Discrete Geometry, SS 2011 - exercise sheet 3

due date: Tuesday, May 3rd, 2011, 14:00
14. Duality (10 credits)
(a) (4 credits) What is the set of lines dual to the points of a line segment? (See Exercise 5 of sheet 1.)
(b) (6 credits) Consider an x-monotone concave polygonal chain C. (Concave means that the slope (=derivative) decreases from left to right.) The duals of the lines through the edges of C form a point set in the dual plane. Characterize the point sets that are obtained in this way.
(c) $(0$ credits) The same question for a convex polygon C. Assume that C has no vertical edges.
15. Many point-line incidences (10 credits)
(a) (4 credits)

For a natural number k, take the grid $P=\{0,1, \ldots, k-1\} \times\left\{0,1, \ldots, 4 k^{2}-1\right\}$ and the set L of lines with equations $y=a x+b$, for $a=0,1, \ldots, 2 k-1$ and $b=0,1, \ldots, 2 k^{2}-1$. Show that $|L|=|P|=: n$, and show that there are $\Omega\left(n^{4 / 3}\right)$ pairs $(p, \ell) \in P \times L$ with $p \in \ell$.
(b) (0 credits) How do these points and lines look in the dual plane? (See Exercise 5 of sheet 1.)
(c) (6 credits) Modify the above example to obtain for all m, n with $m \leq n^{2}$ and $n \leq m^{2}$ a set P of n points and a set L of m lines that has $\Omega\left(m^{2 / 3} n^{2 / 3}\right)$ pairs $(p, \ell) \in P \times L$ with $p \in \ell$.
16. Many regular polygons (10 credits)
(a) (1 credit) Find point sets with n points that contain $\Omega\left(n^{2}\right)$ squares (i. e., quadruples of points forming the vertices of a square).
(b) (3 credits) Find point sets with n points that contain $\Omega\left(n^{2}\right)$ regular triangles.
(c) $(3$ credits $)$ Let $\omega=e^{2 \pi i / 5}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$, and consider the set

$$
P_{m}:=\left\{a+b \omega+c \omega^{2}+d \omega^{3}+f \omega^{4} \mid a, b, c, d, f \in\{0,1, \ldots, m\}\right\}
$$

Draw the set P_{1} in the complex plane. (If you want, you can also draw P_{2}, P_{3}, \ldots, possibly with the help of a computer.) Prove that P_{m} contains only $n=O\left(m^{4}\right)$ points.
(d) (0 credits) Prove that P_{m} contains $n=\Omega\left(m^{4}\right)$ points.
(e) (3 credits) Prove that P_{m} contains $\Omega\left(m^{8}\right)=\Omega\left(n^{2}\right)$ regular pentagons.
(f) (1 credit) Find point sets with n points that contain $\Omega\left(n^{2}\right)$ regular hexagons.
(g) (0 credits) Are there point sets with n points that contain $\Omega\left(n^{2}\right)$ regular 7 -gons?
(h) (0 credits) For any point pattern H, prove that a set of n points in the plane contains at most n^{2} subsets that are similar to H (obtained by translation, rotation, and scaling, and possibly reflection).
17. Many equal distances (0 credits)

Prove that a d-dimensional point set where all pairwise distances are equal has at most $d+1$ elements.

