes. The reactive
approach does not force a choice of parallelism and non-determinism on
one side, or determinism and sequentiality on the other side. It allows one
to have parallelism and determinism and sequential execution together.
Also, parallelism in the reactive approach does not imply run-time con-
currency.

COMPARISON WITH ESTEREL

In Estere1 15’2 communication is based on broadcast signals and processes can continue
their execution during an instant even after receiving signals (this is called instan-
taneous broadcast in Reference 16). For example, consider the following program
fragment:

emit S present S then emit T end

In this fragment, two agents are placed in parallel. The first one emits the signal S
and the second one tests for the presence of S; if S is present, it emits the signal T.
Following Esterel semantics, the two signals S and T are both emitted at the same
instant; in Esterel one says that they are synchronous. To receive S (in fact, to test
its presence) does not prevent the emission of T during the same instant. This can
cause problems called ‘causality cycles’ in Esterel terminology. The basic example
is

present S else emit S end

There is a contradiction: if we suppose that the signal S is present, then it is not
emitted, and so it is not present. On the other hand, if we suppose that S is not
present, then it is emitted, and consequently it is present.

Another example of a causality cycle, related to the deterministic aspect of Esterel,
is

present S1 else emit S2 end

present S2 else emit S1 end

426 F. BOUSSINOT

Now, there are two possible solutions: S1 is absent, and then S2 is emitted; and the
other solution: S2 is absent and then S1 is emitted. This fragment is not deterministic,
having two distinct behaviours. In Esterel, only deterministic programs are allowed.
The Esterel compiler is based on mathematical semantics using conditional rewriting
rules 15 It rejects programs having ‘causality cycles’ and transforms a correct program
into a sequential automaton whose behaviour is equivalent to the source program.
Automata produced can be analysed using existing automata verification systems.
In short, we distinguish three important components in Esterel: first, the reactive
part based on the division of time into instants; secondly, the broadcast communi-
cation; and thirdly, the fact that signal receptions do not block execution.

In this section, we compare RC to Esterel with respect to reactive statements,
communication, data and process handling, and execution of programs.

Reactive statements

RC reactive statements come from Esterel. However, RC is more general than
Esterel in several aspects:

(a) In RC, reactive statement conditions are boolean expressions and are not
restricted to single signal presence tests as in Esterel.

(b) The RC stop and select statements cannot be directly (that is structurally)
coded in Esterel.

(c) There is no possibility to define micro instants in Esterel as is the case in RC
using the suspend reactive statement.

Parallelism and communication

In contrast to Esterel, the RC parallel operator is not commutative. For example,
the following RC instruction will always print 1 then 2 in that order:

par
printf(″ 1 ″);
printf(″ 2 ″);

In Esterel, signals are the only way to synchronize branches of parallel instructions:
no global variables are allowed. As in C, global variables and side-effects are fully
allowed in RC, so communication can be totally unstructured and users are respon-
sible for managing it. ‘Instantaneous dialogues’ are possible in Esterel. Consider for
example the following Esterel program:

present S1 then emit S2 end
II
emit S1; present S2 then emit S3 end

First, S1 must be emitted, then it is tested and S2 is emitted; finally, S2 is tested
and S3 is emitted. In the same instant the first branch communicates with the second
branch, and conversely, the second communicates with the first. It is the Esterel
compiler’s job to find a proper interleaving allowing the dialogue to take place. By

REACTIVE C 427

contrast, interleavings of RC instructions in the same instant must be coded explicitly
using the suspend statement.

Esterel instantaneous broadcasting cannot be expressed in RC; one has to find a
compromise: if instantaneous reception is wanted, one has to pay for run-time
checking (see the communication based on signals defined previously). On the other
hand, if instantaneous reception is not wanted, run time checks become unnecessary
(as in the radio communication). Note that Esterel ‘causality cycles’ (see Reference
15) come directly from the Esterel instantaneous broadcast feature.

Data and process handling

Data handling is not part of the definition of Esterel. Esterel has only a few
primitive data types (such as integer and boolean) but no compound types such as
records or arrays. Structured data must be manipulated by functions and procedures
only known by their names in Esterel, and implemented in a host language. On the
other hand, RC gives direct access to the whole power of C for data processing.

Dynamic process creation is not possible in Esterel. Further, synchronous and
asynchronous processes cannot be mixed in Esterel where only synchronous com-
munication is allowed. On the contrary, RC is much more flexible. It gives a unique
frame where dynamic process creation and various communication mechanisms can
be efficiently implemented.

Execution of programs

Several tools use the automata generated by Esterel to produce code in other
programming languages (in particular C and Ada) or to produce entries for proofs
or validation systems such as the AUT0 17 system. In RC, programs are executed
directly in contrast to Esterel where one executes finite automata generated by the
compiler. Moreover, in RC there is no possibility of producing entries for proof or
validation tools at the present time.

