
Parallel Clustering Algorithm for Large Data
Sets with Applications in Bioinformatics

Victor Olman, Fenglou Mao, Hongwei Wu, and Ying Xu

Abstract—Large sets of bioinformatical data provide a challenge in time consumption while solving the cluster identification problem,

and that is why a parallel algorithm is so needed for identifying dense clusters in a noisy background. Our algorithm works on a graph

representation of the data set to be analyzed. It identifies clusters through the identification of densely intraconnected subgraphs.

We have employed a minimum spanning tree (MST) representation of the graph and solve the cluster identification problem using this

representation. The computational bottleneck of our algorithm is the construction of an MST of a graph, for which a parallel algorithm is

employed. Our high-level strategy for the parallel MST construction algorithm is to first partition the graph, then construct MSTs for the

partitioned subgraphs and auxiliary bipartite graphs based on the subgraphs, and finally merge these MSTs to derive an MST of

the original graph. The computational results indicate that when running on 150 CPUs, our algorithm can solve a cluster identification

problem on a data set with 1,000,000 data points almost 100 times faster than on single CPU, indicating that this program is capable of

handling very large data clustering problems in an efficient manner. We have implemented the clustering algorithm as the

software CLUMP.

Index Terms—Pattern recognition, clustering algorithm, genome application, parallel processing.

Ç

1 INTRODUCTION

DATA (object) clustering represents one of the most often
encountered problems in data analyses. The basic

problem is to partition a data set into “clusters” of data
points that are “close” to each other but relatively “far
from” other data points. A more general problem is the
so-called cluster identification problem [17], which is to
identify “dense” clusters in a possibly noisy background.
For such a problem, identified clusters do not necessarily
cover the whole data set. There are many applications of
the clustering problems in different fields, ranging from
image analyses to pattern recognition, social science,
biology, telecommunications, and many other fields. Many
methods with different application objectives have been
developed to solve the clustering problems, including
K-Means [5], the Single Linkage Algorithm (SLA) [3] and
other hierarchical clustering methods [21], a self-organizing
map [5], the Markov Cluster Algorithm [4], and an
unsupervised clustering algorithm for graphs based on
flows in graphs [10]. While each of these classes of
methods has its advantages and has been shown to be
useful for many application problems, there remain a few
challenging problems facing most of the existing clustering
algorithms. The most important one is the limit on the size
of the data sets they can effectively handle. Often, these
algorithms are designed to deal with relatively small data
sets, possibly ranging from hundreds to tens of thousands
of data points. When applied on problems with sizes

ranging from hundreds of thousands to millions, these
algorithms are in general too slow or inefficient to be
practically useful. The robustness of these algorithms
represents another challenging issue. For example, the
popular K-Means algorithm works well only if the clusters
to be identified are embedded in disjoint convex sets and
the clusters are comparable in size, while self-organizing-
map-based methods work successfully only if a data set
intrinsically has the structure with the ability for dimen-
sion reduction. For example, SOM would fail for the set of
disjoint 10-dimensional spheres uniformly scattered in the
10-dimensional euclidean space. The only algorithm that
can be directly compared to ours is SLA just because both
use MST construction as a preliminary step and therefore
have close complexity. But in our approach, the algorithm
is a result of searching for entities defined as clusters, and
we offer the estimation of the statistical significance of a
cluster, while SLA considers any subtree as a cluster
without evaluation of a cluster quality. In this particular
paper, we do not compare the performance of our method
with that of others because the evaluation of performance
is a very sensitive issue and depends on a goal of a
research that should be established a priori. For example, if
a data set consists of two disjoint spheres of very different
radii, the K-means will cut the big sphere, while our
algorithm will separate the two spheres. But both results
could be meaningful from different points of view.

Modern biology is a data-rich field. Driven by the

advent of high-throughput technologies such as sequen-

cing technology, microarray gene chips, two hybrid arrays

[15], and mass spectrometry [7], an enormous amount of

data has been generated that reflect different aspects of

living organisms at molecular, cellular, and even ecosys-

tem levels. In addition, an even larger amount of data

have been derived from the experimental data by using

bioinformatics tools such as predicted genes, promoters,

344 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 2, APRIL-JUNE 2009

. The authors are with the Computational System Biology Laboratory,
Department of Biochemistry and Molecular Biology and Institute of
Bioinformatics, University of Georgia, 120 Green Street, Athens, Georgia,
30602. E-mail: {olman, fenglow, hongweiw, xyn}@csbl.bmb.uga.edu.

Manuscript received 24 Oct. 2006; revised 15 May 2007; accepted 3 Dec.
2007; published online 10 Dec. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0194-1006.
Digital Object Identifier no. 10.1109/TCBB.2007.70272.

1545-5963/09/$25.00 � 2009 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

gene families, protein structures, molecular interactions,
and biological networks plus many intermediate results.
The generation and application of these data often require
a capability for data clustering in some fashion. In our
own research, we often encounter problems of needing to
cluster data sets up to hundreds of thousands to millions
of data points, including our recent work on functional
classification of genes [27], functional module identifica-
tion [28], and microarray data analysis [30]. We have
recently developed an effective parallel algorithm for
solving the cluster identification problem, particularly for
large data sets.

The basic idea of this clustering algorithm is that it first
represents a target data set as a weighted undirected graph,
with each data point represented as a vertex and each pair
of data points is connected by an edge with its weight being
the “distance” between the two data points. Then, it builds
a minimum spanning tree (MST) of the graph. A key
property of an MST is that it generally preserves the
structures of clusters in the sense that each cluster is
generally presented as a subtree of an MST, as we have
previously established [17], and hence, a clustering problem
(or, generally, a cluster identification problem) can be
solved on the MST representation of a data set. Such a
cluster-preserving representation facilitates efficient algo-
rithms for identifying clusters in a data set. We have
previously developed a rigorous and linear algorithm for
identifying clusters based on the MST representation [17] of
the data set. Among numerous nice properties of the
MST-based clustering algorithm, one is that the algorithm is
highly robust in terms of the specific distance function for
solving the data clustering as long as the relative order
among the edge distances is preserved, a highly useful
property for dealing with noisy data sets.

