
1.12 Weak ε-nets

Consider the range space (P,R), where P is a set of n points in Rd, and R consists of all
possible subsets induced by convex objects in Rd, i.e., P ′ ∈ R iff there exists a convex object
C ⊆ Rd such that P ′ = C ∩ P . A subset Q ⊆ Rd is a weak ε-net if C ∩Q 6= ∅ for all convex
objects C containing at least εn points of P .

Weak ε-nets of size O(1/εd+1). The proof is using the so-called First Selection Lemma.
Recall its statement:

Lemma 17 (First Selection Lemma). Given any set P of n points in Rd, there exists a point
q ∈ Rd contained in at least cd ·

(
n
d+1

)
d-simplices spanned by P .

Set Q0 = ∅, i = 0 and construct the weak ε-net iteratively: If all convex objects C containing
at least εn points of P are hit by Qi, we are done. Otherwise, find a point q that lies in the
largest number of simplices spanned by C ∩ P : by the First Selection Lemma, q lies in at
least cd ·

(|C∩P |
d+1

)
≥ cd ·

(
εn
d+1

)
such simplices. Note that since C does not contain any point of

Qi, no simplex spanned by C ∩P is hit by any point of Qi. Set Qi+1 = Qi∪{q}, and iterate.
At each step, the new point hits cd ·

(
εn
d+1

)
previously un-hit simplices spanned by P , so the

process can go on for at most(
n
d+1

)
cd ·
(
εn
d+1

) ≤ (en/(d+ 1))d+1

cd · (εn/(d+ 1))d+1
= O(

1

εd+1
)

steps, proving the stated result.

A general theme in weak ε-nets. Our goal is to improve the above bound to O(1/εd).
Almost all weak ε-net constructions known so far use the following two basic ideas.

First, partition P into t equal-sized sets P1, . . . , Pt of n/t points each. Construct a set Qk such
that any convex object intersecting more than kε sets Pi must contain a point of Qk. Then
Qt is an ε-net: any convex set C containing εn points must intersect at least εn/(n/t) = tε
sets, and so be hit by Qt. Of course, a convex set intersecting more Pi’s is easier to hit as
it has stronger structural properties. So the size of Qk is a decreasing function of k (and an
increasing function of 1/ε).

Second, note that if C intersects only tε sets, then it contains all points from each Pi that it
intersects (to make up the εn points it contains). In that case, why not add, recursively, a
weak ε′-net, for a suitably determined ε′, for each Pi. The advantage is that if C is not hit
by any of the points added recursively, it would have to contain few points (at most ε′n/t,
by the weak ε′-net property) from each Pi, and so intersect considerably more sets – at least
(εn)/(ε′n/t) = tε/ε′ sets. Then Qt/ε′ is an ε-net, resulting in a lower size of Q. Fixing the
parameters for this trade-off then improves the bound from the first idea.

56



(a) (b)

P2

P0

P5

P4

P3

P1

r0

r5

r3

r2

P2

P0

P5

P4

P1

r0

r5
r2q

C

Figure 1.18: (a) Partitioning P along the cyclic order, and the point q for the pair P2 and
P5. (b) C intersects P1, P2, P4 and P5, and so the point for the pair P2 and P5 must lie in C.

Improved bound in R2. We first give the improved bound for R2, following a similar
scheme as above. Partition P into equal-sized sets P1 and P2 by a vertical line l. Now, a
convex object C containing at least εn/4 points from P1 and P2 (say P ′1 ⊆ P1 and P ′2 ⊆ P2)
will contain all intersection points of each segment pq, p ∈ P ′1, q ∈ P ′2, with l. So there are at
least ( εn

4
)2 intersections lying within the interval C ∩ l on l. Therefore, picking every ε2n2

16
-th

intersection point (when sorted by the y-coordinate) of all (n/2)2 segment intersections with
l would hit all such C. We have picked O(1/ε2) points.

Otherwise, C contains at least 3εn/4 points from one partition, say P1. Then a weak ε′-net
for P1, ε′ = (3εn/4)/(n/2) = 3ε/2, would hit all such C.

The size, f(ε), of the constructed ε-net is:

f(ε) = 2f(
3ε

2
) +O(1/ε2)

which solves to f(ε) = O(1/ε2).

A further improved bound in R2 for points in convex position. One can use the
structural property of points in convex position to improve the bound above to Õ(1/ε)9. Let
P = {p0, . . . , pn−1} be the n points, sorted in the anti-clockwise direction along their order
in the convex hull.

Partition P into equal-sized sets P0, . . . , P4/ε by their consecutive order in the cyclic sequence,
i.e., Pi = {piεn/4, . . . , p(i+1)εn/4−1}. Call the first point of each set its representative, i.e., Pi

9Õ means ignoring polylogarithmic factors.
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has as its representative the point piεn/4. Let’s re-label the representative point of set Pi as
the point ri, and let P ′ be this set of representative points.

