due date: Tuesday, April 19th, 2011, 14:00 (with CORRECTED version of exercise 2a)

1. (10 credits)

Show that for any n and m, $5n \le m \le \binom{n}{2}$, there is a graph with n vertices and m edges that can be drawn in the plane with $O(m^3/n^2)$ crossings.

- 2. (10 credits)
 - (a) Prove the following version of the Lovász lemma in the planar case: For a set $X \subset \mathbb{R}^2$ in general position, every vertical line ℓ intersects the interiors of at most 2(k+1) of the k-edges. More precisely, the number of *directed* k-edges crossing ℓ from left to right is at most k+1.
 - (b) Using (a), prove that the number of k-sets is $O(n\sqrt{k+1})$.
- 3. (0 credits)

(Exact planar Lovász lemma) Let $X \subset \mathbb{R}^2$ be a 2*n*-point set in general position, and let ℓ be a vertical line having k points of X on the left and 2n - k points on the right. Prove that ℓ crosses exactly min(k, 2n - k) halving edges of X.

4. (10 credits)

This exercise shows limits for what can be proved about k-sets using the Lovász lemma alone.

Construct an *n*-point set $X \subset \mathbb{R}^2$ and a collection of $\Omega(n^{3/2})$ segments with endpoints in X such that no line intersects more than O(n) of these segments.

5. (0 credits)

(Duality). A nonvertical hyperplane h can be uniquely written in the form

$$h = \{ x \in \mathbb{R}^d : x_d = a_1 x_1 + \dots + a_{d-1} x_{d-1} - a_d \}.$$

We set $\mathcal{D}(h) = (a_1, \ldots, a_{d-1}, a_d)$. Conversely, the point $a = (a_1, \ldots, a_{d-1}, a_d)$ maps back to the hyperplane $\mathcal{D}(a) := h$.

Show the following statements:

- (a) $p \in h \Leftrightarrow \mathcal{D}(h) \in \mathcal{D}(p)$.
- (b) A point p lies above a hyperplane h if and anly if the point $\mathcal{D}(h)$ lies above the hyperplane $\mathcal{D}(p)$.
- 6. Closest pairs (0 credits)

The closest pair graph for a set of points is the graph in which the edges represent all pairs that have the minimum pairwise distance

- (a) Show that the closest pair graph for n points in the plane is non-crossing, when drawn with straight segments.
- (b) What is the maximum possible vertex degree in this graph?
- (c) Show that there are at most 3n closest pairs.

7. Largest distances (0 credits)

The farthest pair graph is defined analogously.

- (a) Show that no two edges in the farthest pair graph are disjoint: two edges must either share a vertex or cross.
- (b) Show that there are at most O(n) farthest pairs.
- 8. Least-squares clustering (0 credits)

We want to partition a set of 2n points P into two clusters $C_1 \cup C_2$ of n points, minimizing the sum of the squared intra-cluster distances

$$\sum_{p,q\in C_1} \|p-q\|^2 + \sum_{p,q\in C_2} \|p-q\|^2.$$

The following exercise helps to show that the two clusters C_1 and C_2 can be separated by a hyperplane. (Can you find a different or simpler proof?)

(a) Show that the sum of all pairwise squared Euclidean distances can be written as the sum of squared Euclidean distances from the centroid

$$\bar{p} = \frac{1}{|C|} \sum_{q \in C} q_{q}$$

up to a constant factor:

$$\sum_{p,q \in C} \|p - q\|^2 = \sum_{p \in C} \|p - \bar{p}\|^2 \cdot \text{const}$$

What is the "constant" factor?

- (b) Show that the point x that minimizes $\sum_{p \in C} \|p x\|^2$ is the centroid $x = \bar{p}$.
- (c) Show that the following problem (*) is equivalent to the original problem. Find a partition $P = C_1 \cup C_2$ into two equal-size sets together with two "cluster centers" x_1, x_2 such that

$$\sum_{p \in C_1} \|p - x_1\|^2 + \sum_{p \in C_2} \|p - x_2\|^2$$

is minimized.

- (d) Show that a partition $P = C_1 \cup C_2$ in which C_1 and C_2 are not separated by a hyperplane perpendicular to the line connecting the two cluster centroids \bar{p}_1 and \bar{p}_2 cannot be optimal for (*), and hence for the original problem.
- (e) * Does the separability statement remain valid if we minimize the sum of distances (instead of squared distances)?
- (f) * Does the separability statement remain valid if we partition n points into two clusters of different given sizes n_1 and n_2 , with $n_1 + n_2 = n$?