The computational bottleneck of the above outlined

MST-based clustering algorithm is in the step of construc-

tion of an MST representation of a data set. Since our

clustering algorithm is based on a sequential representa-

tion of MST, we require the use of Prim’s algorithm [22].

As we know, Prim’s algorithm for a graph with E edges

and V vertices requires OðjEj þ jV j logðjV jÞÞ steps to

compute an MST [22]. In general, E is OðV 2Þ, which is

often too large for practical applications with millions of

data points. Despite the sequential essence of MST

construction, a number of algorithms have been developed

to parallelize calculations. A detailed analysis of this effort

is done in the review in [16]. All suggested parallel

algorithms present parallelization of calculations with

heavy Message Passing Interface (MPI). In [20], the authors

implemented a parallel version of the SLINK algorithm

[23] using SIMD array processors. The parallel version of

hierarchical clustering is presented in [14] on an n-node

hypercube and an n-node butterfly. Another implementa-

tion of a parallel approach is reported in [9] with

calculations distributed between processors and with the

use of MPI. Using different types of Parallel Random

Access Memory (PRAM) model, people have found [8] a

good solution for minimizing the time of communication

using external memory when constructing an MST, while

in [2], authors have dealt with the construction of a

spanning tree using Symmetric Multiprocessors, though

there is no guarantee that it will find an MST. The issue

with these efforts is that they do not provide a practically

useful and rigorous solution to the problem from the

implementation point of view. In widely cited papers [3]

and [19], the time complexity is OðV logðV ÞÞ with V = logðV Þ
processors, and in [13], it is Oðlog3=2 V Þ with ðV þEÞ
processors, and while it presents an undisputed theoretical

result, practically, it is not applicable with large data sets

and today’s technology. None of these papers provide

Internet-accessible computer servers allowing a user to

carry out MST construction with large data set. Theoreti-

cally, a more efficient algorithm represents a nontrivial

challenge for implementation. In addition, there is no

guarantee that these theoretically more efficient algorithms

will solve the MST construction faster in practice. Our

approach is easy to implement, and while theoretical

papers are dealing with a complexity OðfðnÞÞ, where n is a

data set size, our goal was to minimize coefficient C in

OðfðnÞÞ � CfðnÞ for a large n with known function fðnÞ.
Hence, we have implemented our own parallel algorithm

for the MST construction, taking advantage of the Linux

clusters that we have in our laboratory, which supports the

data clustering computation server, based on the algo-

rithms presented in this paper. The basic difference of our

approach from those cited is that we do not parallelize the

known algorithm but rather use a procedure that merges

results precalculated in a parallel way and ends up with

the MST for the original graph.
The key effort in designing the parallel algorithm is to

minimize the communication efforts among processors. We
have used MPI as the way of communication across
processors on a Linux cluster, popularly used for bioinfor-
matics applications. Compared to previously developed
parallel algorithms for MST construction [13], which are
generally based on Boruvka’s algorithm [6], our new parallel
algorithm is based on parallel MST constructions for subsets
with moderate sizes. Using the parallel algorithm for the
construction of an MST from a given data set, we have
developed an efficient algorithm for solving the cluster
identification problem on large data sets. For each identified
cluster, we assign a P value to measure the statistical
significance of the cluster in terms of its data compactness
versus the distance to its neighbors. The software package
for this data clustering algorithm is called CLUMP for
“clustering through MST in parallel.”

Before starting a description of the parallel algorithm, we
shortly describe the idea of cluster identification using MST,
presented in our previous paper [17]. Let S be the set of
elements s 2 S and Wðs1; s2Þ be a distance between any two
elements of S. We expand our definition of W to the
distance WðS1; S2Þ between sets S1 and S2 as the shortest
distance between elements of sets

W ðS1; S2Þ ¼ min Wðs1; s2Þjs1 2 S1; s2 2 S2f g:

According to definitions in [12] and [17], the Necessary
Condition for a subset C � S to be a cluster is that for
any partition C ¼ C1

S
C2, where C1 6¼ ;, C2 6¼ ;, and

C1

T
C2 ¼ ;

WðC1; S � C1Þ ¼WðC1; C2Þ: ðNCÞ

OLMAN ET AL.: PARALLEL CLUSTERING ALGORITHM FOR LARGE DATA SETS WITH APPLICATIONS IN BIOINFORMATICS 345

In other words, regardless of the partition of a cluster,
the two parts of a cluster will still be closer to each other
than to any other element of S. A key idea of our MST-
based clustering algorithm is to represent the given data
set using a linear representation (LR) through the con-
struction of an MST as follows: LR is a list of the elements
of S whose sequential order is the same as the order that
these elements got selected by Prim’s algorithm into the
MST during its construction. In addition, each element s
has a numerical value associated with it, which is the
W ð:; sÞ value of the edge that Prim’s algorithm used to add
s into the MST. A highly useful property of this LR is that
data clusters in the given data set, as defined in [30], have
a one-to-one correspondence with the “valleys” in this LR
if we view it in a 2D coordinate system with the sequential
order as the x-axis and the values of individual elements
as the y-axis [30]. Hence, data clusters in the given data set
can be identified through identifying valleys in this LR. In
comparison to SLA, our approach searches for clusters
satisfying the special condition of a cluster (NC) that
essentially narrows the set of all subtrees of MST, as it is
done in SLA.

