1.12 Weak e-nets

Consider the range space (P,R), where P is a set of n points in R?, and R consists of all
possible subsets induced by convex objects in R?, i.e., P’ € R iff there exists a convex object
C C R? such that P = C' N P. A subset Q C R? is a weak e-net if C' N Q # O for all convex

objects C' containing at least en points of P.

Weak e-nets of size O(1/¢t1). The proof is using the so-called First Selection Lemma.
Recall its statement:

Lemma 17 (First Selection Lemma). Given any set P of n points in R?, there exists a point
q € R? contained in at least cq - (dzl) d-sitmplices spanned by P.
Set Qo = (0,7 = 0 and construct the weak e-net iteratively: If all convex objects C' containing
at least en points of P are hit by @;, we are done. Otherwise, find a point ¢ that lies in the
largest number of simplices spanned by C' N P: by the First Selection Lemma, ¢ lies in at
least c¢q - (g:]f ‘) >cq- ( di’:l) such simplices. Note that since C' does not contain any point of
Q;, no simplex spanned by C'N P is hit by any point of ;. Set Q;11 = Q;U{q}, and iterate.
At each step, the new point hits ¢, - ( difl) previously un-hit simplices spanned by P, so the
process can go on for at most

(1) (en/(d+ 1)) 1
ca () = - tenfiar iy~ )

steps, proving the stated result.

A general theme in weak e-nets. Our goal is to improve the above bound to O(1/e?).
Almost all weak e-net constructions known so far use the following two basic ideas.

First, partition P into t equal-sized sets Py, ..., P, of n/t points each. Construct a set @y such
that any convex object intersecting more than ke sets P; must contain a point of ). Then
@ is an e-net: any convex set C' containing en points must intersect at least en/(n/t) = te
sets, and so be hit by Q);. Of course, a convex set intersecting more P;’s is easier to hit as
it has stronger structural properties. So the size of @, is a decreasing function of k& (and an
increasing function of 1/¢).

Second, note that if C' intersects only te sets, then it contains all points from each P; that it
intersects (to make up the en points it contains). In that case, why not add, recursively, a
weak €-net, for a suitably determined €', for each P;. The advantage is that if C' is not hit
by any of the points added recursively, it would have to contain few points (at most €'n/t,
by the weak ¢’-net property) from each P;, and so intersect considerably more sets — at least
(en)/(e'n/t) = te/€ sets. Then Qe is an e-net, resulting in a lower size of Q). Fixing the
parameters for this trade-off then improves the bound from the first idea.

56



Figure 1.18: (a) Partitioning P along the cyclic order, and the point ¢ for the pair P, and
Ps. (b) C intersects Py, P>, Py and Ps, and so the point for the pair P, and P; must lie in C.

Improved bound in R%  We first give the improved bound for R?, following a similar
scheme as above. Partition P into equal-sized sets P; and P, by a vertical line [. Now, a
convex object C' containing at least en/4 points from Py and P (say P{ C P, and Py C P)
will contain all intersection points of each segment pq, p € P/, q € P;, with . So there are at
least (%)2 intersections lying within the interval C' N[ on [. Therefore, picking every 21’;2 -th
intersection point (when sorted by the y-coordinate) of all (n/2)? segment intersections with
[ would hit all such C. We have picked O(1/€¢?) points.

€

Otherwise, C' contains at least 3en/4 points from one partition, say P;. Then a weak €-net
for P, ¢ = (3en/4)/(n/2) = 3¢/2, would hit all such C'.

The size, f(€), of the constructed e-net is:

3€

£l =2/(5) +0(1/)

which solves to f(€) = O(1/€?).

A further improved bound in R? for points in convex position. One can use the
structural property of points in convex position to improve the bound above to O(1/ e)ﬂ Let
P = {po,...,pn_1} be the n points, sorted in the anti-clockwise direction along their order
in the convex hull.

Partition P into equal-sized sets [y, . .., P’/ by their consecutive order in the cyclic sequence,
i.e., Pi = {Pienja,- -, P(i+1)ensa—1}. Call the first point of each set its representative, i.e., P;

90 means ignoring polylogarithmic factors.
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has as its representative the point pic,/4. Let’s re-label the representative point of set P; as
the point r;, and let P’ be this set of representative points.

Now, construct the weak e-net ) as follows: for all pairs of sets P, and P;, 0 <1i < j < 4/,
add to @ the intersection point of the two segments 77711 and 7;7;. Note that |Q] = O(1/€?).

See Figure [1.18(a).

