
10 10 PhysicalPhysical schemaschema design design 
10.1 Introduction

Motivation
Disk technology
RAID 

10.2 Index structures in DBS
Indexing concept
Primary and Secondary indexes

10.3. ISAM and B+-Trees
10.4. SQL and indexes

Criteria for indexing
Height of B+-Tree

Lit.: Kemper/Eickler: chap 7, O'Neill: chap. 8, Garcia-Molina et al: chap. 13
Kifer et al.: Chap 9. 



10-Phys-2© HS-2010

10.1 10.1 PhysicalPhysical Design: Design: IntroductionIntroduction

Physical schema design goal: PERFORMANCE
Quality measures

Throughput: how many transactions / sec?
Response-time: time needed for answering an 

individual query   
Important factors for defining a "good" physical schema

Application 
• size of database
• typical operations 
• frequency of operations
• isolation level

System  
• storage layout of data 

• access path, index structures  ⇐
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Disk TechnologyDisk Technology

Mechanics

Platter = 2 surfaces

Disk heads Cylinder

track
gap

Block(sector)
512 B - 32 KB
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Physical Design: I/O costPhysical Design: I/O cost

Disks are slow!
Data transfer time disk - main memory 

Blocks
Bytes transferred at constant speed
Transfer rate (tr): * 300MB/s  (2010, SATA techn.)

• Seek time:
• Time for  positioning the arm over a cylinder/track
• Move disk heads to a particular cylinder/track:

Start (constant), Move (variable), Stop (constant)
• 0 if arm in position, otherwise long (between  8 to 10 ms)
• Track-to-track seek time: 0.5ms –2ms
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Physical Design: I/O costPhysical Design: I/O cost

Rotate time (disk latency):
Time until sector to be read positioned under the head
Access to all data within a cylinder within rotate time 
12 to  6 ms per rotation  / 5000 – 12000  rotations per min
Average:  4,17 rotational latency. (Seagate Baracuda 1TB)

store related information in spatial proximity

Seek time + Rotational time + T/tr

Time to read T bytes with transfer rate tr: 
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Physical Design: I/O costPhysical Design: I/O cost

Typical mean access time:

Seek time dominates !

Disk access time =     SeekTime 6 ms
+ RotateTime 3 ms
+ TransferTime 1 ms

• Random Disk / RAM:
~10 * 10-3 / 200 * 10-9 = 5*104

• Sequential disk read ("scan") may be much faster
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Disk Disk parametersparameters

year
Capacity

GB
rate 

MB/sec
a. time 
(msec)

Block 
size KB

Scan
Sequential

Scan
Random

1988 0,25 1 20 0.5 4 minutes 16 min
1998 18 10 12 2 30 minutes 3 hrs
2005 250 50 10 2 - 4 1.5 hrs 1.3 days

• Drive capacity increases much faster than
transfer rate and access time 

adapted from Jim Gray / D. Bitton 1998

Disk arm is the limiting resource. 

Drive capacity and data rate



10-Phys-9© HS-2010

Basic Basic factsfacts summarizedsummarized

RAM / disk gap will remain
High increase in storage density

Disk space is free (more or less) 
Access time and data rate (seek, rotation) improve much

slower
reading / writing large quantities of data
becomes a crucial problem

Large capacity disks have one actuator
throughput bottleneck
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RAID RAID storagestorage
RAID Technology  (Redundant Array of Inexpensive Disks)

Goals
• Performance enhancement by reducing transfer time and 

queue length

• Fault tolerance by "Parity disks"
Large disk ⇒
Long queue, 
Long transfer1 2 3 4 5

6 7 8 …

Block striping, 
no fault tolerance

(cited from http://www.raid.com)

Principle technique: 
striping

Raid 0
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Physical Design: RAIDPhysical Design: RAID

RAID 4 : reconstruct data by parity disk 

Independent Data disks with block striping and shared 
Parity disk

AP [1] = A[0] ⊗ B[1] ⊗ C[2] ⊗ D[3]       
D[i]     = A[0] ⊗ B[1] ⊗ C[2] ⊗ AP [1] etc

