
16 communications of the acm | May 2010 | vol. 53 | no. 5

news

P
h

o
t

o
g

r
a

p
h

 b
y

 c
h

a
d

 n
a

c
k

e
r

s

F
orty years ago this June, an ar-
ticle appeared in these pages
that would shape the long-
term direction of information
technology like few other ideas

in computer science. The opening sen-
tence of the article, “A Relational Model
of Data for Large Shared Data Banks,”
summed it up in a way as simple and el-
egant as the model itself: “Future users
of large data banks must be protected
from having to know how the data is or-
ganized in the machine,” wrote Edgar F.
Codd, a researcher at IBM.

And protect them it did. Program-
mers and users at the time dealt
mostly with crude homegrown data-
base systems or commercial products
like IBM’s Information Management
System (IMS), which was based on a
low-level, hierarchical data model.
“These databases were very rigid, and
they were hard to understand,” recalls
Ronald Fagin, a Codd protégé and now
a computer scientist at IBM Almaden
Research Center. The hierarchical
“trees” in IMS were brittle. Adding a
single data element, a common occur-
rence, or even tuning changes, could
involve major reprogramming. In ad-
dition, the programming language
used with IMS was a low-level language
akin to an assembler.

But Codd’s relational model stored
data by rows and columns in simple
tables, which were accessed via a high-
level data manipulation language
(DML). The model raised the level of
abstraction so that users specified what
they wanted, but not how to get it. And
when their needs changed, reprogram-
ming was usually unnecessary. It was
similar to the transition 10 years earlier
from assembler languages to Fortran
and COBOL, which also raised the level
of abstraction so that programmers no
longer had to know and keep track of
details like memory addresses.

“People were stunned to learn that
complex, page-long [IMS] queries could
be done in a few lines of a relational
language,” says Raghu Ramakrishnan,
chief scientist for audience and cloud
computing at Yahoo!

Codd’s model came to dominate a
multibillion-dollar database market,
but it was hardly an overnight suc-
cess. The model was just too simple
to work, some said. And even if it did
work, it would never run as efficiently
as a finely tuned IMS program, others
said. And although Codd’s relational
concepts were simple and elegant, his
mathematically rigorous languages,
relational calculus and relational alge-
bra, could be intimidating.

In 1969, an ad hoc consortium called
CODASYL proposed a hierarchical da-
tabase model built on the concepts be-
hind IMS. CODASYL claimed that its ap-
proach was more flexible than IMS, but
it still required programmers to keep
track of far more details than the rela-
tional model did. It became the basis
for a number of commercial products,
including the Integrated Database Man-

agement System (IDMS) from the com-
pany that would become Cullinet.

Contentious debates raged over the
models in the CS community through
much of the 1970s, with relational en-
thusiasts arrayed against CODASYL ad-
vocates while IMS users coasted along
on waves of legacy software.

As brilliant and elegant as the re-
lational model was, it might have re-
mained confined to computer science
curricula if it wasn’t for three projects
aimed at real-world implementation of
the relational database management
system (RDBMS). In the mid-1970s,
IBM’s System R project and the Univer-
sity of California at Berkeley’s Ingres
project set out to translate the rela-
tional concepts into workable, main-
tainable, and efficient computer code.
Support for multiple users, locking,
logging, error-recovery, and more were
developed.

System R went after the lucrative
mainframe market with what would be-
come DB2. In particular, System R pro-
duced the Structured Query Language
(SQL), which became the de facto stan-
dard language for relational databases.
Meanwhile Ingres was aimed at UNIX
machines and Digital Equipment Corp.
(DEC) minicomputers.

Then, in 1979, another watershed pa-
per appeared. “Access Path Selection in
a Relational Database Management Sys-
tem,” by IBM System R researcher Patri-
cia Selinger and coauthors, described
an algorithm by which a relational
system, presented with a user query,
could pick the best path to a solution
from multiple alternatives. It did that
by considering the total cost of the vari-
ous approaches in terms of CPU time,
required disk space, and more.

“Selinger’s paper was really the piece
of work that made relational database
systems possible,” says David DeWitt,
director of Microsoft’s Jim Gray Systems

Technology | doi:10.1145/1735223.1735231	 Gary Anthes

Happy Birthday,
RDBMS!
The relational model of data management, which dates to 1970, still
dominates today and influences new paradigms as the field evolves.

news

may 2010 | vol. 53 | no. 5 | communications of the acm 17

1980s in the form of object-oriented da-
tabases (OODBs), but they never caught
on. There weren’t that many applica-
tions for which an OODB was the best
choice, and it turned out to be easier
to add the key features of OODBs to
the relational model than to start from
scratch with a new paradigm.

More recently, some have suggested
that the MapReduce software frame-
work, patented by Google this year, will
supplant the relational model for very
large distributed data sets. [See “More
Debate, Please!” by Moshe Y. Vardi on p.
5 of the January 2010 issue of Communi-
cations.] Clearly, each approach has its
advantages, and the jury is still out.