2 PARALLEL ALGORITHM OF MST CONSTRUCTION

We first present our parallel algorithm for the MST
construction of a graph representation G ¼ ðE; V Þ of a
given data set S, which has the following key steps:

. partitioning G into s subgraphs, fGj ¼ fVj; Ejg,
j ¼ 1; . . . ; s, where the value of s is determined
later in this section, Vj is the set of vertices in Gj,
and Ej � E is the set of edges connecting the
vertices of Vj;

. defining bipartite graphs Bij ¼ fVi
S
Vj; Eijg, where

Vi and Vj are vertex sets of Gi and Gj, and Eij � E is
a set of edges between the vertices of Vi and the
vertices of Vj, i 6¼ j, for each such pair of subgraphs
from fGig;

. constructing an MST Tii on each Gi and Tij on each
Bij in parallel;

. building a new graph G0 ¼
S
Tij, 1 � i � j � s, by

merging all the MSTs from the previous step. A
result of the merging operation is a subgraph G0 of
G with a vertex set V and edges from trees Tij,
1 � i � j � s; and

. constructing an MST of G0.

A mathematical proof is given in Appendix A to show
that MSTðG0Þ is an MSTðGÞ, an MST of the original
graph G. The key idea employed here is that we calculate
in parallel an MST for each subgraph and each auxiliary
bipartite graph formed by each pair of subgraphs. Then,
we build a highly sparse graph G0 by merging the
constructed MSTs and build an MST of G0.

We now provide some analysis on the computational
runtime of the algorithm. For our current implementa-
tion of Prim’s algorithm for building MSTs on the
subgraphs, we have used Fibonacci heap [22] for each
subgraph Gj and each bipartite graph Bij to facilitate the
efficient implementation of the “finding the next smallest
edge” operation in Prim’s algorithm, which gives an

OðjEij þ jVij logðjVijÞÞ time for each subgraph Gi and
OðjVikVjj þ ðjVij þ jVjjÞ logðjVij þ jVjjÞÞ for each bipartite
graph.

We have assessed the actual computing time of the
parallel algorithm, using the following data sets. The data
sets we have used consist of 10,000 up to 500,000 (with a
step 10,000) vectors ranging from 10, 20, 30, . . . , to
100 dimensions (D). Each component of a data point is an
independent uniformly distributed real value taken from
the interval [0, 1]. For our test, we have tried three distance
measures, namely, Euclidean, Manhattan, and 1-Pearson
correlation. For each distance type, we have used a linear
regression model to summarize the dependence of the MST
construction time T ðD;V Þ on V and D. These results, as
summarized in Table 1, are used in (1) and (2) for the
analysis of the computing time of the MST construction of
the original graph.

The time for constructing the final MSTðG0Þ after
merging the MSTs (G0 is the original graph G without
edges that do not belong to Tij, 1 � i � j � s), TMðs; V Þ,
accurately fits the following linear regression model with
R ¼ 0:9931:

TMðs; V Þ¼S�v�ð0:401967�logðvÞ � 0:464002Þþ2:826016�v;
ð1Þ

where s is the number of subsets of vertices, v ¼ 0:0001 � V ,
V is the number of vertices in the original graph, and
s � ðsþ 1Þ=2 is the number of CPUs used at the previous
step. As it is shown in Appendix A, the best partition is the
partition of V into subsets such that jVij ¼ jVjj if s > 2, and
jV1j ¼ 2jV2j for s ¼ 2. Since the MST construction for a
complete graph with V vertices and 0:5V ðV � 1Þ edges is
much faster than for a bipartite graph with 2V vertices and
V 2 edges, the total computing time is

T ðD;V ; sÞ ¼ TBðD; V =sÞ þ TMðs; V Þ: ð2Þ

Our test results showing the accuracy of (2) are
presented in Fig. 1.

One can see that the total time is a monoextreme function
that has a simple explanation: the larger the number of
partitions (reducing the time for simultaneous MST con-
struction on all partitioned subgraphs), the larger number
of edges in graph G0 (increasing the time for MST
construction at the last step).

346 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 2, APRIL-JUNE 2009

TABLE 1
Linear Regression Model for the MST Construction Time for a
Complete Graph, TCðD; V Þ, and for a Bipartite Graph, TBðD;V Þ,

as Functions of the Number of Objects ðV Þ, and the
Dimensionality of the Object ðDÞ, Where v ¼ V � 0:0001,
and R Is the Multiple Regression Correlation Coefficient

Given a complete graph with V D-dimensional points, (2)

gives a tight estimate on the runtime of our parallel algorithm,

as a function of s. The optimal runtime can be obtained by

minimizing (2) with respect to s. We get the optimal value of

so by differentiating (2) and equaling the derivative to zero as

soðD;V Þ �
ffi
2V ðc0 þ c1DÞ=ð0:401967 � logðvÞ � 0:464002Þ3

p
,

where c0 and c1 are the regression coefficients for MST

construction on the bipartite graph (Table 1), and they

depend on the time for distance calculation.
We calculate the theoretical factor in speeding up MST

construction by using the parallel implementation versus a
single processor SUT ðD;V Þ as a ratio of the time consump-
tion by

SUT ðD;V Þ ¼
T ðD;V ; 1Þ

T D; V ; soðD; V Þð Þ : ð3Þ

The experimental speedup factor SUEðD;V Þ is defined as
the ratio between the real computing time of the parallel
and single-processor implementations. Fig. 2 shows the
accuracy of the theoretical estimation of the speedup.

We have summarized SUT ðD;V Þ, SUEðD;V Þ, and the
corresponding so for different distance types in Table 2.

3 CLUSTER IDENTIFICATION

After building an MST for a given data set, our algorithm
will construct an LR of the MST [30]. Given n data points,
let LR½i� be the distance between the data point that gets
added into the MST at the ith step of Prim’s algorithm
through an edge connecting this data point with the current
MST. In this way, each data point is associated with a two-
dimensional representation, ði;LR½i�Þ, i ¼ 1; . . . ; jV j. A valley
in the LR is defined as a list of indices s, sþ 1; . . . ; sþ t
ð1 � t � jV j � s; s 	 0Þ such that

min LR½s�; LR½sþ tþ 1�ð Þ > max LR½i�js < i < tþ 1f g: ð4Þ

In other words, the set of vertices form a valley if they are
consecutive in steps of Prim’s algorithm, and edges that
open and close the valley are longer than any edge inside
the valley. We have previously shown [30] that there is a

one-to-one correspondence between valleys and data
clusters that satisfy our cluster definition (NC), and the
hierarchical structure among clusters is well preserved
among the corresponding valleys. Based on this result, each
cluster can be identified through the identification of
valleys in the LR of a graph. We have employed the same
simple algorithm that we have used for the identification of
conserved binding motifs in genomic sequences for the
identification of valleys [17]: recursive calculation of the
maximum of LR in the valley belonging to ½0; jV j�. The proof
of correctness of this search is based on the fact that the
starting and ending steps of a valley have the largest edges.
It should be noted that an LR of a graph is not unique, but
the aforementioned property holds for any LR of a graph.
Fig. 3 shows a simple example for a set of two-dimensional
data points in euclidean 2D space.

