Discrete Geometry, SS 2011 - exercise sheet 4

due date: Tuesday, May 10th, 2011, 14:00

18. The Crossing Number Theorem in multigraphs (10 credits)

Show that the Crossing Number Theorem holds for multigraphs $G=(V, E)$ in which the multiplicity of every edge is bounded by k :

$$
\# \text { crossings } \geq a_{k} \cdot \frac{|E|^{3}}{|V|^{2}} \text { if }|E| \geq b_{k}|V|
$$

for suitable constants a_{k}, b_{k} depending on k.
Try to find good upper and lower bounds for the possible values of a_{k} and b_{k}.
19. Shattered point sets (10 credits)

A point set S is shattered by a family \mathcal{R} of ranges if every subset of S can be "cut out" from S by a range in \mathcal{R} :

$$
\forall S^{\prime} \subseteq S: \exists R \in \mathcal{R}: S \cup R=S^{\prime}
$$

What is the largest set of points in the plane that is shattered by
(a) circular disks?
(b) half-planes?
(c) convex sets?
(d) triangles?
(e) vertical strips? ("rectangles" that are unbounded vertically)
(f) unions of two vertical strips?
20. Shatter functions (10 credits)

How many point sets can one cut out of a set of n points in the plane
(a) with circular disks?
(b) with half-planes?
(c) with convex sets?
(d) with axis-parallel squares?
(e) with axis-parallel rectangles?
(f) with arbitrary rectangles?

Determine the maximum possible value asymptotically in terms of n.

