
1

13 13 Logging and Recovery in DBSLogging and Recovery in DBS
(in a nutshell)(in a nutshell)

13.1 Introduction: Fail safe systems
13.2 DBS Logging and Recovery principles
13.3 Recovery methods

Lit.: Eickler/ Kemper chap 10, Elmasri /Navathe chap. 17, Garcia-Molina, Ullman, Widom: chap. 21
15-Recovery-2© HS-2010

13.1 Introduction: 13.1 Introduction: FailFail safesafe systemssystems
How to make a DBS fail safe ?
What is "a fail safe system"?

system fault results in a safe state
liveness is compromised

fault

fault

safe state

operation
correct

• There is no fail safe system...
... in this very general sense
• Which types of failures will not end up in catastrophe?

15-Recovery-3© HS-2010

IntroductionIntroduction

Failure Model

• What kinds of faults occur?

• Which fault are (not) to be handled by the system?

• Frequency of failure types (e.g. Mean time to failure MTTF)

• Assumptions about what is NOT affected by a failure

• Mean time to repair (MTTR)

15-Recovery-4© HS-2010

DBS related failures DBS related failures
Transaction abort

• Rollback by application program
• Abort by TA manager (e.g. deadlock, unauthorized

access, ...)
• frequently: e.g. 1 / minute
• recovery time: < 1 second

• System failure
malfunction of system
• infrequent: 1 / weak (depends on system)

• power fail
• infrequent: 1 / 10 years

(depends on country, backup power supply, UPS)

15-Recovery-5© HS-2010

DBS failure assumptionsDBS failure assumptions

Assumptions:

content of main storage lost or unreliable

no loss of permanent storage (disk)

disk write of a DBS page atomic (??)
better use a UPS
(= uninterruptable power supply)

15-Recovery-6© HS-2010

DBS related failure modelDBS related failure model

More failure types (not discussed in detail)

Media failure (e.g. disk crash)
Archive

Catastrophic ("9-11"-) failure
loss of system

Geographically remote standby system

Disks : ~ 500000 h (1996), see diss. on raids http://www.cs.hut.fi/~hhk/phd/phd.html

2

15-Recovery-7© HS-2010

Fault toleranceFault tolerance

Fault tolerant (resilient) system:
fail safe system, survives faults of the failure model

How to achieve a fault tolerant system?
Redundancy

• Which data should be stored redundantly ?
• When / how to save / synchronize them

Recovery methods
• Utilize redundancy to reconstruct a consistent

state
"warm start"

Important principle:
Make frequent operations fast

15-Recovery-8© HS-2010

TerminologyTerminology

Log
redundantly stored data
Short term redundancy
Data, operations or both

Archive storage
Long term storage of data
Sometimes forced by legal regulations

Recovery
Algorithms for restoring a consistent DB state

after system failure using log or archival data

15-Recovery-9© HS-2010

DBS Logging and Recovery PrinciplesDBS Logging and Recovery Principles

Transaction failures
Occur most frequently
Very fast recovery required
Transactional properties must be guaranteed

Assumption of failure model:
data safe when written into database

15-Recovery-10© HS-2010

Recovery PrinciplesRecovery Principles

When should data be written into DB / when logged?
How should data be logged?

EOTBOT Data written into DB

Log

15-Recovery-11© HS-2010

DBS ArchitectureDBS Architecture

When are data safe?

Buffer

Private data area

TA programs

Common cache

unsafe:
main memory
buffer,
controlled by DBS

safe: data stored on
disk,
controlled by DBS.
true only in
the "DB failure model"

Under control of
OS or middleware

15-Recovery-12© HS-2010

When are data written? When are data written?

TA: Select ... FROM....;
...
UPDATE R SET ...;
...
UPDATE S SET ...
COMMIT;

a) Update in place – no copies, no versions

1. All writes at Commit
2. All writes instantaneously
3. Write at any time

b) Update = insert of new version makes recovery easier!

3

15-Recovery-13© HS-2010

The The UNDO / REDO UNDO / REDO PrinciplePrinciple

DB state old

DB state new Log record

DO

Do: normal processing
In general:
log as much about operations, that
all effects can be undone (if TA aborts)
or all effects can be redone (TA committed, but not

all effects in stable DB)

...
update acc set balance = 0
where acc# = 4123;
...

(4123, Meier,0) (4123.3[-300,0])

fictitious log entry

(4123,Meier, -300) account record

15-Recovery-14© HS-2010

DoDo--RedoRedo--UndoUndo

REDO

DB state new

Log record

REDO

DB state old

Use Redo
data from
Log file

"Roll forward"

If not sure that all committed TA have written their effects
to stable storage*: redo operations after crash.

* how do we know, which effects are in DB ? not so easy!

15-Recovery-15© HS-2010

DoDo--RedoRedo--UndoUndo

UNDO

DB state new Log record

UNDO

DB state old

Compensation log

Use Undo
data from
Log file "Roll backward"

• Uncommitted TA have written into DB ⇒ partial effects
• Since at recovery time TA is not committed, remove
all its effects in DB – all or nothing semantics

15-Recovery-16© HS-2010

Why at all REDO ?

Write effects into database not later than at commit,
no redo

In general too slow to force data to disk at commit time

BOT EOT

All TA changes have been
written to disk at this point

Redo / UndoRedo / Undo

15-Recovery-17© HS-2010

Redo / UndoRedo / Undo

Why at all UNDO ?

do not write dirty data into DB before commit:
no undo

Logging and Recovery dependent on other
system components
Buffer management
Locking (granularity)
Implementation of writes into DB (update in place?)