Now, construct the weak ε-net Q as follows: for all pairs of sets Pi and Pj, 0 ≤ i < j ≤ 4/ε,
add to Q the intersection point of the two segments r0ri+1 and rirj. Note that |Q| = O(1/ε2).
See Figure 1.18(a).

We claim that Q is an ε-net: any convex object containing at least εn points must intersect at
least four sets, as each set contains at most εn/4 points. Say C intersects the sets Pi, Pj, Pk
and Pl. Then the point added to Q for the pair of sets Pj and Pl will lie inside C. See
Figure 1.18(b).

Now the second idea of recursive construction yields the desired result. Say we partition P
into t groups P1, . . . , Pt as before, and add Q as constructed earlier. By the same argument,
any C which intersects at least four sets will contain a point of Q. Otherwise, it must contain
at least εn/3 points from one of the (at most three) sets that it intersects. Since each set has
n/t points, we recursively construct a weak (εt/3)-net for each Pi: then any C containing at
least (εt/3) · n/t = εn/3 from a set will be hit inductively.

The size, f(ε), of the constructed ε-net is:

f(ε) = t · f(
tε

3
) +O(t2)

Setting t = 3/
√
ε, this solves to f(ε) = Õ(1/ε).

Weak ε-nets of size O(1/εd). We now present the current-best general bound for weak
ε-nets in Rd. The idea is an elegant one, which once observed, then works out easily from
the general scheme of constructing weak ε-nets.

The new idea is to use the following important theorem (which we will cover later on):

Theorem 18 (The Partition Theorem). Given a set P of n points in Rd and an integer
t, one can partition P into t equal-sized 10 sets P1, . . . , Pt such that any half-plane intersects
the convex-hull of at most t1−1/d sets.

Given P , partition P into t sets using the Partition Theorem, where the parameter t will be
set optimally later on. Pick an arbitrary point of P from each partition as it’s representative
point, and let P ′ be this set of t points. Construct a set Qt with the following property: a
centerpoint of any subset P ′′ ⊆ P ′ is in Qt. Now we claim that for t = 2(d+ 1)d/εd, Qt is a
weak ε-net.

Why? Well, any convex object containing at least εn points of P intersects at least εn/(n/t) =
tε sets of the partition. Let P ′′ be the representative points picked from these sets, and q ∈ Qt

be their centerpoint. If q lies inside C, we are done. Otherwise, there exists a half-plane h
separating q from C. And so, by the centerpoint property, the halfspace containing q and

10To be precise, within a factor of two of each other.
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Figure 1.19: The representative points of P ′′ \ P ′′′ are black, while the representative points
of P ′′′ are grey.

not containing C must contain at least t′ = |P ′′|/(d+ 1) points of P ′′, say P ′′′. Crucially, the
convex-hull of the sets that these points in P ′′′ are representative of must intersect h: each
such set intersects C, and also contains a point of P ′′′, and these two lie on different sides of
h. See Figure 1.19.

So h intersects the convex-hull of at least |P ′′|/(d + 1) ≥ tε/(d + 1) sets of the partition.
On the other hand, by the partition theorem, h intersects at most t1−1/d sets. Setting them
equal to find t, we get a contradiction if t > (d+ 1)d/εd. Therefore, for t = 2(d+ 1)d/εd, Qt

is a weak ε-net.

Note that |Qt| = td
2
: recall that for any subset P ′′ ⊆ P , the centerpoint of P ′′ is constructed

by computing the common intersection of the convex-hulls of all subsets of at least |P ′′|/(d+1)
points of P ′′. Any vertex of this common intersection is a centerpoint of P ′′, and is the
intersection of d planes, each defined by d points of P ′′. By adding the intersection points
of all d-tuples of planes, where each plane is fixed by d points of P ′′, one gets the required
set Qt with the stated size.

Now, the standard recursive construction yields our result. Given P , use the partition
theorem to get P1, . . . , Pt. Add Qt to our weak ε-net, and recursively construct a ε′-net for
each Pi. This forms our constructed set, and we prove now that it is indeed a weak ε-net
(for appropriate values of t and ε′).

For a convex object C containing at least εn points, if it contains at least ε′n/t points from
one of the partitions, the recursive construction guarantees hitting it.

Otherwise, C contains less than ε′n/t points from each set. And therefore C must intersect
more than εn/(ε′n/t) = tε/ε′ sets. Denote these sets by P ′′, and let q ∈ Qt be their center-
point. We claim that q lies in C. Otherwise, there exists a half-plane h separating C from q.
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Arguing as before, h must then intersect more than |P ′′|/(d+ 1) = tε
ε′(d+1)

sets. On the other

hand, h intersects at most t1−1/d sets, and so we get a contradiction for ε′ ≤ εt1/d

d+1
. Therefore

for this value of ε′, q must lie in C.

The size, f(ε), of the constructed weak ε-net is:

f(ε) = t · f(ε′) + |Qt| = t · f(
εt1/d

d+ 1
) + td

2

Setting t = Θ̃(1/ε1/d), this solves to f(ε) = Õ(1/εd).
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