OLMAN ET AL.: PARALLEL CLUSTERING ALGORITHM FOR LARGE DATA SETS WITH APPLICATIONS IN BIOINFORMATICS 347

Fig. 1. The continuous line is a theoretical graph (based on the
regression model) of the computing time for MST construction for a set
of 1,000,000 40-dimensional vectors with the number of partitions
ranging from 2 to 30, while circles are experimental results. The optimal
number of partitions for this case is 14.

Fig. 2. The graph is an analytical form of speeding up (3), while circles

are experimental points.

TABLE 2
Theoretical ðSUT Þ and Experimental ðSUEÞ Speedup Factors

of the Parallel MST Construction Compared to the
Single-Processor Implementation, with the Optimal Number

of Partitions so, Where V Represents the Number of Vertices,
and D Represents the Dimensionality of the Vertices

In Fig. 4, we can clearly see an apparent correspondence
between clusters of data points and valleys in the LR of the
data set with a simple hierarchical structure.

For each identified valley in the LR, we can assess the

statistical significance of the valley using the following

model. We assume that if there is no cluster (or a valley) in

the data set (data points are scattered uniformly), the

LR values for the set of indices s, sþ 1; . . . ; sþ t ðt > 1Þ are

actually distances between sorted observations from the

uniform distribution. In other words, the values zm ðm ¼
1; . . . ; tþ 1Þ are sorted uniformly distributed observations

on (0,1), where zm ¼
Psþm

j¼s ðLR½j� � LÞ=T , m ¼ 1; . . . ; tþ 1,

z0 ¼ 0, T ¼
Psþtþ1

j¼s ðLR½j� � LÞ is a normalized constant, and

L¼minðLR½j�js<j�sþ tÞ. The ratio �¼maxðzi�zi�1j1� i�
tÞ=minðz1; 1� ztÞ and the number of data points in a cluster

tþ 1 are the only parameters defining the statistical

significance P value of a cluster. We calculate P value as

the Pr obabilityðX � �Þ, where X ¼ maxðxi � xi�1j1 � i �
tÞ=minð1� xt; x1Þ, and 0 � x1 � x2 �

 � xt � 1 are sorted

independent uniform observations in the interval (0,1). The

calculations are based on the fact that a random

t-dimensional vector with components xi � xi�1, i ¼ 1;

. . . ; t, follows the Dirichlet distribution [26].

4 CLUMP IMPLEMENTATION

The above algorithm has been implemented as a software
package, CLUMP, using MPI and ANSI C. The executable
code for 32-bit Intel x 86 compatible Linux clusters is
available at http://csbl.bmb.uga.edu/CLUMP/down-
load.html. The core part is the set of functions that provide
an MST construction for a given graph. A Web interface
for CLUMP is developed with popup menus. Currently,
the clustering software supports three distances, namely,
euclidean, Manhattan, and 1-Pearson correlation (note that
the distance does not have to satisfy triangle inequality,
and hence, the data set does not have to be defined in a
metric space). In addition, a user can define an arbitrary
distance measure or provide precalculated distances in an
input file.

There are other parameters that have default values or
can be chosen by the user of CLUMP. The user can restrict
the search for clusters based on their minimum and

maximum size (the number of data points in a cluster),

and the value for � (or P value) can be bounded from above.

Another parameter � < 1 is used to prevent from reporting

very similar clusters, so that if for two clusters A � B, there

is no such cluster C where A � C � B, then both clusters A

and B will be reported iff jAj � �jBj. The number of

partitions for a given data set can also be defined by the user

ð<¼ 25Þ; otherwise, the optimal number is used (see

Section 2). The output of CLUMP is a text file with clusters

of data points and the statistical significance for each cluster.
An online CLUMP server is available at http://decoder.

cc.uga.edu/paralell_MST/home.php, which provides large-

scale clustering ability for registered users. The online

CLUMP is implemented by using a MySQL database, a php

server-side script language, a postfix mail system, and an

apache Web server. The back-end computer cluster is

managed by a Sun Grid Engine. In order to use the online

CLUMP, a user should send an application to register for

using CLUMP. After the application is approved, the user

can submit jobs to the online CLUMP; the user can specify

the parameters that control the clustering or use the default

values. The user can download both the result MST and the

identified clusters. The user can also run the hierarchical

clustering program, which is in the stand-alone CLUMP

package and can be used to build clusters from MST, by

using different parameters to create the most meaningful

clusters.

