Discrete Geometry, SS 2011 - exercise sheet 6

due date: Tuesday, May 24th, 2011, 14:00

25. An application of the Semerédi-Trotter Theorem. (10 credits)

Given a set of n points in the plane and an integer $k>2$, prove that the number of lines that contain at least k point is $O\left(n^{2} / k^{3}+n / k\right)$. Show that this bound is asymptotically tight.
26. The Sylvester-Gallai Theorem (0 credits)

Consider a set L of $n \geq 2$ lines such that no two are parallel and they don't all go through the same point. An ordinary crossing is a point that belongs two exactly two lines of L.

- Show that there is always at least one ordinary crossing.
- Show that L determines at least n different intersection points.
[There are actually many ordinary crossings: The strongest bound is from Csima and Sawyer (1993), who proved a lower bound of $\lceil 6 n / 13\rceil$ for $n>7$. Can you construct a family of arrangements with growing n and few ordinary points?]

27. Lower envelopes of functions (4 credits)

Consider n distinct quadratic functions $f_{i}(x)=a_{i} x^{2}+b_{i} x+c_{i}$ and their lower envelope (point-wise minimum) $g(x)=\min \left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$.
We look at the sequence of the numbers of the functions that form the lower envelope, from left to right (from $x=-\infty$ to $+\infty$). Show that this sequence has the following property:
(ii) there is no alternation of length four between two numbers. In other words, the sequence does not contain the pattern

$$
\ldots a \ldots b \ldots a \ldots b \ldots
$$

with $a \neq b$.
28. Lower envelopes of functions (6 credits)

A Davenport-Schinzel sequence of order s is a sequence with the following properties:
(i) Consecutive elements are distinct.
(ii) There is no alternation of length $s+2$ between two symbols.

Let w be a Davenport-Schinzel sequence of order s over the elements $1, \ldots, n$. Construct n continuous functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left|\left\{x \mid f_{i}(x)=f_{j}(x)\right\}\right| \leq s$ for all $i \neq j$ and the sequence of functions along the lower envelope is w.
29. Davenport-Schinzel sequences (10 credits)
(a) Show that a Davenport-Schinzel sequence of order 2 with n symbols has length at most $2 n-1$, and this bound is tight.
(b) Show that the length of a Davenport-Schinzel sequence of order s with n symbols is bounded in terms of n and s.