0         1           2              3                         AP
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RIADRIAD

RAID 5 : avoid parity disk bottleneck

Independent Data disks with distributed parity blocks

~ state of the art, many minor modifications
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TechnologicalTechnological Impact Impact 

RAID controller provides OS / DBS with standard disk 
interface

Considerable performance gains for read operations
Writes need recomputation of parity

Main reason for parity disk bottleneck in RAID-4 
architecture 

Further info: http://www.raid.com

Solid state disks?
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10.2 10.2 IndexingIndexing in DBSin DBS

An index is a data structure which allows to locate
an objects faster than by sequential scan.

• Well known:  binary search tree , hash maps.
Data: (key, value)-pairs. 

•Traversing a search tree is efficient, if node 
are in memory
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PrimaryPrimary and and SecondarySecondary indexesindexes
Primary (unique) index

A mapping from key values to records (tuples)
Typically used for indexing PRIMARY KEY or one  

UNIQUE column 
Typically  assigns a physical location to each record.

47

107

212

531

...
More than one
record (key)on a  
disk page, one entry for
each key ("dense index") 
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SecondarySecondary indexindex
Secondary index on attribute a of table T:  
Assigns to each value v of a the set of rows t with t.a=v

Example: Movie database
Movie (mId, title, genre, ..., director,...)

action
...
comic
...

soap

23 
37
18
...

19 
21
...

11
28
59

....

mId

Logical view:
• Each value v of the
attribute a references
a list of tuples t 
with t.a = v

IDX_genre

Sparse (not dense)
index.
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IndexingIndexing

Goal of DBS architect and implementor:
Find efficient data structure for indexing arbitrary data

(B-tree, R-tree, Hashing, ...?)

Goal of Database designer:
Define index for database  Schema in order to increase 

performance. Use one of the implementations supplied by 
DBS and create an index for some or all tables.
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TypesTypes of of indexesindexes and and indexindex definitiondefinition

CREATE INDEX
Most simple case
CREATE INDEX movie_idx1 ON Movie (cat ); 

CREATE INDEX customer_idx1 ON Customer (name, first_name);

CREATE INDEX customer_idx2 ON Customer(first_name,name);

Decision which indexes to create is an important task in 
physical schema design

• Composite index is defined on multiple columns
• Different (search tree) indexes on the same

columns with different orders sometimes make
sense - e.g.  abc and bca.   Why?
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DefiningDefining indexesindexes
Why not index each attribute? 

Advantage: fast predicate evaluation  
Select x from R where y = val

Disadvantages: they are not for free
• Redundancy

- Space, can double the space needed for the DB
- Extrem case: all attributes are indexed: do we need rows at 

all?    ⇒ ... "Column stores"
- database = set of indexes, no tuples !?

• Operational cost in case of updates
– insertion / deletion / of a row: each attribute      

effected by the operation has to be updated
(delete, insert: all attributes)

– each index write implies disk I/O – expensive!
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Disk based Search TreesDisk based Search Trees

Search trees well known, 
e.g. binary Search Tree,  (2,3) – trees, Red Black trees

Big issue of ST for Databases:    

(1) Trees may degenerate ⇒ (2,3) trees, balanced! 
i.e. same height h of all leaves

(2) nodes in RAM vs nodes on disk ⇒ traversing a disk 
based tree is time consuming. 
⇒ cost measured in Number of disk access, not 

number of constant time operations !

k k'
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Implementing indexesImplementing indexes

Index sequential (ISAM)
tree like index with a fixed number of levels (2-4)
records stored sequentially
index on lowest level contains one entry for 

each record storage area (page, extent) ⇒ sparse index!
Example: one-level index

33
53

...

11

73
85
61

133
153
110

p10

p28

p35

(61,    p28)
(11 ,   p10)

(110,  p35)

Index:  {(keyVal,page#)}

Simple idea, efficient,...

.. but what happens in case 
of insertion or  update ?