5 BIOLOGICAL APPLICATIONS

We provide two applications of CLUMP in this section to

demonstrate the power of this new clustering algorithm. All

used processors are Intel x86.
Application 1. We have applied CLUMP for the

hierarchical classification of functionally equivalent genes

for prokaryotes at multiresolution levels [29]. The frame-

work can be described as follows:
We first define the functional equivalence relationship

between a pair of genes, g1 and g2, of two different genomes,

348 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 3. Two-dimensional points with clustering structure. Fig. 4. The x-axis is the LR of the MST (indices of steps), and the y-axis
represents the length of the edge that is used to include the
corresponding vertex into MST. The lower V-shape dash lines represent
four separate clusters, while the upper two V-shapes cover the
aggregated clusters.

fðg1; g2Þ, by incorporating both their sequence similarity
and genomic context information as

fðg1; g2Þ¼hðg1; g2Þ 1þ�
X
i;j

P ðg1; giÞP ðg2; gjÞI hðgi; gjÞ	 th
� �" #

;

where hð; Þ denotes the sequence similarity measure, �
determines how much the genomic context information of
the pair ðg1; g2Þ should be considered over the pair’s
sequence similarity information, the summation

P
ij is over

all gene pairs ðgi; gjÞ with gi and gj being likely to belong to
the same genomic neighborhood of g1 and g2, respectively,
P ð; Þ calculates the likelihood that two genes of the same
genome are in the same genomic neighborhood, and the
indicator function IðÞ and the threshold th for the sequence
similarity measure are introduced to make sure that only
those sufficiently reliable gene pairs ðgi; gjÞ in the genomic
neighborhoods of ðg1; g2Þ are considered as supporting
evidence to the equivalence relationship between g1 and
g2. The detailed definitions of these functions can be found
in [29]. We have applied this scoring scheme to 224 prokar-
yotic genomes (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
March 2005) [29]. If we consider only those gene pairs
whose BLASTP [1] e-values are � 1.0, we have obtained
� 46 million gene pairs involving 609,887 genes, which
cover �92.7 percent of all the genes of the 224 genomes. We
have constructed a weighted graph GðV ;EÞ, with V and E
being the sets of the nodes and edges, respectively, to
represent these 609,887 genes and their functional equiva-
lence relationships; the weight on each edge is set to be
proportional to the functional equivalence measure fð; Þ
between the two genes being connected [29]. As shown in
Fig. 5, GðV ;EÞ contains densely intraconnected subgraphs,
each of which corresponds to a cluster of genes that are
functionally equivalent to each other at a certain resolution
level, and subgraphs (gene clusters) form a hierarchical
structure. To identify these dense clusters, we have applied
the MST-based hierarchical clustering algorithm onGðV ;EÞ.

Note that the level of functional equivalence between a
pair of genes ðg1; g2Þ is reflected not only by their own
measure fðg1; g2Þ but also through those genes g0k ðk ¼
1; 2; . . .Þ that are simultaneously equivalent to both g1 and

g2. Therefore, we have defined the distance function for the
MST-based clustering algorithm as dðg1; g2Þ ¼ ½f2ðg1; g2Þ þ
�
r

Pr
k¼1 fðg1; g

0
kÞfðg2; g

0
kÞ�
�1, where r is the maximum number

of genes allowed to be considered that are simultaneously
equivalent to both g1 and g2, the parameter � determines the
level of supporting evidence provided by such genes, and g0k
is the kth ranked gene in terms of the value fðg1; g

0
kÞfðg2; g

0
kÞ

among such genes. The two parameters r and � provide
flexibilities for a user to tailor the above distance function to
his/her specific problems. In our case, we used r ¼ 10 and
� ¼ 0:6.

When applied to GðV ;EÞ for clustering, CLUMP identi-
fied 51,205 gene clusters, which are organized into 5,339 mul-
tilevel and 15,770 single-level nonoverlapping trees, where
the multilevel trees totally contain 35,435 clusters covering
534,818 genes, and the single-level trees totally contain
15,770 clusters covering 75,067 genes. The statistical sig-
nificance of each identified cluster has been assessed through
the P value computed for the alternative hypothesis that
these genes do not form a cluster [29].

The clustering results have been validated through
comparisons with two existing classification systems:
Clusters of Orthologous Groups (COG) [25] and Pfam [8].
The comparisons have indicated, on one hand, that our
clustering results are generally consistent with these two
well-known classification systems, as reflected by the fact
that �85 percent of those nontrivial COG clusters and
�73 percent of those nontrivial Pfam clusters are essentially
included in our clustering results, and on the other hand, at
a different level of our cluster hierarchy, the functional
annotations of genes belonging to the same cluster are
consistent to different degrees, suggesting that our cluster-
ing results can be used for the functional annotation of
unknown genes at different specificity levels. More discus-
sions on this application can be found in [29].

The clustering results given by CLUMP are identical to
those given in [29], but the computing time by CLUMP
using 55 CPUs (partition in 10 subgraphs) is 42 times faster
(8 minutes) than in the original analysis with one CPU
(> 5 hours)

Application 2. We have also applied CLUMP for the
analyses of the Diversa Silage Soil metagenome (http://
img.jgi.doe.gov/cgi-bin/m/main.cgi?page=taxonDetail&
taxon_oid=2001200001). Our goal is to do a functional
classification of the genes encoded in this metagenome. This
metagenome is obtained directly from the farm silage surface
soil sample rather than from laboratory clonal cultures and is
predicted to contain 184,374 protein coding genes. For our
preliminary study, we have used the BLASTP e-value
between a pair of genes as an assessment of their distance
and have then applied CLUMP on the complete graph
consisting of 184,374 vertices for gene clustering. When
concentrating on constructing the MST, the time on 45 CPUs
(4 minutes) was 36 times faster than that on the single CPU
(144 minutes).

We have identified 1,100 statistically significant (with
P value < 0.001) nonoverlapping clusters (called CLUMP
clusters in the rest of the discussion), covering 49,505
(�27 percent) genes. When comparing these CLUMP
clusters with the COG [25] (3,827 clusters covering
85,013 genes) and Pfam [8] (1,087 clusters covering

OLMAN ET AL.: PARALLEL CLUSTERING ALGORITHM FOR LARGE DATA SETS WITH APPLICATIONS IN BIOINFORMATICS 349

Fig. 5. The zoom-in view of one of the subgraphs of GðV ;EÞ, where
each node represents a gene, each edge indicates that the BLASTP
e-value between the two connected genes is < 1.0, and the weight on
the edge is proportional to the similarity measure fð; Þ between the two
genes. Each ellipse compasses a subset of genes that are functionally
equivalent at a certain level.

