Discrete Geometry, SS 2011 — exercise sheet 8+9

due date: Tuesday, June 14th, 2011, 14:00 due date for exercises 42-45: Tuesday, June 21st, 2011, 14:00

35. Tightness of the shatter function lemma (10 credits).

Show that the bound

$$\Phi_d(m) = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \dots + \binom{m}{d}$$

on the shatter function is tight, by constructing a range space of VC-dimension d with a ground set of m elements and $\Phi_d(m)$ ranges.

(Hint: An easy solution can be guessed by staring at the formula. Can you find different solutions, for example for d = 1? For d = 2?)

36. Preserving the VC-dimension (10 credits)

Show that the operation of taking the symmetric difference \oplus with a fixed set $A \subseteq X$ does not change the VC-dimension of a range space (X, \mathcal{F}) :

$$\mathcal{F}' := \{ R \oplus A \mid R \in \mathcal{F} \}$$

Can it change the shatter function? Can it change the required size of ε -nets? Can it change the required size of ε -approximations?

- 37. (0 credits) Show that in a range space with VC-dimension d = 1, there is always an ε -net with at most max $\{2, \lceil \frac{1}{\varepsilon} \rceil 1\}$ elements, and this bound is tight.
- 38. (0 credits) Prove that $\Phi_d(m) \leq (em/d)^d$ for all $d \geq 1$ and $m \geq 1$.
- 39. Iterated ε -approximations (10 credits)
 - (a) Prove: If N_1 is an ε_1 -approximation of a finite range space (X, \mathcal{F}) and if N_2 is an ε_2 -approximation of the induced range space $(N_1, \mathcal{F}|_{N_1})$, then N_2 is an $(\varepsilon_1 + \varepsilon_2)$ -approximation of the original range space (X, \mathcal{F}) .
 - (b) If N_1 is only an ε_1 -net (and not an ε_1 -approximation), can one still conclude that N_2 is at least an $(\varepsilon_1 + \varepsilon_2)$ -net?
 - (c) If, on the other hand N_1 is an ε_1 -approximation but N_2 is only an ε_2 -net, can one conclude that N_2 is an $(\varepsilon_1 + \varepsilon_2)$ -net?
- 40. Deviation from the mean (0 credits)

Let $X = X_1 + X_2 + \cdots + X_n$ be the sum of *n* independent Bernoulli random variables with success probability $P[X_i = 1] = p$ (and $P[X_i = 0] = 1 - p$). Show that $P[X \ge \frac{1}{2}np] \ge \frac{1}{2}$, provided that $np \ge 8$, by applying the Chebysheff inequality, which says that $P[|X - \mu| \ge t\sigma] \le 1/t^2$, for any random variable X with mean μ and variance σ .

41. VC-dimension of half-spaces (0 credits)

Show that the range space of all half-spaces $\{a_1x_1 + a_2x_2 + \cdots + a_dx_d \leq b\}$ of \mathbb{R}^d has VC-dimension d+1.

Hint for the upper bound: Take any d + 2 points p_1, \ldots, p_{d+2} in \mathbb{R}^d . By rank considerations, the system of equations $\sum \lambda_i p_i = 0$, $\sum \lambda_i = 0$, has a nonzero solution $(\lambda_1, \ldots, \lambda_{d+2})$. Then the subset $\{p_i | \lambda_i > 0\}$ cannot be cut out by a half-space.

- 42. Lifting (10 credits)
 - (a) Give a finite upper bound on the VC-dimension of the ranges of \mathbb{R}^2 that can be defined by quadratic equations $ax^2 + bxy + cy^2 + dx + ey + f \leq 0$, by using the mapping $(x, y) \mapsto (x^2, xy, y^2, x, y)$ from \mathbb{R}^2 to \mathbb{R}^5 (the so-called *Veronese map*) and applying the previous exercise.
 - (b) Extend the result to d > 2 dimensions.
 - (c) Show that, for balls in \mathbb{R}^d , the general bound can be improved by using the lifting map $(x_1, \ldots, x_d) \mapsto (x_1, \ldots, x_d, x_1^1 + \cdots + x_d^2)$.
 - (d) (0 credits) Show that, for balls in d dimensions, the shatter function has actually the stronger bound $\Phi_{d+1}(n)$, and this is tight for n points in general position.
- 43. (0 credits) Show that the unit square cannot be expressed as $\{(x, y) \mid p(x, y) \ge 0\}$ with a single polynomial p(x,y).
- 44. Finite VC-dimension under Boolean operations (8 credits)

Suppose that (X, \mathcal{F}) is a range space of VC-dimension 5, and (X, \mathcal{G}) is a range space of VC-dimension 9. Find a finite bound on the VC-dimension of the range space

$$(X, \{ R \cap S \mid R \in \mathcal{F}, S \in \mathcal{G} \}).$$

Hint: try to bound the shatter function.

- 45. ε -nets and the cutting lemma (12 credits)
 - (a) Let H be a finite set of lines in the plane. For a triangle T, let H_T be the set of lines intersecting the interior of T. let $\mathcal{T} \subseteq 2^H$ be the system of sets H_T for all triangles T. Show that the VC-dimension of \mathcal{T} is bounded by a constant.
 - (b) With the ε -net theorem, prove a weak form of the cutting theorem: For every finite set H of lines and every r, 1 < r < |H|, there is a $\frac{1}{r}$ -cutting for H consisting of $O(r^2 \log^2 r)$ triangles (or trapezoids).
- 46. Vertex neighborhoods (0 credits)

For a given undirected graph G = (V, E), let $N(v) = \{ u \in V \mid uv \in E \}$ denote the *neighborhood* of the vertex $v \in V$ (not including v itself). Show that there is a constant c such the set system $\{N(v) \mid v \in V\}$ of vertex neighborhoods of any planar graph has VC-dimension bounded by c.