We claim that () is an e-net: any convex object containing at least en points must intersect at
least four sets, as each set contains at most en/4 points. Say C' intersects the sets P;, P;, P,
and F;. Then the point added to @ for the pair of sets P; and P will lie inside C. See

Figure [L.1§|(b).

Now the second idea of recursive construction yields the desired result. Say we partition P
into t groups P, ..., P, as before, and add () as constructed earlier. By the same argument,
any C' which intersects at least four sets will contain a point of (). Otherwise, it must contain
at least en/3 points from one of the (at most three) sets that it intersects. Since each set has
n/t points, we recursively construct a weak (et/3)-net for each P;: then any C' containing at
least (et/3) - n/t = en/3 from a set will be hit inductively.

The size, f(e), of the constructed e-net is:

te

fl@ =t 1(5) + 0

Setting t = 3/+/€, this solves to f(e) = O(1/e).

Weak e-nets of size O(1/¢?). We now present the current-best general bound for weak
e-nets in R?. The idea is an elegant one, which once observed, then works out easily from
the general scheme of constructing weak e-nets.

The new idea is to use the following important theorem (which we will cover later on):

Theorem 18 (THE PARTITION THEOREM). Given a set P of n points in RY and an integer
t, one can partition P into t equal—sizedm sets Py, ..., P, such that any half-plane intersects
the convex-hull of at most t*~1/? sets.

Given P, partition P into ¢ sets using the Partition Theorem, where the parameter ¢ will be
set optimally later on. Pick an arbitrary point of P from each partition as it’s representative
point, and let P’ be this set of ¢ points. Construct a set ); with the following property: a
centerpoint of any subset P” C P’ is in Q;. Now we claim that for t = 2(d + 1)?/e?, Q; is a
weak e-net.

Why? Well, any convex object containing at least en points of P intersects at least en/(n/t) =
te sets of the partition. Let P” be the representative points picked from these sets, and ¢ € Q;
be their centerpoint. If ¢ lies inside C, we are done. Otherwise, there exists a half-plane h
separating ¢ from C. And so, by the centerpoint property, the halfspace containing ¢ and

10T be precise, within a factor of two of each other.
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Figure 1.19: The representative points of P”\ P are black, while the representative points
of P" are grey.

not containing C' must contain at least ¢’ = |P"|/(d+ 1) points of P”, say P"”. Crucially, the
convex-hull of the sets that these points in P are representative of must intersect h: each
such set intersects C', and also contains a point of P, and these two lie on different sides of
h. See Figure [1.19]

So h intersects the convex-hull of at least |P”|/(d + 1) > te/(d + 1) sets of the partition.
On the other hand, by the partition theorem, h intersects at most t'~1/¢ sets. Setting them
equal to find ¢, we get a contradiction if ¢ > (d + 1)¢/e?. Therefore, for t = 2(d + 1)?/e, Q,
is a weak e-net.

Note that |Q;] = t%°: recall that for any subset P” C P, the centerpoint of P” is constructed
by computing the common intersection of the convex-hulls of all subsets of at least |P”|/(d+1)
points of P”. Any vertex of this common intersection is a centerpoint of P”, and is the
intersection of d planes, each defined by d points of P”. By adding the intersection points
of all d-tuples of planes, where each plane is fixed by d points of P”, one gets the required
set (Q; with the stated size.

Now, the standard recursive construction yields our result. Given P, use the partition
theorem to get Pp,..., P.. Add Q; to our weak e-net, and recursively construct a ¢’-net for
each P;. This forms our constructed set, and we prove now that it is indeed a weak e-net
(for appropriate values of ¢ and ¢).

For a convex object C' containing at least en points, if it contains at least ¢'n/t points from
one of the partitions, the recursive construction guarantees hitting it.

Otherwise, C' contains less than €'n/t points from each set. And therefore C' must intersect
more than en/(e'n/t) = te/€ sets. Denote these sets by P”, and let ¢ € @Q; be their center-
point. We claim that ¢ lies in C'. Otherwise, there exists a half-plane h separating C' from q.
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Arguing as before, h must then intersect more than |P”|/(d+1) = E,(;—il) sets. On the other

hand, h intersects at most t' =1/ sets, and so we get a contradiction for ¢ <
for this value of €, ¢ must lie in C'.

etl/d
d+1-°

Therefore

The size, f(€), of the constructed weak e-net is:

d

1

)+ %

1/
F) =t )+ |l =t £

d

Setting t = ©(1/€'/?), this solves to f(e) = O(1/e%).
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