As RDBMSs continues to evolve,
scientists are exploring new roads of
inquiry. Fagin’s key research right now
is the integration of heterogeneous
data. “A special case that is still really
hard is schema mapping—converting
data from one format to another,” he
says. “It sounds straightforward, but
it’s very subtle.” DeWitt is interested
in how researchers will approach the
“unsolved problem” of querying geo-
graphically distributed databases,
especially when the databases are cre-
ated by different organizations and
are almost but not quite alike. And
Ramakrishnan of Yahoo! is investigat-
ing how to maintain databases in the

cloud, where service vendors could
host the databases of many clients.
“So ‘scale’ now becomes not just data
volume, it’s the number of clients, the
variety of applications, the number of
locations and so on,” he says. “Man-
ageability is one of the key challenges
in this space.” 	

Further Reading

Codd, E.F.
A relational model of data for large shared
data banks. Comm. of the ACM 13, 6, June 1970.

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D.,
Lorie, R.A., Price, T.G.
Access path selection in a relational
database management system. Proceedings
of the 1979 ACM SIGMOD International
Conference on Management of Data, 1979.

Ullman, J.D.
Principles of Database and Knowledge-Base
Systems: Volume II: The New Technologies,
W.H. Freeman & Co., New York, NY, 1990.

Hellerstein, J. M. and Stonebraker, M.
Readings in Database Systems (4th ed.), MIT
Press, Cambridge, MA, 2005.

Agrawal, R., et al
The Claremont Report on Database
Research, University of California at
Berkeley, Sept. 2008. http://db.cs.berkeley.
edu/claremont/claremontreport08.pdf

Gary Anthes is a technology writer and editor based in
Arlington, VA.

© 2010 ACM 0001-0782/10/0500 $10.00

Laboratory at the University of Wiscon-
sin-Madison. “It was a complete home
run.” The paper led to her election to
the National Academy of Engineering in
1999, won her a slew of awards (includ-
ing the SIGMOD Edgar F. Codd Innova-
tions Award in 2002), and remains the
seminal work on query optimization in
relational systems.

Propelled by Selinger’s new ideas,
System R, Ingres, and their commercial
progeny proved that relational systems
could provide excellent performance.
IBM’s DB2 edged out IMS and IDMS on
mainframes, while Ingres and its deriv-
atives had the rapidly growing DEC Vax
market to themselves. Soon, the data-
base wars were largely over.

Faster Queries
During the 1980s, DeWitt found anoth-
er way to speed up queries against rela-
tional databases. His Gamma Database
Machine Project showed it was possible
to achieve nearly linear speed-ups by
using the multiple CPUs and disks in a
cluster of commodity minicomputers.
His pioneering ideas about data par-
titioning and parallel query execution
found their way into nearly all commer-
cial parallel database systems.

“If the database community had not
switched from CODASYL to relational,
the whole parallel database industry
would not have been possible,” DeWitt
says. The declarative, not imperative,
programming model of SQL greatly fa-
cilitated his work, he says.

The simplicity of the relational
model held obvious advantages for us-
ers, but it had a more subtle benefit as
well, IBM’s Fagin says. “For theorists
like me, it was much easier to develop
theory for it. And we could find ways to
make the model perform better, and
ways to build functions into the model.
The relational model made collabora-
tion between theorists and practitio-
ners much easier.”

Indeed, theorists and practitioners
worked together to a remarkable de-
gree, and operational techniques and
applications flowed from their work.
Their collaboration resulted in, for ex-
ample, the concept of locking, by which
simultaneous users were prevented
from updating a record simultaneously.

The hegemony of the relational
model has not gone without challenge.
For example, a rival appeared in the late

An adjunct professor at Massachusetts Institute of Technology, Michael Stonebraker
is renowned as a database architect and a pioneer in several database technologies,
such as Ingres, PostgreSQL, and Mariposa (which he has commercial interests in). As
for the database industry’s future direction, Stonebraker says one-third of the market
will consist of relational database management systems used in large data warehouses,
such as corporate repositories of sales information. But the mainstream products in
use today, which store table data row by row, will face competition from new, better-
performing software that stores it column by column. “You can go wildly faster by
rotating your thinking 90 degrees,” he says.

Another third of the market he believes will be in online transaction processing,
where databases tend to be smaller and transactions simpler. That means databases
can be kept in memory and locking can be avoided by processing transactions one at a
time. These “lightweight, main memory” systems, Stonebraker says, can run 50 times
faster than most online transaction processing systems in use today.

In the final third of the market, there are “a bunch of ideas,” depending on the type
of application, he says. One is streaming, where large streams of data flow through
queries without going to disk. Another type of nonrelational technology will store
semistructured data, such as XML and RDF. And a third approach, based on arrays
rather than tables, will be best for doing data clustering and complex analyses of very
large data sets.

Finally, “if you don’t care about performance,” says Stonebraker, “there are a bunch
of mature, open-source, one-size-fits-all DBMSs.”

Looking Ahead With
Michael Stonebraker