BOT EOT

TA changes must not be
written to disk before this point

15-Recovery-18© HS-2010

Buffer managementBuffer management

Influence on logging and recovery
When are dirty data written back?
Update-in-place or update elsewhere?

Interference with transaction management
When are committed data in the DB, when still in buffer?
May uncommitted data be written into the DB?

4

15-Recovery-19© HS-2010

Logging and Recovery: BufferingLogging and Recovery: Buffering

Force: Flush buffer before EOT (commit processing)
NoForce: Buffer manager decides on writes, not TA-

mgr
NoSteal : Do not write dirty pages before EOT
Steal: Write dirty pages at any time

No Undo but
Redo recovery

Undo recovery and
Redo recovery

No recovery (!)
impossible with
update-in-place /
immediate

Undo recovery
no Redo

NoStealSteal

Force

NoForce

15-Recovery-20© HS-2010

Recovery in real life DBSRecovery in real life DBS

Favorite solution in DBS:

Steal = write to disk at any time before commit
Noforce = do not force writes at commit

Slow disk writing decoupled from rest of the system.

DBS has an asynchronous disk writer process:
diskwriter(){

loop
for all dirty pages p in buffer
writeBack(p); // according to some

//priority scheme
forever;

}

15-Recovery-21© HS-2010

RoadmapRoadmap

Log
– When to write a log record in order to guarantee

transaction semantics?
– What is in a log record?

Recovery procedure
– Redo algorithm
– Undo algorithm

15-Recovery-22© HS-2010

Write ahead logWrite ahead log

Rules for writing log records
Write-ahead-log principle (WAL)

before writing dirty data into the DB write the
corresponding (before image) log entries
WAL guarantees undo recovery in case of steal buffer
management

Commit-rule ("Force-Log-at-Commit")
Write log entries for all data changed by a transaction

into stable storage before transaction commits
This guarantees sufficient redo information

15-Recovery-23© HS-2010

Log entriesLog entries

Physio-logical logging

– Good to know physical address of data
responsible for state change
e.g page no 03aF45B

– Bad: if before / after image of page used as log entry:
⇒ no concurrency on page!

Solution: Physical page numbers, "logical" inside page

e.g. [03aF45B, [rec 5, field 3: -300,300]]

15-Recovery-24© HS-2010

LogicalLogical / / PhysiologicalPhysiological loglog
insert into A (r)

...

A

insert A, r

...
B

C

A

insert A, page 473,r

insert B, page 34,s

insert C, page 77,t

Logical Log Physio-logical Log

B

C

Indexes

5

15-Recovery-25© HS-2010

LoggingLogging

More log entry types:

• Begin of a TA
• End of TA ("committed"), remember commit rule!
• System status (checkpoint CP)

and more depending on recovery algorithms.

15-Recovery-26© HS-2010

Logging and RecoveryLogging and Recovery

A global crash recovery scheme

t
checkpoint

1. Normal processing: periodically write "system state log entry"
(checkpoint)

Most simple strategy would be :

• Write cp if all transaction committed and all effects
written into DB.

Not realistic, why? We assume it to keep things simple...

15-Recovery-27© HS-2010

Crash RecoveryCrash Recovery

checkpoint There may be committed and uncommitted
TA between last CP and crash

Recovery:
1. Find latest checkpoint
2. Scan log from Checkpoint:

find:
winners: TA which started after CP

and committed before crash
loosers: TA which started after CP

and did not commit

15-Recovery-28© HS-2010

Crash Recovery (2)Crash Recovery (2)

Recovery:
3. Redo winners and loosers from CP

up to last valid log entry, write all updates to disk.

4. Undo actions (updates) of loosers on disk.

Selective redo for winners only possible,
but more complex.

15-Recovery-29© HS-2010

RecoveryRecovery

Transaction abort (TAA)

• Basically the same as undo loosers after crash

• Important problem for TAA and crash recovery:
how to decide if an update is already in DB or
is still in buffer?

• Why does WAL principle is the key point for solution?

15-Recovery-30© HS-2010

Recovery Recovery

(1) Each log record has a unique, monotonic increasing
Log Sequence Number (LSN).

(2) Each page p contains LSN of last update in p.

(3) compare LSN of page on disk with page in buffer.

log: p#=7, LSN =211 page p#7:

LSN =213

page-LSN ≥ log-LSN ⇒ Update with LSN 211 has been
performed in page

Crash recovery: may be on disk or not

6

15-Recovery-31© HS-2010

TA abortTA abort

211

Log records of TA

buffer
pages LSN=

211
212

213

LSN=
115

LSN=
215LSN=

118

System is alive. Each
logged operation
of this transaction
has to be undone

• TA abort simpler: page updated by TA is either in
buffer or effect has already written back

• Do update either in buffer or read page and rollback
operation recorded in log record.

Assumption in example:
page which corresponds
to log entry 212 already
written back to disk

15-Recovery-32© HS-2010

Recovery Recovery

Logging and Recovery:
many subtle problem we did not discuss

– idempotent: crash during recovery must be survived.
– Writing log records must be very efficient.

⇒ tune writes

– Checkpoints: calming down the system (wait
until all active TA committed, do not accept new ones)
much to restriktive.
⇒ how to find the low water mark, the log entry where to

start recovery.

... and many more.

15-Recovery-33© HS-2010

SummarySummary

Fault tolerance:
– failure model is essential
– make the frequent case fast

Logging and recovery in DBS
– essential for implementation of TA atomicity
– simple principles
– interference with buffer management makes solutions

complex
– naive implementations: too slow

