due date: Tuesday, May 24th, 2011, 14:00

25. An application of the Semerédi-Trotter Theorem. (10 credits)

Given a set of n points in the plane and an integer k > 2, prove that the number of lines that contain at least k point is $O(n^2/k^3 + n/k)$. Show that this bound is asymptotically tight.

26. The Sylvester-Gallai Theorem (0 credits)

Consider a set L of $n \ge 2$ lines such that no two are parallel and they don't all go through the same point. An *ordinary crossing* is a point that belongs two exactly two lines of L.

- Show that there is always at least one ordinary crossing.
- Show that L determines at least n different intersection points.

[There are actually many ordinary crossings: The strongest bound is from Csima and Sawyer (1993), who proved a lower bound of $\lceil 6n/13 \rceil$ for n > 7. Can you construct a family of arrangements with growing n and few ordinary points?]

27. Lower envelopes of functions (4 credits)

Consider *n* distinct quadratic functions $f_i(x) = a_i x^2 + b_i x + c_i$ and their lower envelope (point-wise minimum) $g(x) = \min\{f_1(x), f_2(x), \dots, f_n(x)\}.$

We look at the sequence of the numbers of the functions that form the lower envelope, from left to right (from $x = -\infty$ to $+\infty$). Show that this sequence has the following property:

(ii) there is no alternation of length four between two numbers. In other words, the sequence does not contain the pattern

$$\dots a \dots b \dots a \dots b \dots$$

with $a \neq b$.

28. Lower envelopes of functions (6 credits)

A Davenport-Schinzel sequence of order s is a sequence with the following properties:

- (i) Consecutive elements are distinct.
- (ii) There is no alternation of length s + 2 between two symbols.

Let w be a Davenport-Schinzel sequence of order s over the elements $1, \ldots, n$. Construct n continuous functions $f_i \colon \mathbb{R} \to \mathbb{R}$ such that $|\{x \mid f_i(x) = f_j(x)\}| \leq s$ for all $i \neq j$ and the sequence of functions along the lower envelope is w.

- 29. Davenport-Schinzel sequences (10 credits)
 - (a) Show that a Davenport-Schinzel sequence of order 2 with n symbols has length at most 2n 1, and this bound is tight.
 - (b) Show that the length of a Davenport-Schinzel sequence of order s with n symbols is bounded in terms of n and s.