76,020 genes) clustering results, we have found that 1)

307 out of all the 973 CLUMP clusters that have overlaps

with the COG clustering results each has a Jaccard

similarity coefficient with a COG cluster 	 2/3 and can

therefore be considered to correspond to a COG cluster

and 2) 219 out of all the 862 CLUMP clusters that have

overlaps with the Pfam clustering results each has a

Jaccard similarity coefficient with a Pfam cluster 	 2/3

and can therefore be considered to correspond to a Pfam

cluster. Our study on the Diversa Silage Soil metagenome

data has not been completed yet. Nevertheless, these

primary results have indicated that the MST-based

clustering approach, the basis of CLUMP, can essentially

capture the commonalities within a gene group and the

differences across different gene groups.
As for metagenomic analyses, the most frequently

asked questions often include what organisms are present
and what are the roles that they play in the local
ecosystem. Gene clustering can be used as one technique
to answer these questions. For example, out of the
CLUMP clusters that have overlaps with the COG and
Pfam clustering results, 34 of them correspond to
ribosomal proteins, and the number of genes in each such
cluster ranges from 8t to 21. When combined with the
clusters of other house-keeping genes, these ribosomal
protein gene clusters can be used to analyze the taxonomic
diversity of the Diversa Silage Soil metagenome. Also, by
studying the functional diversity of these identified gene
clusters, we may infer this metagenome’s metabolic
capabilities and their effects on the environment. There-
fore, for our ongoing project on the analyses of metage-
nomic data, we plan to use gene clustering as one of our
main techniques. We have done similar applications on
other biological data, including microarray gene expres-
sion data [18]. Overall, we found the performance of the
parallel clustering algorithm highly effective and practi-
cally useful.

6 CONCLUSION

The software CLUMP has proved to be a highly useful tool

for clustering large quantities of biological data. Though

the bottleneck in executing this program, i.e., the construc-

tion of MSTs, is a time-consuming step, our decomposition

strategy and associated parallel algorithm have made the

application of the algorithm practically useful. For a

typical data clustering problem with 1,000,000 data points

in 30 dimensions, CLUMP can finish the calculation in

40 minutes on 105 Intel x 86 processors. CLUMP is open

source, and we will continue developing the software by

adding new distance functions and other features.

APPENDIX A

Let G ¼ ðV ;EÞ be a weighted undirected graph with vertex

set V , jV j ¼ n 	 2, and edge setE withwðeÞ being the weight

of e 2 E, andMST ðGÞ be an MST of G,MST ðGÞ ¼
Si¼n�1
i¼1 ei,

consisting of edges e1; e2; . . . ; en�1 2 E. We will show that

MST construction can be parallelized as follows:

Lemma 1. Let Ui and Ui be subsets of vertices V ¼ Ui
S
Ui in

two subtrees formed by cutting an edge ei from MST; then,
minfwðv; uÞjv 2 Ui; u 2 Uig ¼ wðeiÞ.

Proof. The proof is straightforward by the definition of
MST. tu

Lemma 2. For any nonempty partition V ¼ U
S
U , there is an

edge e0 ¼ ðv0; u0Þ, v0 2 U , u0 2 U , e0 2MST ðGÞ, such that
minfwðv; uÞjv 2 U; u 2 Ug ¼ wðe0Þ.

Proof. Let us assume that it is not true, i.e., there are vertices
vc 2 U and uc 2 U such that wðvc; ucÞ < wðe0Þ, where
e0 ¼ argminfwðeÞje 2 MST ðGÞ and e connects vertices of
U and Ug. By adding edge ec ¼ fvc; ucg to MST ðGÞ, we
get a cycle that contains at least one edge e0 2MST ðGÞ
connecting U and U . Now, we have wðecÞ < wðe0Þ <¼
wðe0Þ. Replacing e0 by ec, we get a spanning tree with a
lower weight, and that contradicts to the fact that
MST ðGÞ is an MST. tu

Lemma 3. Let G0 ¼ ðV0; E0Þ be any (connected) subgraph of the
original graph G. For any edge e 2MST ðGÞ, if e 2 E0, then e
belongs to MST ðG0Þ.

Proof. By cutting edge e 2MST ðGÞ, we get two trees with
vertex sets Ue and Ue, V ¼ Ue

S
Ue, and a corresponding

nonempty partition of V0 ¼ Ve
S
Ve, where Ve ¼ Ue

T
V0,

and V e ¼ Ue

T
V0. The partition V0 is not empty because

the edge e connects vertices in V0. From Lemma 1,
wðeÞ¼minfwðv; uÞjv2Ue; u2Ueg, and because of Ve�Ue
and Ve � Ue, we get wðeÞ ¼ minfwðfv; ugÞjv 2 Ve; u 2 Veg
since the edge e satisfies the right-hand side condition of
the above equation. Applying Lemma 2 to the partition,
we get the required result that e 2MST ðG0Þ. Hence, the
lemma follows. tu

A.1 Method for MST Construction

Let us consider an s-way partition V ¼
Si¼s
i¼1 Vi and the

corresponding subgraphs Gi ¼ ðVi; EiÞ of G, where Ei is a
subset of E consisting of edges connecting vertices of Vi,
i ¼ 1; . . . ; s. We have the following result.

Theorem. Let Bij be a bipartite graph Bij ¼ ðVij; EijÞ, where
Vij ¼ Vi

S
Vj, and Eij is the set of edges connecting vertices

between Vi and Vj, 1 <¼ i < j <¼ s, and GM be the graph
formed by merging MSTs MST ðGiÞ and MST ðQijÞ, 1 � i,
j � s. Then, MST ðGÞ ¼MST ðGMÞ.

Proof. It is obvious that if a graph G0 is a subgraph of G
and contains all edges of MST ðGÞ, then MST ðG0Þ ¼
MST ðGÞ. From here, the proof is straightforward based
on Lemma 3. tu

A.2 Complexity of the Method

By using Fibonacci heap in the implementation of Prim’s
algorithm, the runtime RT for MST construction is OðjEj þ
jV j logðjV jÞÞ [22], or more specifically, c0jEj þ c1jV j logðjV jÞ,
where coefficients c0 and c1 depend on the edge density of a
graph and the time for edge weight calculation. In our case,
we have three types of graphs: a complete graph, a bipartite
graph, and a sparse graph (merger of MSTs).

