Bayesian Point Cloud Reconstruction

Hannes Geist
Raoul Seifert

Structure

The Mathematical Model

- Bayesian Statistics
- The Idea
- The measurement model
- Priors
- Density Priors
- Smoothness Priors
- Discrete properties and sharp features

Reconstruction

- Numerical Optimization
- Discrete Optimization

Triangulation

Summary

1. The Mathematical Model

1.1. Bayesian Statistics

$$
\text { Posterior }=\frac{\text { Likelihood } \cdot \text { Prior }}{\text { Normalization }}
$$

1.2. The Idea

Real World Scene S

- Assumption: S is a pointcloud

Measurement Points D

- D consists of measured points
- D is a subset of S with noise added

Reconstruction \hat{S}

$$
P(\hat{S} \mid D)=\frac{P(D \mid \hat{S}) \cdot P(\hat{S})}{P(D)}
$$

1.2. The Idea

Most Likely Reconstruction:

$$
\underset{\hat{S}}{\operatorname{argmax}} P(\hat{S} \mid D)=\underset{\hat{S}}{\operatorname{argmax}} P(D \mid \hat{S}) \cdot P(\hat{S})
$$

Maximum a posteriori estimation (MAP):

$$
\hat{S}_{M A P}=\underset{\hat{S}}{\operatorname{argmin}}(-\log P(D \mid \hat{S})-\log P(\hat{S}))
$$

1.3. The Measurement Model

The Measurement Model

- Specifies the probability of a reconstruction agreeing with measured Data
- Fix for each measurement process

Assumptions:

- All measurement errors are independent
- The error is gaussian noise
- The measurement process is unbiased

1.3. The Measurement Model

$$
\begin{array}{r}
d_{i} \in D, s_{i} \in S \quad \text { Measurement error }: p_{i}\left(s_{i}+\Delta x\right) \\
\text { Location of } \tilde{s}_{i}: p_{i}\left(d_{i}-\Delta x\right) \\
-\log P(D \mid \hat{S})=\frac{1}{2} \sum_{i=1}^{n}\left(\tilde{s}_{i}-d_{i}\right)^{T} \Sigma_{i}^{-1}\left(\tilde{s}_{i}-d_{i}\right)
\end{array}
$$

1.4. Priors

The Prior

- Defines what artifacts are considered noise
- Depends on assumptions of the object

Assumptions:

- The objects consist of piecewise smooth patches seperated by sharp boundaries (good for man made objects)

1.4. Piors

$p(S)=\frac{1}{Z} p_{\text {density }}(S) p_{\text {smooth }}(S) p_{\text {discrete }}(S) \cdot w(S)$

Used for normalization (can be omitted !)

1.4.1. Density Prior

Used to obtain a well-sampled reconstruction

1. Estimate surface area of the oject
2. Estimate expected distance δ between two points
3. Define stochastic potential between two points $p_{\text {dist }}$

- Local maximum on the expected point distance

1.4.1. Density Prior

$$
P_{d e n s i t y}(S)=\sum_{i=1}^{n} \sum_{i_{j} \in N_{2 \delta}\left(s_{i}\right)} p_{d i s t}\left(S_{i}, S_{i_{j}}\right)
$$

$N_{\delta}(x):=$ set of all points $\in S$ within radius δ of the point x

1.4.2. Smoothness Prior

1. Fitting a Plane to a ε-Environment around point s_{i} using Principle Component Analysis

- The Eigentvector with the smallest Eigenvalue is the normal direction
- The other two Vectors span tangetial coordinates u, v
- Consider the (u, v, n)-coordinates a highfield

1.4.2. Smoothness Prior

2. Linear Regression with quadratic features

- Fix a set of basic functions $\left\{b_{j}(u, v)\right\}_{j=1 . . . k}$
- Compute least squares fit to the corresponding points

$$
\left(\begin{array}{ccc}
\left\langle b_{1}, b_{1}\right\rangle & \ldots & \left\langle b_{1}, b_{k}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle b_{k}, b_{1}\right\rangle & \ldots & \left\langle b_{k}, b_{k}\right\rangle
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right)=\left(\begin{array}{c}
\left\langle b_{1}, \Phi\right\rangle \\
\vdots \\
\left\langle b_{k}, \Phi\right\rangle
\end{array}\right)
$$

$$
\Phi(u, v)=n
$$

$$
\begin{aligned}
& \text { With } \\
& \langle f, g\rangle=\sum_{j=1}^{\mid N_{\varepsilon}\left(s_{i} \mid\right.} f\left(u_{j}, v_{j}\right) \cdot g\left(u_{j}, v_{j}\right) \cdot \omega_{f i t}\left(u_{j}, v_{j}\right)
\end{aligned}
$$

$$
\omega_{f i t}:=\text { weighting function that makes solution continuous }
$$

