Discrete Geometry, SS 2011 - exercise sheet 5

due date: Tuesday, May 17th, 2011, 14:00

21. The unbalanced case of the Szemerédi-Trotter bound (0 credits)

Prove that $I\left(n, n^{0.8}\right)=O\left(n^{1.2}\right)$ by using an $\frac{1}{r}$-cutting with an appropriate choice of r, and applying the weak incidence bounds $I(m, n) \leq \min \{n \sqrt{m}+m, m \sqrt{n}+n\}$.
22. Cells in arrangements (10 credits)
(a) Show that n lines partition the plane into at most $1+\binom{n+1}{2}$ cells, with equality for general position.
(b) What is the maximum number of bounded edges and unbounded rays in such a partition? What is the number of vertices?
(c) What is the number of cells that have no bottom-most point? (Under the assumption of general position). What is the number of cells that have a bottom-most point?
(d) What are the analogous bounds on the number of vertices, edges, faces, and cells for planes in 3 -space?
23. Incidences (10 credits)
(a) Show that m points and n unit circles in the plane have at most $O(m \sqrt{n}+n)$ incidences.
Hint: Count pairs of points on each circle versus all pairs of points.
(b) Show that m points and n arbitrary circles in the plane have at most $O(\min \{n \sqrt{m}+$ $\left.m, m n^{2 / 3}+n\right\}$) incidences.
24. Powers of sums of independent Bernoulli random variables (10 credits)

Let $X=X_{1}+X_{2}+\cdots+X_{n}$ be the sum of n independent random variables, each taking the value 1 with probability p and the value 0 with probability $1-p$.
(a) Calculate the expected value $E\left[X^{2}\right]$.
(b) Show that, for an integer $d \geq 0$,

$$
E\left[\binom{X}{d}\right]=p^{d}\binom{n}{d}
$$

(You can try the proof by a combinatorial interpretation.)
(c) Conclude that $E\left[X^{d}\right] \leq C_{d}(n p)^{d}$ whenever $n p \geq d$, for a suitable constant C_{d}.