CONCLUSION

This paper describes a new C extension for reactive programming. The use of
reactive statements is natural when program behaviours are defined as reactions to
activations and by reference to instants. Several such programs are described in the
text. RC includes, as first-class members, constructors for complex reactive behav-
iors such as ‘watchdogs’ which are difficult to code in other languages. Parallelism
can be used in RC to code logically concurrent processes and it does not imply either
run-time concurrency or nondeterminism. In RC deterministic parallel processes
generate sequential code. Moreover, RC can be used to code specifications in the
form of automata in a natural way.

There exists an experimental RC implementation as a C preprocessor. This
implementation is written in C using lex and yacc (it uses a single pass). It runs
under Unix on several machines. *

* At present: Sun 3, Sun 4, Vax, Gould and Hp.

428 F. BOUSSINOT

RC is at present used as an implementation language for process algebra, in the
SPECS (Specification and Programming Environment for Communication Software)
consortium of the RACE European project.

It would be interesting to generate automata from the reactive parts of RC
programs. Transitions of such automata would be pure C statements. These automata
could be input to verification systems. It would also be interesting to extend C++ 18

in the same way RC extends the pure C language, to mix object-oriented program-
ming with reactive programming.

ACKNOWLEDGEMENTS

I would like to thank G. Berry for helpful comments on the previous version of this
paper.

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.
11.
12.
13.

14.

15.

16.

17.

18.

REFERENCES

D. Harel and A. Pnueli, ‘On the development of reactive systems’, in K. R. Apt (cd.), Logics
and Models of Concurrent Systems, NATO ASI Series F 13, Springer-Verlag, New York, 1985,
pp. 477–498.
‘ESTEREL V3 manuals’, Ecole des Mines, Centre de Mathematiques Appliquées, Sophia-Antipolis,
1988.
P. Caspi, D. Pilaud, N. Halbwachs and J. Plaice, ‘Lustre, a declarative language for programming
synchronous systems’, Proceedings ACM Conference on Principles of Programming Languages,
Munich, 1987.
P. Le Guernic, A. Benveniste, P. Bournai and T. Gauthier, ‘SIGNAL: a data-flow oriented
language for signal processing’, IEEE Trans. Acoust. Speech and Signal Process., ASSP-34. (2),
362–374 (1986).
D. Harel, ‘Statecharts: a visual approach to complex systems’, Science of Computer Programming,
8, (3), 231–274 (1987).
The Programming Language Ada Reference Manual, Lecture Notes in Computer Science 155,
Springer-Verlag, 1983.
B. W. Kernighan and D. M. Ritchie, The C programming language, Prentice-Hall Software Series,
Prentice-Hall, New Jersey, 1978.
F. Boussinot, ‘RC semantics using rewriting rules’. Technical Report, 1989.
R. Milner, ‘A calculus for communicating systems’, Lecture Notes in Computer Science 92. Springer-
Verlag, 1980.
F. Boussinot, ‘A reactive extension of C’, INRIA Research Report 1027, 1989.
A. Burns, Concurrent Programming in Ada, Cambridge University Press, 1985.
C. A. R. Hoare, ‘Communicating sequential processes’, CA CM, 21, (8), 666–677 (1978).
E. W. Dijkstra, ‘Co-operating sequential processes’, in Structured Programming, Academic Press.
New York, 1972.
‘ESTEREL v2.2 programming examples’. Ecole des Mines, Centre de Mathématiques Appliques,
Sophia-Antipolis, 1987.
G. Berry and G. Gonthier, ‘The Esterel synchronous programming language: design, semantics,
implementation’, INRIA Report 842, 1988; to appear in Science of Computer Programming.
G. Berry, ‘Real time programming: special purpose or general purpose languages’, in G. X. Ritter
(cd.), Information Processing 89, Elsevier Science Publishers B. V., North Holland, 1989.
D. Vergamini, ‘Vérification de réseaux d’automates finis par équivalences observationnelles: le
systeme AUTO’, Thèse de doctorar, Université de Nice, 1987.
B. Stroustrup, The C++ Programming Language, Addison-Wesley Series in Computer Science,
Addison-Wesley Publishing Company, 1986.

	Reactive C: An Extension of C Reactive Systems
	SUMMARY
	INTRODUCTION
	MOTIVATION FOR REACTIVE PROGRAMMING
	Determinism, parallelism and sequential execution
	Termination and cancellation

	RC DESCRIPTION
	The time in RC
	Termination in RC
	Reactive procedures
	Looping statements
	Control statements
	Exceptions
	Parallelism
	Micro instants

	COMMUNICATION MECHANISMS
	Semaphores
	Signals
	Multiple emissions
	Single signals
	Counting signal occurrences
	Boolean expressions on signals

	Radio
	Ports

	FIRST EXAMPLE: A REFLEX GAME
	RC code
	Simulation of the reflex game

	SECOND EXAMPLE: THE USE OF PARALLELISM
	RC approach
	Ada approach

	COMPARISON WITH ESTEREL
	Reactive statements
	Parallelism and communication
	Data and process handling
	Execution of programs

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

