Titel, Vorname, Name Abteilung, Fachbereich oder Institut

Bayesian Point Cloud Reconstruction

Hannes Geist Raoul Seifert

Structure

- The Mathematical Model
 - Bayesian Statistics
 - The Idea
 - The measurement model
 - Priors
 - Density Priors
 - Smoothness Priors
 - Discrete properties and sharp features
- Reconstruction
 - Numerical Optimization
 - Discrete Optimization
- Triangulation

Summary

1. The Mathematical Model

$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

1.2. The Idea

Real World Scene S

- Assumption: S is a pointcloud

Measurement Points D

- D consists of measured points
- D is a subset of S with noise added

$$P(\hat{S}|D) = \frac{P(D|\hat{S}) \cdot P(\hat{S})}{P(D)}$$

Reconstruction \hat{S}

1.2. The Idea

Most Likely Reconstruction:

$$\operatorname{argmax}_{\hat{S}} P(\hat{S}|D) = \operatorname{argmax}_{\hat{S}} P(D|\hat{S}) \cdot P(\hat{S})$$

Maximum a posteriori estimation (MAP):

$$\hat{S}_{MAP} = \underset{\hat{S}}{argmin} \left(-\log P(D|\hat{S}) - \log P(\hat{S}) \right)$$

1.3. The Measurement Model

The Measurement Model

- Specifies the probability of a reconstruction agreeing with measured Data
- Fix for each measurement process

Assumptions:

- All measurement errors are independent
- The error is gaussian noise
- The measurement process is unbiased

1.3. The Measurement Model

Measurement error : $p_i(s_i + \Delta x)$ Location of \tilde{s}_i : $p_i(d_i - \Delta x)$

$$-\log P(D|\hat{S}) = \frac{1}{2} \sum_{i=1}^{n} (\tilde{s}_{i} - d_{i})^{T} \Sigma_{i}^{-1} (\tilde{s}_{i} - d_{i})$$

 $d_i \in D$, $s_i \in S$

1.4. Priors

The Prior

- Defines what artifacts are considered noise
- Depends on assumptions of the object

Assumptions:

- The objects consist of piecewise smooth patches seperated by sharp boundaries (good for man made objects)

1.4. Piors

$$p(S) = \frac{1}{Z} p_{density}(S) p_{smooth}(S) p_{discrete}(S) \cdot w(S)$$

Used for normalization(*can be omitted* !)

1.4.1. Density Prior

Used to obtain a well-sampled reconstruction

- 1. Estimate surface area of the oject
- 2. Estimate expected distance δ between two points
- 3. Define stochastic potential between two points p_{dist}
 - Local maximum on the expected point distance

1.4.1. Density Prior

$$P_{density}(S) = \sum_{i=1}^{n} \sum_{i_{j} \in N_{2\delta}(s_{i})} p_{dist}(s_{i}, s_{i_{j}})$$

 $N_{\delta}(x) := set of all points \in S$ within radius δ of the point x

1. Fitting a Plane to a ε -Environment around point s_i using Principle Component Analysis

- The Eigentvector with the smallest Eigenvalue is the normal direction
- The other two Vectors span tangetial coordinates u, v
- Consider the (u, v, n)-coordinates a highfield

2. Linear Regression with quadratic features

- Fix a set of basic functions $\{b_j(u, v)\}_{j=1...k}$
- Compute least squares fit to the corresponding points

$$\begin{pmatrix} \langle b_1, b_1 \rangle & \dots & \langle b_1, b_k \rangle \\ \vdots & \ddots & \vdots \\ \langle b_k, b_1 \rangle & \dots & \langle b_k, b_k \rangle \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = \begin{pmatrix} \langle b_1, \Phi \rangle \\ \vdots \\ \langle b_k, \Phi \rangle \end{pmatrix} \qquad \Phi(u, v) = n$$

$$\text{With}$$

$$\langle f, g \rangle = \sum_{j=1}^{|N_{\epsilon}(s_j)|} f(u_j, v_j) \cdot g(u_j, v_j) \cdot \omega_{fit}(u_j, v_j) \qquad \lim_{l \neq j \neq l} f(u_j, v_j) \cdot \frac{g(u_j, v_j)}{2} \cdot \frac{g(u_j,$$

