Discrete Geometry, SS 2011 - exercise sheet 2

due date: Tuesday, April 26th, 2011, 14:00
9. (8 credits) Prove that the maximum number of halving edges in a set of $2 n$ points in the plane increases strictly with n.
10. (9 credits) The recursive construction of a point set with $\Omega(n \log n)$ halving edges given in the lecture places three squeezed copies of a construction with $n / 3$ points close to three rays emanating from a common center.
Interpret this construction in the dual setting (see Exercise 5 of sheet 1), and show how to construct arrangements of n lines whose middle level has $\Omega(n \log n)$ vertices.
11. (13 credits)

This exercise gives an alternative inductive construction for point sets with $\Omega(n \log n)$ halving edges, due to Erdős, Lovász, Simmons, and Straus.
We start with a set P of n points that have f_{n} halving edges, and an injective mapping that assigns to every point $p \in P$ a halving edge $h(p)$ incident to p.
(a) Find such a set with $n=6$ points. (Why can there be no such set with $n=2$ or $n=4$ points? Can you find such a set with $n=8$ points?)
(b) The inductive construction makes a new set P^{\prime} with $2 n$ points, by replacing each point $p \in P$ by two points on the line through $h(p)$. Their positions on $h(p)$ are very close to p, on opposite sides of p.
(c) Draw a figure.
(d) Show that each halving edge $h(p)$ gives rise to three halving edges in P^{\prime}. Each halving edge that is not one of the n edges $h(p)$ gives rise to two halving edges in P^{\prime}. (Can P^{\prime} have additional halving edges that are not included in these cases?)
(e) Complete the argument for the inductive construction, and set up the recursion for f_{n}.
(f) Conclude that there are point sets with $n=3 \cdot 2^{k}$ points and (at least) $3(k+1)$. $2^{k-1}=\Omega(n \log n)$ halving edges, for $k \geq 1$.
12. (0 credits) Which of the above two constructions (Exercise 10 or Exercise 11) gives a better constant factor for the asymptotic $\Omega(n \log n)$ lower bound?
13. Perfect cross-matchings (0 credits)

A perfect cross-matching of an even set of points is a partition into edges such that any pair of such edges crosses.

Prove that a point set with $2 n$ points has a perfect cross-matching if and only if it has exactly n halving edges.