< 11

3 

p0

5 
8 
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10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Insert 23*, 48*, 41*, 42* ...

ISAM example, 2 index levels
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ISAM overflowISAM overflow

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Delete 51....
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ISAM deletionISAM deletion

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

index entry  51
still exists
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ISAMISAM

Index "Sequential" since records may be read in key 
sequence 

Operations
lookup of key k: straight forward
delete: 

lookup; set delete bit or remove (in leaf, not inner 
nodes)

insert:
lookup; 
if sufficient space insert else insert into overflow 
bucket 
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ISAM ISAM 

Main disadvantage of ISAM organization: 
no dynamic adaptation to growing and shrinking files,
periodical reorganization needed.

Insertion / deletion only affects leaf pages

Index setup algorithm? 
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BB++--TreeTree

Base requirement:
• node size = disk page (as before)
• no performance degradation: balanced search tree
• Rebalancing in case of inserts should be "easy"

Additional characteristics of B+ trees:
• no data in inner nodes but only keys and pointers

like ISAM
• Data (records) only in leaf pages

⇒ Sequential key sequence access  enabled
if leafs are chained and search tree property
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BB++--TreeTree

Basic idea of B- and B+-trees: 
Dynamically  growing and shrinking tree-structured 

index

Very popular, implemented in most DB systems

...
...

⇒
...

⇒

temporary state

Rudolf Bayer, Edward M. McCreight: 
Organization and Maintenance of 
Large Ordered Indices. 
Acta Informatica Vol 1,173-189 , 1972
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B+ B+ -- index treesindex trees

Characteristics
• inner node (except root) has k ≤ t ≤ 2k keys and t+1  

child nodes, degree k B+-tree. 
• Search tree invariant: Subtree "between" keys si

and si+1stores all data with key s: si ≤ s < si+1

• All leaf nodes have depth h ⇒ height of the tree
• B+-property: (key, value) pairs  in leafs, not in inner 

nodes

35 40 50 53inner node:

k=2, # keys ≤ 4
3 ≤ child# ≤5 

tuples(records) in DB context
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B+ B+ --Trees Trees 

Example: a very small B+-Tree:
Degree 2  B+ Index Tree on Movie

222112 290 345

112

10095

...2.00Lucas 1999SciFiStar Wars I345

...2.00Lucas1997ScFiStar Wars IV290

...2.20Van Sant1998suspensePsycho222

... 1.50 Spielberg1982comedyET112

...1.50Spielberg 1975horrorJaws100

.....................

...2.00Hitchcock1960suspensePsycho095

Root – the 
only inner node
in this example (!)

Leafs

These are 
different from 
child pointers!
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BB++--TreeTree: : exampleexample

Adam Bill Dick Eve Hank Jan
e

Bob Jill Tom

Bob Eve

Root Node

Leaf Nodes
RIDs
= physical pointer to record in heap

B+-tree

Following examples by Weikum/Vossen

Records in 
heap storage,
(key, RID)
in index leafs

leafs:
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Simple Insertion Simple Insertion intointo B+B+--TreeTree IndexIndex

Adam Bill Dick Eve Hank JaneCarl Jill Tom

Carl Eve

+ Ellen, + Bob

Adam Bill Dick Ellen Hank JaneBob Jill Tom

Carl Eve

Carl Eve

Space left for keys in 
the leaf, a key should 
be in. 

+ Sue
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Insertion Insertion intointo BB++--TreeTree withwith LeafLeaf NodeNode SplitSplit

Adam Bill Dick Ellen Hank JaneBob Jill Tom

Carl Eve

Carl Eve

+ Sue

Adam Bill Dick Ellen Hank Jane Sue TomBob Jill

Carl Eve Jill

Carl Eve

Leaf Node Split

Sue

Hank Jane Tom Sue

Jill

Jill

key+RID

key
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Insertion Insertion intointo BB++--TreeTree withwith rootroot splitsplit
+ Betty

Adam Betty Dick Ellen Hank Jane Sue TomBill Jill

Carl XiEve Jill

Eve

Bob Carl

Bill

... induces root node split

Adam Betty Dick Ellen Hank Jane Sue TomBill Jill

Bill Carl

Eve

Bob Carl

Jill

Eve root 
node

inner
nodes

leaf 
nodesEach leaf node

Leaf split...

