Introduction to Database Systems (Einführung in Datenbanksysteme)

40 hours course, 30 hours practice, 7 credits

Prof. Dr. H. Schweppe FU Berlin, SS 2010 hs@inf.fu-berlin.de

1 Introduction

- 1.1 Databases vs. files
- **1.2 Basic concepts and terminology**
- **1.3** Brief history of databases
- 1.4 Architectures & systems
- 1.5 Technical Challenges
- 1.6 DB lifecycle

2.2

2 Conceptual Database Design

2.1 Requirement analysis

Modeling languages
Overview
Requirement Analysis (simple case study)
Basic Modeling Primitives
Modeling Languages: UML and Entity-Relationship Model (ERM)
Conceptual DB design: basics
From Requirements to Models

2.3 Integrity Constraints

Constraint types Cardinality constraints Weak entities

2.4 Modeling patterns Modeling historical data

N-ary relationships Generalization / specialization, recursive relations, aggregation

3 Relational Model: Logical Design using the Relational Data Model / Schema Definition

3.1 Logical Schema Design

The Relational Data Model – Basics Keys, candidate keys and more

3.2 From Conceptual to Logical Schema: Mapping ER to RDM Relationships to relations: a simple step Mapping weak entities and multivalued attributes Consolidation

3.2 SQL/DDL – first steps

Basis Schema Definition using SQL / DDL SQL Data types, domains, user defined types Creating simple tables

3.4 SQL/DDL – Constraints

Attribute and simple table constraints Enforcing cardinality constraints and foreign keys Deferred constraints Assertions and triggers Metadata management Modifying and deleting definitions and more...

4 Normalization: - Quality of relational designs

4.1 Functional Dependencies

Design quality Update anomalies Functional Dependencies: definition Properties of Functional Dependencies

4.2 Normal forms

Informal introduction Normal Forms and FDs Normal forms (2NF, 3NF, BCNF,) Lossless join and dependency preservation

4.4 Normal Forms: Critical review

5 Algebraic operations on tabular data

- 5.1 Basic idea of relational languages
- 5.2 Relational Algebra operations
- 3.3 Relational Algebra: Syntax and Semantics
- 5.4. More Operators
- 5.5 Special Topics of RA Relational algebra operators in SQL, relational completeness
- Ch. 6 Predicate logic based query languages (skipped, part of slide set, not relevant for exams)

7 SQL – Data Handling

7.1 Update, Deletion, Insertion and bulk load*

7.2 The query language SQL

Search predicates Arithmetic expressions and functions in predicates Different kinds of join Output improvement

7.3 Advanced SQL

Subselects and Correlated subqueries Quantified expressions, SOME, ANY Grouping and Aggregation Views

8 Views, PL/SQL / Triggers, Functions

- 8.1 Views and view updates
- 8.2 PL/SQL, stored procedures
- 8.3 User defined Functions
- 8.5 Triggers

9 Embedding SQL in Programming languages

- 9.1 Introduction: using SQL from programs
- 9.2 Embedded SQL
 - Static and dynamic embedding Cursors ESQL / C
- 9.3 Application programs and transaction
- 9.4 SQL and Java JDBC, SQLJ
- 9.5 OR mapping and components

10 Physical schema design

10.1 Introduction

10.2 Technology Disk technology RAID

10.3 Index structures in DBS

Indexing concept Primary and Secondary indexes Types of indexes and index definition in SQL Implementing indexes: search trees - ISAM - B+-tree Height of B+-trees Criteria for indexing

11 Transactions: models

11.1 Transactions in application programs

Definition Isolation levels

11.2 Concepts: ACID properties

11.3 Modeling transactions: histories and schedules Correctness criteria Serial execution History 11.4 Serial institute

11.4Serializability
Conflict graph
Serializability theorem

12 Concurrency control

16.1 Serializability and Concurrency Control

16.2 Locking

Lock protocols Two phase locking Strict transactional protocols Lock conflicts and deadlocks Lock modes Deadlock detection, resolution Model for conflict / deadlock frequency

16.3 Nonlocking concurrency control

Optimistic CC

16.4 Multiversion CC

Read-only transactions (MVCC) Snapshot isolation: lock based / first committer wins 2 Version 2PLMVCC

13 Principles of recovery

- 13.1 Failsafe system
- 13.2 Undo / redo recovery
- 13.3 Commit rule / WAL principle
- 13.4 Logging

14 Data Warehouses in a nutshell

- 14.1 Introduction OLTP vs. OLAP
- 14.2 DWH methodology
- 14.3 Stars and Stripes
- 14.4 OLAP operators: Roll up and Drill down, SQL operators ROLLUP, CUBE
- 14.5 ROLAP and MOLAP ... and more

15 Data mining – an overview

15.1 Motivation and goals

15.2 Association rules: how to find them – support, confidence Frequent item sets and A priori algorithm

16 A short introduction to managing unstructured data: Information Retrieval (not in course)

- 16.1 The general model
- 16.2 Similarity
- 16.3 Boolean Model
- **16.4 Vector space Model** Zipf empiricism tf / idf ,Cosinus measure
- **16.5** Implementation issues
- 16.6 Evaluation of Retrieval effectiveness
- 16.7 Page Rank basics
- 17 What next?
- **17.1** Trends in Data management
- 17.3 What next in research?
- 17.4 What next in teaching?

For slides (pdf), book recommendations etc see http://w3.inf.fu-berlin.de/lehre/SS10/DBS-Intro/