1.12 Weak ϵ-nets

Consider the range space (P, \mathcal{R}), where P is a set of n points in \mathbb{R}^{d}, and \mathcal{R} consists of all possible subsets induced by convex objects in \mathbb{R}^{d}, i.e., $P^{\prime} \in \mathcal{R}$ iff there exists a convex object $C \subseteq \mathbb{R}^{d}$ such that $P^{\prime}=C \cap P$. A subset $Q \subseteq \mathbb{R}^{d}$ is a weak ϵ-net if $C \cap Q \neq \emptyset$ for all convex objects C containing at least ϵn points of P.

Weak ϵ-nets of size $O\left(1 / \epsilon^{d+1}\right)$. The proof is using the so-called First Selection Lemma. Recall its statement:

Lemma 17 (First Selection Lemma). Given any set P of n points in \mathbb{R}^{d}, there exists a point $q \in \mathbb{R}^{d}$ contained in at least $c_{d} \cdot\binom{n}{d+1}$ d-simplices spanned by P.

Set $Q_{0}=\emptyset, i=0$ and construct the weak ϵ-net iteratively: If all convex objects C containing at least ϵ n points of P are hit by Q_{i}, we are done. Otherwise, find a point q that lies in the largest number of simplices spanned by $C \cap P$: by the First Selection Lemma, q lies in at least $c_{d} \cdot\binom{|C \cap P|}{d+1} \geq c_{d} \cdot\binom{\epsilon n}{d+1}$ such simplices. Note that since C does not contain any point of Q_{i}, no simplex spanned by $C \cap P$ is hit by any point of Q_{i}. Set $Q_{i+1}=Q_{i} \cup\{q\}$, and iterate. At each step, the new point hits $c_{d} \cdot\binom{\epsilon n}{d+1}$ previously un-hit simplices spanned by P, so the process can go on for at most

$$
\frac{\binom{n}{d+1}}{c_{d} \cdot\binom{\epsilon n}{d+1}} \leq \frac{(e n /(d+1))^{d+1}}{c_{d} \cdot(\epsilon n /(d+1))^{d+1}}=O\left(\frac{1}{\epsilon^{d+1}}\right)
$$

steps, proving the stated result.

A general theme in weak ϵ-nets. Our goal is to improve the above bound to $O\left(1 / \epsilon^{d}\right)$. Almost all weak ϵ-net constructions known so far use the following two basic ideas.

First, partition P into t equal-sized sets P_{1}, \ldots, P_{t} of n / t points each. Construct a set Q_{k} such that any convex object intersecting more than $k \epsilon$ sets P_{i} must contain a point of Q_{k}. Then Q_{t} is an ϵ-net: any convex set C containing ϵn points must intersect at least $\epsilon n /(n / t)=t \epsilon$ sets, and so be hit by Q_{t}. Of course, a convex set intersecting more P_{i} 's is easier to hit as it has stronger structural properties. So the size of Q_{k} is a decreasing function of k (and an increasing function of $1 / \epsilon$).

Second, note that if C intersects only $t \epsilon$ sets, then it contains all points from each P_{i} that it intersects (to make up the ϵn points it contains). In that case, why not add, recursively, a weak ϵ^{\prime}-net, for a suitably determined ϵ^{\prime}, for each P_{i}. The advantage is that if C is not hit by any of the points added recursively, it would have to contain few points (at most $\epsilon^{\prime} n / t$, by the weak ϵ^{\prime}-net property) from each P_{i}, and so intersect considerably more sets - at least $(\epsilon n) /\left(\epsilon^{\prime} n / t\right)=t \epsilon / \epsilon^{\prime}$ sets. Then $Q_{t / \epsilon^{\prime}}$ is an ϵ-net, resulting in a lower size of Q. Fixing the parameters for this trade-off then improves the bound from the first idea.

(a)

(b)

Figure 1.18: (a) Partitioning P along the cyclic order, and the point q for the pair P_{2} and P_{5}. (b) C intersects P_{1}, P_{2}, P_{4} and P_{5}, and so the point for the pair P_{2} and P_{5} must lie in C.