The runtime ðRT Þ for the preprocessing step of our
parallel algorithm (see Section 2), using s � ðsþ 1Þ=2 proces-
sors, is maxfmax1<¼i<¼s RT ðGiÞ;max1<¼i<j<¼s RT ðBijÞg. Our

350 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 2, APRIL-JUNE 2009

goal is to get a partition of the set V into s subsets that would
minimize maxfmax1<¼i<¼s RT ðGiÞ;max1<¼i<j<¼s RT ðBijÞg.
We introduce new variables a1; a2; . . . ; as,

Ps
i¼1 ai¼1, ai> 0;

such that jVij �¼ aijV j, i.e., a1; a2; . . . ; as represent a partition
of vertices. Therefore, we have jEij �¼ jV j2a2

i =2 and
jEijj �¼ jV j2aiaj. By ignoring the much smaller second term
in RT , we obtain a minimization of F ða1; . . . ; asÞ ¼
maxfmax1<¼i<¼sða2

i =2Þ, max1<¼i<j<¼sðaiajÞg on the simplexPs
i¼1 ai ¼ 1.

Lemma 4. For s ¼ 2, minfF ða1; a2Þja1 þ a2 ¼ 1g ¼ 2=9 and is
achieved with a1 ¼ 1=3 and a2 ¼ 2=3, so a partition into two
subgraphs is RT optimal with �2 ¼ 2a1. For s > 2, the
optimal partition is achieved with ai ¼ 1=s, i ¼ 1; 2; . . . ; s,
and minfF ða1; . . . ; asÞj

Ps
i¼1 ai ¼ 1g ¼ jV j2=s2.

Proof. For s¼2, F ða1; a2Þ¼0:5
maxfa2; ð1�aÞ2; 2
a
ð1�aÞg,
and a simple analysis proves the correctness of
the statement. For s > 2, since F ða1; . . . ; asÞ >¼
F1ða1; . . . ; asÞ ¼ max1<¼i<j<¼sðai
 ajÞ, it is sufficient to
prove the lemma for F1ða1; . . . ; asÞ. Let us assume that
the statement is not a true, and without loss of
generality, we have a1¼a2¼

¼ak>akþ1>¼

>¼as,
1<¼k<s. If as ¼ as�1 ¼

 ¼ as�t ¼ 0, 0 <¼ t < s� k,
we consider a new solution a0i ¼ ai � ", i ¼ 1; . . . ; k, and
a0i ¼ ai þ �, i ¼ s� t; . . . ; s, where "
 s ¼ �
 t. By choos-
ing a sufficiently small ", we can reduce the value of
F 0ða1; . . . ; asÞ, and it proves that for the optimal
solution ai > 0, 1 <¼ i <¼ s. Let " and � be positive
values such that "
s¼ðs� kÞ
�. If a1
k>a2
ðs�kÞ, we
choose a0i¼aiþ", i¼1; . . . ; k, and a0i¼ai��, i¼2; . . . ; s;
otherwise, a0i ¼ ai � ", i ¼ 1; . . . ; k, and a0i ¼ ai þ �,
i ¼ 2; . . . ; s. For both cases, for a sufficiently small ",
we have F 0ða1; . . . ; asÞ > F 0ða01; . . . ; a0sÞ, which contra-
dicts the optimality of the solution. Hence, we have the
lemma. tu

The last step is to construct an MST with sjV j edges
(from preprocessing) and jV j vertices, which takes �1kjV j þ
�2jV j log jV j runtime. This concludes the computational
complexity analysis of the total time of the parallel
algorithm in Section 2.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (Grants NSF/DBI-0354771, NSF/ITR-IIS-
0407204, and NSF/DBI-0542119) and also by a “Distin-
guished Scholar” grant from the Georgia Cancer Coalition.

REFERENCES

[1] S.F. Altschul et al., “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, pp. 3389-3402, 1997.

[2] D.A. Bader and G. Cong, “A Fast, Parallel Spanning Tree
Algorithm for Symmetric Multiprocessors (SMPs),” J. Parallel and
Distributed Computing, vol. 65, no. 9, pp. 994-1006, 2005.

[3] J.L. Bentley, “Parallel Algorithm for Constructing Minimum
Spanning Trees,” J. Algorithms, vol. 1, pp. 51-59, 1980.

[4] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, 1981.

[5] C.M. Bishop, Neural Networks for Pattern Recognition. Oxford Univ.
Press, 1995.

[6] O. Borůvka, “O jistém problému minimálnim. Práce
Mor.P�rorodov�ed,” Spol. v Brn�e (Acta Societ. Natur. Moravicae),
vol. 3, pp. 37-58, 1926.

[7] C. Dass, An Introduction to Biological Mass Spectrometry. John Wiley
& Sons, 2002.

[8] R. Dementiev, P. Sanders, and D. Schultes, “Engineering an
Eternal Memory Minimum Spanning Tree Algorithm,” Proc.
Third IFIP Int’l Conf. Theoretical Computer Science (TCS ’04),
pp. 195-208, 2004.

[9] Z. Du and F. Lin, “A Novel Approach for Hierarchical
Clustering,” Parallel Computing, vol. 31, no. 5, pp. 523-527, 2005.

[10] A.J. Enright, S. Van Dongen1, and S.A. Ouzounis, “An Efficient
Algorithm for Large-Scale Detection of Protein Families,” Nucleic
Acids Research, vol. 30, no. 7, pp. 1575-1584, 2002.

[11] R.D. Finn et al., “PFAM: Clans, Web Tools and Services,” Nucleic
Acids Research, vol. 34, pp. 247-251, 2006.

[12] H.-R. Gregorius, “The Isolation Approach to Hierarchical
Clustering,” J. Classification, vol. 21, pp. 51-69, 2004.

