Discrete and Polyhedral Geometry, SS 2011 - exercise sheet 1

due date: Tuesday, April 19th, 2011, 14:00
(with CORRECTED version of exercise 2a)

1. (10 credits)

Show that for any n and $m, 5 n \leq m \leq\binom{ n}{2}$, there is a graph with n vertices and m edges that can be drawn in the plane with $O\left(m^{3} / n^{2}\right)$ crossings.
2. (10 credits)
(a) Prove the following version of the Lovász lemma in the planar case: For a set $X \subset \mathbb{R}^{2}$ in general position, every vertical line ℓ intersects the interiors of at most $2(k+1)$ of the k-edges. More precisely, the number of directed k-edges crossing ℓ from left to right is at most $k+1$.
(b) Using (a), prove that the number of k-sets is $O(n \sqrt{k+1})$.
3. (0 credits)
(Exact planar Lovász lemma) Let $X \subset \mathbb{R}^{2}$ be a $2 n$-point set in general position, and let ℓ be a vertical line having k points of X on the left and $2 n-k$ points on the right. Prove that ℓ crosses exactly $\min (k, 2 n-k)$ halving edges of X.
4. (10 credits)

This exercise shows limits for what can be proved about k-sets using the Lovász lemma alone.
Construct an n-point set $X \subset \mathbb{R}^{2}$ and a collection of $\Omega\left(n^{3 / 2}\right)$ segments with endpoints in X such that no line intersects more than $O(n)$ of these segments.
5. (0 credits)
(Duality). A nonvertical hyperplane h can be uniquely written in the form

$$
h=\left\{x \in \mathbb{R}^{d}: x_{d}=a_{1} x_{1}+\cdots+a_{d-1} x_{d-1}-a_{d}\right\} .
$$

We set $\mathcal{D}(h)=\left(a_{1}, \ldots, a_{d-1}, a_{d}\right)$. Conversely, the point $a=\left(a_{1}, \ldots, a_{d-1}, a_{d}\right)$ maps back to the hyperplane $\mathcal{D}(a):=h$.
Show the following statements:
(a) $p \in h \Leftrightarrow \mathcal{D}(h) \in \mathcal{D}(p)$.
(b) A point p lies above a hyperplane h if and anly if the point $\mathcal{D}(h)$ lies above the hyperplane $\mathcal{D}(p)$.
6. Closest pairs (0 credits)

The closest pair graph for a set of points is the graph in which the edges represent all pairs that have the minimum pairwise distance
(a) Show that the closest pair graph for n points in the plane is non-crossing, when drawn with straight segments.
(b) What is the maximum possible vertex degree in this graph?
(c) Show that there are at most $3 n$ closest pairs.
7. Largest distances (0 credits)

The farthest pair graph is defined analogously.
(a) Show that no two edges in the farthest pair graph are disjoint: two edges must either share a vertex or cross.
(b) Show that there are at most $O(n)$ farthest pairs.
8. Least-squares clustering (0 credits)

We want to partition a set of $2 n$ points P into two clusters $C_{1} \cup C_{2}$ of n points, minimizing the sum of the squared intra-cluster distances

$$
\sum_{p, q \in C_{1}}\|p-q\|^{2}+\sum_{p, q \in C_{2}}\|p-q\|^{2}
$$

The following exercise helps to show that the two clusters C_{1} and C_{2} can be separated by a hyperplane. (Can you find a different or simpler proof?)
(a) Show that the sum of all pairwise squared Euclidean distances can be written as the sum of squared Euclidean distances from the centroid

$$
\bar{p}=\frac{1}{|C|} \sum_{q \in C} q
$$

up to a constant factor:

$$
\sum_{p, q \in C}\|p-q\|^{2}=\sum_{p \in C}\|p-\bar{p}\|^{2} \cdot \mathrm{const}
$$

What is the "constant" factor?
(b) Show that the point x that minimizes $\sum_{p \in C}\|p-x\|^{2}$ is the centroid $x=\bar{p}$.
(c) Show that the following problem $(*)$ is equivalent to the original problem. Find a partition $P=C_{1} \cup C_{2}$ into two equal-size sets together with two "cluster centers" x_{1}, x_{2} such that

$$
\sum_{p \in C_{1}}\left\|p-x_{1}\right\|^{2}+\sum_{p \in C_{2}}\left\|p-x_{2}\right\|^{2}
$$

is minimized.
(d) Show that a partition $P=C_{1} \cup C_{2}$ in which C_{1} and C_{2} are not separated by a hyperplane perpendicular to the line connecting the two cluster centroids \bar{p}_{1} and \bar{p}_{2} cannot be optimal for $(*)$, and hence for the original problem.
(e) * Does the separability statement remain valid if we minimize the sum of distances (instead of squared distances)?
(f) * Does the separability statement remain valid if we partition n points into two clusters of different given sizes n_{1} and n_{2}, with $n_{1}+n_{2}=n$?