Improved bound in \mathbb{R}^{2}. We first give the improved bound for \mathbb{R}^{2}, following a similar scheme as above. Partition P into equal-sized sets P_{1} and P_{2} by a vertical line l. Now, a convex object C containing at least $\epsilon n / 4$ points from P_{1} and P_{2} (say $P_{1}^{\prime} \subseteq P_{1}$ and $P_{2}^{\prime} \subseteq P_{2}$) will contain all intersection points of each segment $p q, p \in P_{1}^{\prime}, q \in P_{2}^{\prime}$, with l. So there are at least $\left(\frac{\epsilon n}{4}\right)^{2}$ intersections lying within the interval $C \cap l$ on l. Therefore, picking every $\frac{\epsilon^{2} n^{2}}{16}$-th intersection point (when sorted by the y-coordinate) of all $(n / 2)^{2}$ segment intersections with l would hit all such C. We have picked $O\left(1 / \epsilon^{2}\right)$ points.

Otherwise, C contains at least $3 \epsilon n / 4$ points from one partition, say P_{1}. Then a weak ϵ^{\prime}-net for $P_{1}, \epsilon^{\prime}=(3 \epsilon n / 4) /(n / 2)=3 \epsilon / 2$, would hit all such C.

The size, $f(\epsilon)$, of the constructed ϵ-net is:

$$
f(\epsilon)=2 f\left(\frac{3 \epsilon}{2}\right)+O\left(1 / \epsilon^{2}\right)
$$

which solves to $f(\epsilon)=O\left(1 / \epsilon^{2}\right)$.

A further improved bound in \mathbb{R}^{2} for points in convex position. One can use the structural property of points in convex position to improve the bound above to $\tilde{O}(1 / \epsilon)^{9}$. Let $P=\left\{p_{0}, \ldots, p_{n-1}\right\}$ be the n points, sorted in the anti-clockwise direction along their order in the convex hull.

Partition P into equal-sized sets $P_{0}, \ldots, P_{4 / \epsilon}$ by their consecutive order in the cyclic sequence, i.e., $P_{i}=\left\{p_{i \epsilon n / 4}, \ldots, p_{(i+1) \epsilon n / 4-1}\right\}$. Call the first point of each set its representative, i.e., P_{i}

[^0]has as its representative the point $p_{i \epsilon n / 4}$. Let's re-label the representative point of set P_{i} as the point r_{i}, and let P^{\prime} be this set of representative points.

Now, construct the weak ϵ-net Q as follows: for all pairs of sets P_{i} and $P_{j}, 0 \leq i<j \leq 4 / \epsilon$, add to Q the intersection point of the two segments $\overline{r_{0} r_{i+1}}$ and $\overline{r_{i} r_{j}}$. Note that $|Q|=O\left(1 / \epsilon^{2}\right)$. See Figure 1.18(a).

We claim that Q is an ϵ-net: any convex object containing at least ϵn points must intersect at least four sets, as each set contains at most $\epsilon n / 4$ points. Say C intersects the sets P_{i}, P_{j}, P_{k} and P_{l}. Then the point added to Q for the pair of sets P_{j} and P_{l} will lie inside C. See Figure 1.18(b).

Now the second idea of recursive construction yields the desired result. Say we partition P into t groups P_{1}, \ldots, P_{t} as before, and add Q as constructed earlier. By the same argument, any C which intersects at least four sets will contain a point of Q. Otherwise, it must contain at least $\epsilon n / 3$ points from one of the (at most three) sets that it intersects. Since each set has n / t points, we recursively construct a weak $(\epsilon t / 3)$-net for each P_{i} : then any C containing at least $(\epsilon t / 3) \cdot n / t=\epsilon n / 3$ from a set will be hit inductively.

The size, $f(\epsilon)$, of the constructed ϵ-net is:

$$
f(\epsilon)=t \cdot f\left(\frac{t \epsilon}{3}\right)+O\left(t^{2}\right)
$$

Setting $t=3 / \sqrt{\epsilon}$, this solves to $f(\epsilon)=\tilde{O}(1 / \epsilon)$.

Weak ϵ-nets of size $O\left(1 / \epsilon^{d}\right)$. We now present the current-best general bound for weak ϵ-nets in \mathbb{R}^{d}. The idea is an elegant one, which once observed, then works out easily from the general scheme of constructing weak ϵ-nets.

The new idea is to use the following important theorem (which we will cover later on):
Theorem 18 (The Partition Theorem). Given a set P of n points in \mathbb{R}^{d} and an integer t, one can partition P into t equal-sized ${ }^{10}$ sets P_{1}, \ldots, P_{t} such that any half-plane intersects the convex-hull of at most $t^{1-1 / d}$ sets.

Given P, partition P into t sets using the Partition Theorem, where the parameter t will be set optimally later on. Pick an arbitrary point of P from each partition as it's representative point, and let P^{\prime} be this set of t points. Construct a set Q_{t} with the following property: a centerpoint of any subset $P^{\prime \prime} \subseteq P^{\prime}$ is in Q_{t}. Now we claim that for $t=2(d+1)^{d} / \epsilon^{d}, Q_{t}$ is a weak ϵ-net.