[13] D.B. Johnson and P. Metaxas, “A Parallel Algorithm for
Computing Minimum Spanning Trees,” Proc. Fourth Ann.
ACM Symp. Parallel Algorithms and Architectures (SPAA ’92),
pp. 363-372, 1992.

[14] X. Li and Z. Fang, “Parallel Clustering Algorithms,” Parallel
Computing, vol. 11, pp. 275-290, 1989.

[15] Two-Hybrid Systems: Methods and Protocols (Methods in Molecular
Biology), P.N. Macdonald, ed., vol. 177. The Humana Press Inc.,
2001.

[16] F. Murtagh, “Clustering in Massive Data Sets,” Handbook of
Massive Data Sets, pp. 501-543, 2002.

[17] V. Olman, D. Xu, and Y. Xu, “CUBIC: Identification of
Regulatory Binding Sites through Data Clustering,” J. Bioinfor-
matics and Computational Biology, vol. 1, no. 1, pp. 21-40, 2003.

[18] V. Olman, C. Hicks, P. Wang, and X. Ying, “Gene Expression
Data Analysis in Subtypes of Ovarian Cancer Using Covar-
iance Analysis,” J. Bioinformatics and Computational Biology,
vol. 4, no. 5, pp. 999-1013, 2006.

[19] C.F. Olson, “Parallel Algorithms for Hierarchical Clustering,”
Parallel Computing, vol. V21, pp. 1313-1325, 1995.

[20] E.M. Rasmussen and P. Willet, “Efficiency of Hierarchical
Agglomerative Clustering Using ICL Distributed Array Proces-
sors,” J. Documentation, vol. 45, no. 1, pp. 1-24, 1989.

[21] H.C. Romesburg, Cluster Analysis for Researchers, 2004.
[22] Handbook of Discrete and Combinatorial Mathematics, K.H. Rosen, ed.

CRC Press, 1999.
[23] R. Sibson, “SLINK: An Optimally Efficient Algorithm for the

Single Link Cluster Methods,” Computer J., vol. 16, pp. 30-34,
1973.

[24] R.L. Tatusov, E.V. Koonin, and D.J. Lipman, “A Genomic
Perspective on Protein Families,” Science, vol. 278, pp. 631-637,
1997.

[25] R.L. Tatusov, D.A. Natale, I.V. Garkavtsev, T.A. Tatusova,
U.T. Shankavaram, B.S. Rao, B. Kiryutin, M.Y. Galperin,
N.D. Fedorova, and E.V. Koonin, “The COG Database:
New Developments in Phylogenetic Classification of Proteins
from Complete Genomes,” Nucleic Acids Research, vol. 29,
pp. 22-28, 2001.

[26] S.S. Wilks, Mathematical Statistics. John Wiley & Sons, 1962.
[27] H. Wu, F. Mao, V. Olman, and Y. Xu, “Accurate Prediction of

Orthologous Gene Groups in Microbes,” Proc. IEEE Computa-
tional Systems Bioinformatics Conf. (CSB ’05), pp. 73-79, 2005.

[28] H. Wu, Z. Su, F. Mao, V. Olman, and Y. Xu, “Prediction of
Functional Modules through Comparative Genome Analysis and
Application of Gene Ontology,” Nucleic Acids Research, vol. 33,
pp. 2822-2837, 2005.

[29] H. Wu, F. Mao, V. Olman, and X. Ying, “Hierarchical Classifica-
tion of Functionally Equivalent Genes of Prokaryotes,” Nuclear
Acids Research, vol. 35, pp. 2125-2140, 2007.

[30] Y. Xu, V. Olman, and D. Xu, “Clustering Gene Expression Data
Using a Graph-Theoretic Approach: An Application of Mini-
mum Spanning Tree,” Bioinformatics, vol. 18, no. 4, pp. 526-535,
2001.

OLMAN ET AL.: PARALLEL CLUSTERING ALGORITHM FOR LARGE DATA SETS WITH APPLICATIONS IN BIOINFORMATICS 351

Victor Olman received the PhD degree in
theory of probability and mathematical statistics
in 1976 from the Saint Petersburg University,
Russia. He is a senior research scientist in the
Department of Biochemistry and Molecular
Biology, University of Georgia. His current
research interests include the development and
application of methods in cluster analysis,
pattern recognition, and statistics for analysis
of microbial genome structures, pathway infer-

ence, binding sites prediction, as well as for cancer bioinformatics. He
has published more than 60 publications in mathematical and biology
related scientific journals.

Fenglou Mao received the PhD degree in
physical chemistry from Peking University,
China, in 2001. Currently, he is an assistant
research scientist at the University of Georgia.
His main research interests include computa-
tional systems biology and computational
structure biology.

Hongwei Wu received BEng degree in auto-
matic control and the MEng degree in pattern
recognition and intelligent systems from the
Tsinghua University, China, in 1997 and 1999,
respectively, and the PhD and MS degrees in
electrical engineering from the University of
Southern California in 2004 and 2002, respec-
tively. She is a postdoctoral research associate
with the Computational Systems Biology La-
boratory, Department of Biochemistry and Mo-

lecular Biology and the Institute of Bioinformatics, University of
Georgia. Her current research interests include computational biology/
bioinformatics with focus on comparative genomic analyses and
computational reconstruction of biological networks and computational
intelligence theories and applications in computational biology/bioinfor-
matics, signal processing, and pattern recognition. She is a member of
the IEEE and the IEEE Computational Intelligence Society.

Ying Xu received the PhD degree in theoretical
computer science from the University of Colorado
at Boulder in 1991. He is a chair professor of
biochemistry and molecular biology in the Com-
putational Systems Biology Laboratory, Depart-
ment of Biochemistry and Molecular Biology, and
the director of the Institute of Bioinformatics,
University of Georgia. His current research
interests include the study of microbial genome
structures and pathway inference, cancer bioin-

formatics, and development of computational tools in support of the
aforementioned areas. He has more than 100 publications and has given
more than 100 invited and contributed talks about his research work.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

352 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 2, APRIL-JUNE 2009

