Computer Security

Prof. Dr.-Ing. Volker Roth Freie Universität Berlin

May 18, 2011

1 IFC and Entropy

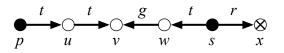
Consider the following statement:

if $(x=1) \wedge (y=1)$ then z:=1

where x and y can each be 0 or 1, with both values equally likely, and z is initially 0.

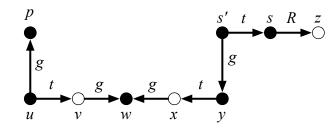
- 1. Compute the equivocation H(X|Z').
- 2. Compute the equivocation H(Y|Z').

2 IFC and Entropy


Let x be an integer variable in the range $[0, 2^{64} - 1]$, with all values equally likely. Write a program that transfers x to y using implicit flows. Compare the running time of your program with the running time of the trivial program y := x.

3 Execution-based IFC

Trace the execution of the procedure *copy1* on the single accumulator machine (see Denning's book, Figure 5.8 and Table 5.2) for both x = 0 and x = 1 when $\underline{x} = high$, $\underline{y} = low$, $\underline{z} = high$, and <u>pc</u> is initially *low*. Is the execution secure?


4 Take-Grant protection model

Give a sequence of commands showing how the right $r \to x$ can be transferred over the bridge connecting p and s in the following graph:

5 Take-Grant protection model

Let G_0 be the protection graph:

- 1. Give a sequence of rule applications showing $can.share(R, z, p, G_0)$ is true.
- 2. Is $can.share(t, s', p, G_0)$ true? Why or why not?
- 3. Show *can.steal* (R, z, p, G_0) is true and list the conspirators.