Why? Well, any convex object containing at least ϵn points of P intersects at least $\epsilon n /(n / t)=$ $t \epsilon$ sets of the partition. Let $P^{\prime \prime}$ be the representative points picked from these sets, and $q \in Q_{t}$ be their centerpoint. If q lies inside C, we are done. Otherwise, there exists a half-plane h separating q from C. And so, by the centerpoint property, the halfspace containing q and

[^1]

Figure 1.19: The representative points of $P^{\prime \prime} \backslash P^{\prime \prime \prime}$ are black, while the representative points of $P^{\prime \prime \prime}$ are grey.
not containing C must contain at least $t^{\prime}=\left|P^{\prime \prime}\right| /(d+1)$ points of $P^{\prime \prime}$, say $P^{\prime \prime \prime}$. Crucially, the convex-hull of the sets that these points in $P^{\prime \prime \prime}$ are representative of must intersect h : each such set intersects C, and also contains a point of $P^{\prime \prime \prime}$, and these two lie on different sides of h. See Figure 1.19 .

So h intersects the convex-hull of at least $\left|P^{\prime \prime}\right| /(d+1) \geq t \epsilon /(d+1)$ sets of the partition. On the other hand, by the partition theorem, h intersects at most $t^{1-1 / d}$ sets. Setting them equal to find t, we get a contradiction if $t>(d+1)^{d} / \epsilon^{d}$. Therefore, for $t=2(d+1)^{d} / \epsilon^{d}, Q_{t}$ is a weak ϵ-net.

Note that $\left|Q_{t}\right|=t^{d^{2}}$: recall that for any subset $P^{\prime \prime} \subseteq P$, the centerpoint of $P^{\prime \prime}$ is constructed by computing the common intersection of the convex-hulls of all subsets of at least $\left|P^{\prime \prime}\right| /(d+1)$ points of $P^{\prime \prime}$. Any vertex of this common intersection is a centerpoint of $P^{\prime \prime}$, and is the intersection of d planes, each defined by d points of $P^{\prime \prime}$. By adding the intersection points of all d-tuples of planes, where each plane is fixed by d points of $P^{\prime \prime}$, one gets the required set Q_{t} with the stated size.

Now, the standard recursive construction yields our result. Given P, use the partition theorem to get P_{1}, \ldots, P_{t}. Add Q_{t} to our weak ϵ-net, and recursively construct a ϵ^{\prime}-net for each P_{i}. This forms our constructed set, and we prove now that it is indeed a weak ϵ-net (for appropriate values of t and ϵ^{\prime}).

For a convex object C containing at least ϵn points, if it contains at least $\epsilon^{\prime} n / t$ points from one of the partitions, the recursive construction guarantees hitting it.

Otherwise, C contains less than $\epsilon^{\prime} n / t$ points from each set. And therefore C must intersect more than $\epsilon n /\left(\epsilon^{\prime} n / t\right)=t \epsilon / \epsilon^{\prime}$ sets. Denote these sets by $P^{\prime \prime}$, and let $q \in Q_{t}$ be their centerpoint. We claim that q lies in C. Otherwise, there exists a half-plane h separating C from q.

Arguing as before, h must then intersect more than $\left|P^{\prime \prime}\right| /(d+1)=\frac{t \epsilon}{\epsilon^{\prime}(d+1)}$ sets. On the other hand, h intersects at most $t^{1-1 / d}$ sets, and so we get a contradiction for $\epsilon^{\prime} \leq \frac{\epsilon \epsilon^{1 / d}}{d+1}$. Therefore for this value of ϵ^{\prime}, q must lie in C.
The size, $f(\epsilon)$, of the constructed weak ϵ-net is:

$$
f(\epsilon)=t \cdot f\left(\epsilon^{\prime}\right)+\left|Q_{t}\right|=t \cdot f\left(\frac{\epsilon t^{1 / d}}{d+1}\right)+t^{d^{2}}
$$

Setting $t=\tilde{\Theta}\left(1 / \epsilon^{1 / d}\right)$, this solves to $f(\epsilon)=\tilde{O}\left(1 / \epsilon^{d}\right)$.

[^0]: ${ }^{9} \tilde{O}$ means ignoring polylogarithmic factors.

[^1]: ${ }^{10}$ To be precise, within a factor of two of each other.