1.4.2. Smoothness Prior

The prior in general

$$
P_{l t}=\prod_{i=1}^{n} \mathrm{e}^{-f\left(c\left(s_{i}\right), N\left(s_{i}\right)\right)}
$$

- Evaluation function fassigns negative loglikelihood to each set of basisfunctions

1.4.2. Smoothness Prior

Concrete:

- Basis functions as monomials of second order ($1, u, v, u v, u^{2}, v^{2}$)
- Weigthed sum (user chosen weights) of two furfetion fsurv

$$
f_{\text {onSurf }}=\sum_{i=1}^{N_{\varepsilon}\left(s_{i}\right)}\left(\left(\sum_{q=1}^{k} c_{q} b_{q}\left(u_{j}, v_{j}\right)\right)-n_{j}\right)^{2}
$$

$$
f_{\text {curv }}=c_{1,1}^{2}+2 \mathrm{c}_{2,0}^{2}+2 \mathrm{c}_{0,2}^{2}
$$

1.4.3. Discrete Properties and Sharp Features

Used to distinguish between sharp and smooth features

Assign discrete attributes to each point in S

- Type attribure \{region, edge, corner\}
- Id number to identify corresponding entity

1.4.3. Discrete Properties and Sharp Features

Problem:

to estimate the discrete attributes knowledge of the continuous attributes is beneficial and vice versa!

General Solution: Expectation Maximization (EM-algorithm)

1.4.3. Discrete Properties and Sharp Features

Assumptions:

- Corner points need at least two points with different edge-ID in neighbourhood
- The number of corner points is exactly one
- Probability distribution for its position peaks at point closest to all edges

1.4.3. Discrete Properties and Sharp Features

Simplified Process:

- Probabilty for being an edge grows with the curvature of the local neighbourhood
- Probabilty for being a corner depends on the number of edge points from different edges
- Impose Priors on the shape of edges
- Uniform sampling (Density Priors)
- Smoothness

Additional type attribute for each region, defining either „locally polynomial" or „planar"
Just for simplification

2. Reconstruction

- Apply optimization techniques to find approximate MAPreconstruction

(a) Noisy input point cloud.

(b) Initial smoothing.

(c) Estimating edge probabilities.

(d) Smoothing with discrete attributes.

(e) Triangulation of the reconstruction.

2.1. Initialization

1. Initialize with original measurement points D
2. Additional $n-m$ points are distributed randomly near points from D
3.Tool for semi-automatic hole-filling inverse to sampling density

2.2. Numerical Optimization

- In this step: neglect discrete components
(b) Initial smoothing.

1. Compute gradient of posterior propalbrility)
2. Gradient descent to maximize posterior propability

- \rightarrow implementation of 3 different techniques

$$
P(D \mid S) \quad \frac{1}{2} \sum^{-1} x
$$

3. Measurment likelihood In coftrimist huilterdaice fifmation

- \rightarrow less overhead
- \rightarrow accurate analytical solution

2.3. Discrete Optimization

1. Run pass with curvature penality $=0$

- \rightarrow smooting effect contradicts estimation of edge propabilities

2. Assign propability of point beeing edge
$-\rightarrow$ high curvature yields edge
3. Region growing algorithm

- All points != edges belong to certain region with ID x

4. Second pass of continous optimization with smoothing

3. Triangulation

1. Triangulation of points by modified marching cubes algorithm

- \rightarrow Include sharp features

2. Overlapping edges are cut to approximate plane of region
3. Step 2 creates gaps between regions

- \rightarrow snap vertices together according to region info.

4. Summary

1. Relatively long run time
2. Satisfying results for test objects

	\# Data points	\# Rec. points	Rec. time [sec]
Box	2000	4506	28
Holes	4,790	31,717	271
Mechpart	9,521	104,578	1,759
Carved Object	9,973	41,911	269
Face	19,995	300,000	3,772
Fandisk	46,494	216,338	3,881
Floor	199,970	811,352	1,540

Table 1: Computation time and model complexity.
3. Good method for sharp man-made objects
4. Future work

- Improve speed
- Better Hole-Filling
- Better statistical model
- Handle scenes that change over time

Test Objects

(a) Original data

(b) Reconstructed point cloud

(c) Reconstructed edges

(d) Final mesh

Figure 6: Reconstructed fandisk data set

(a) Original data

(b) Reconstructed point cloud

(c) Final mesh

Figure 7: Data set with small holes

Figure 8: Reconstruction for different noise levels (Gaussian noise, standard deviation relative to bounding box size)

(a)

(b)

(c)

(d)

(a) Original data

(b) Reconstruction

(c) Topology