Xi



10-Phys-38© HS-2010

BB++ tree insertiontree insertion

boolean insert(key, recPtr, nodePtr) { 
if (! leaf(nodePtr)) // always insert in leaf 

insert (key, recPtr, findChild(key)) //recursive traversal
else // we have reached a leaf
{if (space_enough) insertInLeaf (key,recPtr, nodePtr);
else {   //split

splitkey = splitNode(left, right); // allocate             
//a new page and distribute keys

if( key<=splitkey) insertInLeaf(key, recPtr,left); 
else insertInLeaf (key, recPtr,right);     
insertSplitKey(parent.nodePtr,splitkey,leftPtr,rightPtr);

}         
}

insertSplitKey inserts splitkey and pointer to allocated page
into parent node – if space available. Else split the inner
node, insert splitkey and apply insertSpitKey recursively.   
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B+B+--Tree: real worldTree: real world
Deletion

- may cause underflow (< k keys in node)
- "join" two neighbor pages – inverse operation

to page spit.
- avoid unstable behaviour (delete-insert-delete-...):  
postpone join  until only k-delta keys in node
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B+ trees: real world  B+ trees: real world  

... c..

( abel abend aber) (dart data database )

Page occupancy

Keys often have variable length (strings!)
⇒ replace k ≤ # keys ≤ 2*k by:  

Node (= disk block) should be at least 50% full.

Fanout:
number of childs – the more the better
Compress keys in order to increase fanout.
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10.3 Criteria for physical schema design10.3 Criteria for physical schema design

Design parameters for physical schema
Data volume:

• how many records and pages in a relation?
• how many leaves in the tree, how many inner node

Depends on
• The way, rows are stored in pages
• how pointers to rows ("tuple ids") are implemented
• how index pages are organized

Typical load:
which query / update types (the hardest part!)

Which attributes to index? Which type of index?
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Physical Design: criteriaPhysical Design: criteria

Which kind of Index?
• B+ tree and variants as a standard index type
• Clustering: storing related data in physical 

neighborhood 
Physical I/Os
Number of page accesses  is the most important cost  

measure
Depends on height of the tree...

and buffering, e.g. root of an index is always in RAM

How to calculate the height?
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PerformancePerformance
How many disk accesses to fetch a record?
Assumptions: 

n = number of records:  1000000

r = average record size: 80 B

b = effective page size without header:  4000 B

ptr = Pointer size:  4 B, tid = TID / (RID ) size: 6 B

k = average key size: 10 B

a = average node fill degree (both inner and leaf) 0.8

eLeaf = ⎣ (b / (k+tid)) * a⎦ # entries (max) per leaf, 

Ln =  ⎡n / eLeaf ⎤ =     # leaf pages

Inner nodes: i = ⎣ (b/ (k+ptr)) * a ⎦ # (key, ptr)-entries



10-Phys-44© HS-2010

PerformancePerformance

Height (including leafs):
1 + ⎡ logi Ln ⎤ = 1+ ⎡ logi ⎡(n / eLeaf) ⎤ ⎤

Example:  1+ ⎡1.56 ⎤ = 3

Root in memory ⇒ effectively  ⎡ logi L(n) ⎤ accesses

How to reduce disk accesses?
increase fan-out: larger blocksize, compression
store records in leaf-pages (instead of tids) 
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SummarySummary

Data stored on disk
Access time crucial in query processing

I/Os is THE cost measure
Access Time: Seek time + Rotational time + Transfer 

time
Indexes accelerate access to secondary storage 

B+ tree is standard in most DBs

Great differences in physical organization in DBS
Indexing (SQL interface) not standardized

( except CREATE INDEX... )


