Discrete Geometry, SS 2011 - exercise sheet 8+9

due date: Tuesday, June 14th, 2011, 14:00
due date for exercises 42-45: Tuesday, June 21st, 2011, 14:00
35. Tightness of the shatter function lemma (10 credits).

Show that the bound

$$
\Phi_{d}(m)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\cdots+\binom{m}{d}
$$

on the shatter function is tight, by constructing a range space of VC-dimension d with a ground set of m elements and $\Phi_{d}(m)$ ranges.
(Hint: An easy solution can be guessed by staring at the formula. Can you find different solutions, for example for $d=1$? For $d=2$?)
36. Preserving the VC-dimension (10 credits)

Show that the operation of taking the symmetric difference \oplus with a fixed set $A \subseteq X$ does not change the VC-dimension of a range space (X, \mathcal{F}) :

$$
\mathcal{F}^{\prime}:=\{R \oplus A \mid R \in \mathcal{F}\}
$$

Can it change the shatter function? Can it change the required size of ε-nets? Can it change the required size of ε-approximations?
37. (0 credits) Show that in a range space with VC-dimension $d=1$, there is always an ε-net with at $\operatorname{most} \max \left\{2,\left\lceil\frac{1}{\varepsilon}\right\rceil-1\right\}$ elements, and this bound is tight.
38. (0 credits) Prove that $\Phi_{d}(m) \leq(e m / d)^{d}$ for all $d \geq 1$ and $m \geq 1$.
39. Iterated ε-approximations (10 credits)
(a) Prove: If N_{1} is an ε_{1}-approximation of a finite range space (X, \mathcal{F}) and if N_{2} is an ε_{2}-approximation of the induced range space $\left(N_{1},\left.\mathcal{F}\right|_{N_{1}}\right)$, then N_{2} is an $\left(\varepsilon_{1}+\varepsilon_{2}\right)$ approximation of the original range space (X, \mathcal{F}).
(b) If N_{1} is only an ε_{1}-net (and not an ε_{1}-approximation), can one still conclude that N_{2} is at least an $\left(\varepsilon_{1}+\varepsilon_{2}\right)$-net?
(c) If, on the other hand N_{1} is an ε_{1}-approximation but N_{2} is only an ε_{2}-net, can one conclude that N_{2} is an $\left(\varepsilon_{1}+\varepsilon_{2}\right)$-net?
40. Deviation from the mean (0 credits)

Let $X=X_{1}+X_{2}+\cdots+X_{n}$ be the sum of n independent Bernoulli random variables with success probability $P\left[X_{i}=1\right]=p$ (and $\left.P\left[X_{i}=0\right]=1-p\right)$. Show that $P[X \geq$ $\left.\frac{1}{2} n p\right] \geq \frac{1}{2}$, provided that $n p \geq 8$, by applying the Chebysheff inequality, which says that $P[|X-\mu| \geq t \sigma] \leq 1 / t^{2}$, for any random variable X with mean μ and variance σ.
41. VC-dimension of half-spaces (0 credits)

Show that the range space of all half-spaces $\left\{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d} \leq b\right\}$ of \mathbb{R}^{d} has VC-dimension $d+1$.

Hint for the upper bound: Take any $d+2$ points p_{1}, \ldots, p_{d+2} in \mathbb{R}^{d}. By rank considerations, the system of equations $\sum \lambda_{i} p_{i}=0, \sum \lambda_{i}=0$, has a nonzero solution $\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)$. Then the subset $\left\{p_{i} \mid \lambda_{i}>0\right\}$ cannot be cut out by a half-space.
42. Lifting (10 credits)
(a) Give a finite upper bound on the VC-dimension of the ranges of \mathbb{R}^{2} that can be defined by quadratic equations $a x^{2}+b x y+c y^{2}+d x+e y+f \leq 0$, by using the mapping $(x, y) \mapsto\left(x^{2}, x y, y^{2}, x, y\right)$ from \mathbb{R}^{2} to \mathbb{R}^{5} (the so-called Veronese map) and applying the previous exercise.
(b) Extend the result to $d>2$ dimensions.
(c) Show that, for balls in \mathbb{R}^{d}, the general bound can be improved by using the lifting $\operatorname{map}\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{1}, \ldots, x_{d}, x_{1}^{1}+\cdots+x_{d}^{2}\right)$.
(d) (0 credits) Show that, for balls in d dimensions, the shatter function has actually the stronger bound $\Phi_{d+1}(n)$, and this is tight for n points in general position.
43. (0 credits) Show that the unit square cannot be expressed as $\{(x, y) \mid p(x, y) \geq 0\}$ with a single polynomial $p(x . y)$.
44. Finite VC-dimension under Boolean operations (8 credits)

Suppose that (X, \mathcal{F}) is a range space of VC-dimension 5 , and (X, \mathcal{G}) is a range space of VC-dimension 9. Find a finite bound on the VC-dimension of the range space

$$
(X,\{R \cap S \mid R \in \mathcal{F}, S \in \mathcal{G}\})
$$

Hint: try to bound the shatter function.
45. ε-nets and the cutting lemma (12 credits)
(a) Let H be a finite set of lines in the plane. For a triangle T, let H_{T} be the set of lines intersecting the interior of T. let $\mathcal{T} \subseteq 2^{H}$ be the system of sets H_{T} for all triangles T. Show that the VC-dimension of \mathcal{T} is bounded by a constant.
(b) With the ε-net theorem, prove a weak form of the cutting theorem: For every finite set H of lines and every $r, 1<r<|H|$, there is a $\frac{1}{r}$-cutting for H consisting of $O\left(r^{2} \log ^{2} r\right)$ triangles (or trapezoids).
46. Vertex neighborhoods (0 credits)

For a given undirected graph $G=(V, E)$, let $N(v)=\{u \in V \mid u v \in E\}$ denote the neighborhood of the vertex $v \in V$ (not including v itself). Show that there is a constant c such the set system $\{N(v) \mid v \in V\}$ of vertex neighborhoods of any planar graph has VC-dimension bounded by c.