 ω_{fit} :=weighting function that makes solution continuous

The prior in general

$$P_{lt} = \prod_{i=1}^{n} e^{-f(c(s_i), N(s_i))}$$

- Evaluation function f assigns negative loglikelihood to each set of basisfunctions

Concrete:

- Basis functions as monomials of second order (1,u,v,uv,u²,v²)
- Weigthed sum (user chosen weights) of two function server

$$f_{curv} = c_{1,1}^2 + 2c_{2,0}^2 + 2c_{0,2}^2$$

Used to distinguish between sharp and smooth features

Assign discrete attributes to each point in S

- Type attribure {region, edge, corner}
- Id number to identify corresponding entity

Problem:

to estimate the discrete attributes knowledge of the continuous attributes is beneficial and vice versa!

General Solution: Expectation Maximization (EM-algorithm)

Assumptions:

- Corner points need at least two points with different edge-ID in neighbourhood
- The number of corner points is exactly one
- Probability distribution for its position peaks at point closest to all edges

Simplified Process:

- Probability for being an edge grows with the curvature of the local neighbourhood
- Probability for being a corner depends on the number of edge points from different edges
- Impose Priors on the shape of edges
 - Uniform sampling (Density Priors)
 - Smoothness

Additional type attribute for each region, defining either "locally polynomial" or "planar"

Just for simplification

2. Reconstruction

- Apply optimization techniques to find approximate MAP-reconstruction

(a) Noisy input point cloud.

(b) Initial smoothing.

(c) Estimating edge probabilities.

(d) Smoothing with discrete attributes.

(e) Triangulation of the reconstruction.

2.1. Initialization

- 1. Initialize with original measurement points D
- 2. Additional n-m points are distributed randomly near points from D
- 3. Tool for semi-automatic hole-filling inverse to sampling density

2.2. Numerical Optimization

- In this step: neglect discrete components
- 1. Compute gradient of posterior propability)
- 2. Gradient descent to maximize posterior propability
 - \rightarrow implementation of 3 different techniques P(D|S)
- 3. Measurment likelihood

 $\frac{1}{2}\sum^{-1}x$

- \rightarrow less overhead
- \rightarrow accurate analytical solution

2.3. Discrete Optimization

(c) Estimating edge probabilities.

- 1. Run pass with curvature penality = 0
 - \rightarrow smooting effect contradicts estimation of edge propabilities
- 2. Assign propability of point beeing edge
 - \rightarrow high curvature yields edge
- 3. Region growing algorithm
 - All points != edges belong to certain region with ID x
- 4. Second pass of continous optimization with smoothing

3. Triangulation

- 1. Triangulation of points by modified marching cubes algorithm
 - \rightarrow Include sharp features
- 2. Overlapping edges are cut to approximate plane of region
- 3. Step 2 creates gaps between regions
 - \rightarrow snap vertices together according to region info.

4. Summary

- 1. Relatively long run time
- 2. Satisfying results for test objects

	# Data	# Rec.	Rec. time
	points	points	[sec]
Box	2000	4506	28
Holes	4,790	31,717	271
Mechpart	9,521	104,578	1,759
Carved Object	9,973	41,911	269
Face	19,995	300,000	3,772
Fandisk	46,494	216,338	3,881
Floor	199,970	811,352	1,540

 Table 1: Computation time and model complexity.

- 3. Good method for sharp man-made objects
- 4. Future work
 - Improve speed
 - Better Hole-Filling
 - Better statistical model
 - Handle scenes that change over time

Test Objects

(b) Reconstructed (c) Reconstructed point cloud edges

Figure 6: Reconstructed fandisk data set

(a) Original data (b) Reconstructed point cloud

Figure 7: Data set with small holes

(d) Final mesh

Figure 8: Reconstruction for different noise levels (Gaussian noise, standard deviation relative to bounding box size)

