
10 10 PhysicalPhysical schemaschema design design
10.1 Introduction

Motivation
Disk technology
RAID

10.2 Index structures in DBS
Indexing concept
Primary and Secondary indexes

10.3. ISAM and B+-Trees
10.4. SQL and indexes

Criteria for indexing
Height of B+-Tree

Lit.: Kemper/Eickler: chap 7, O'Neill: chap. 8, Garcia-Molina et al: chap. 13
Kifer et al.: Chap 9.

10-Phys-2© HS-2010

10.1 10.1 PhysicalPhysical Design: Design: IntroductionIntroduction

Physical schema design goal: PERFORMANCE
Quality measures

Throughput: how many transactions / sec?
Response-time: time needed for answering an

individual query
Important factors for defining a "good" physical schema

Application
• size of database
• typical operations
• frequency of operations
• isolation level

System
• storage layout of data

• access path, index structures ⇐

10-Phys-3© HS-2010

Disk TechnologyDisk Technology

Mechanics

Platter = 2 surfaces

Disk heads Cylinder

track
gap

Block(sector)
512 B - 32 KB

10-Phys-4© HS-2010

Physical Design: I/O costPhysical Design: I/O cost

Disks are slow!
Data transfer time disk - main memory

Blocks
Bytes transferred at constant speed
Transfer rate (tr): * 300MB/s (2010, SATA techn.)

• Seek time:
• Time for positioning the arm over a cylinder/track
• Move disk heads to a particular cylinder/track:

Start (constant), Move (variable), Stop (constant)
• 0 if arm in position, otherwise long (between 8 to 10 ms)
• Track-to-track seek time: 0.5ms –2ms

10-Phys-5© HS-2010

Physical Design: I/O costPhysical Design: I/O cost

Rotate time (disk latency):
Time until sector to be read positioned under the head
Access to all data within a cylinder within rotate time
12 to 6 ms per rotation / 5000 – 12000 rotations per min
Average: 4,17 rotational latency. (Seagate Baracuda 1TB)

store related information in spatial proximity

Seek time + Rotational time + T/tr

Time to read T bytes with transfer rate tr:

10-Phys-6© HS-2010

Physical Design: I/O costPhysical Design: I/O cost

Typical mean access time:

Seek time dominates !

Disk access time = SeekTime 6 ms
+ RotateTime 3 ms
+ TransferTime 1 ms

• Random Disk / RAM:
~10 * 10-3 / 200 * 10-9 = 5*104

• Sequential disk read ("scan") may be much faster

10-Phys-8© HS-2010

Disk Disk parametersparameters

year
Capacity

GB
rate

MB/sec
a. time
(msec)

Block
size KB

Scan
Sequential

Scan
Random

1988 0,25 1 20 0.5 4 minutes 16 min
1998 18 10 12 2 30 minutes 3 hrs
2005 250 50 10 2 - 4 1.5 hrs 1.3 days

• Drive capacity increases much faster than
transfer rate and access time

adapted from Jim Gray / D. Bitton 1998

Disk arm is the limiting resource.

Drive capacity and data rate

10-Phys-9© HS-2010

Basic Basic factsfacts summarizedsummarized

RAM / disk gap will remain
High increase in storage density

Disk space is free (more or less)
Access time and data rate (seek, rotation) improve much

slower
reading / writing large quantities of data
becomes a crucial problem

Large capacity disks have one actuator
throughput bottleneck

10-Phys-10© HS-2010

RAID RAID storagestorage
RAID Technology (Redundant Array of Inexpensive Disks)

Goals
• Performance enhancement by reducing transfer time and

queue length

• Fault tolerance by "Parity disks"
Large disk ⇒
Long queue,
Long transfer1 2 3 4 5

6 7 8 …

Block striping,
no fault tolerance

(cited from http://www.raid.com)

Principle technique:
striping

Raid 0

10-Phys-14© HS-2010

Physical Design: RAIDPhysical Design: RAID

RAID 4 : reconstruct data by parity disk

Independent Data disks with block striping and shared
Parity disk

AP [1] = A[0] ⊗ B[1] ⊗ C[2] ⊗ D[3]
D[i] = A[0] ⊗ B[1] ⊗ C[2] ⊗ AP [1] etc

0 1 2 3 AP

10-Phys-15© HS-2010

RIADRIAD

RAID 5 : avoid parity disk bottleneck

Independent Data disks with distributed parity blocks

~ state of the art, many minor modifications

10-Phys-16© HS-2010

TechnologicalTechnological Impact Impact

RAID controller provides OS / DBS with standard disk
interface

Considerable performance gains for read operations
Writes need recomputation of parity

Main reason for parity disk bottleneck in RAID-4
architecture

Further info: http://www.raid.com

Solid state disks?

10-Phys-17© HS-2010

10.2 10.2 IndexingIndexing in DBSin DBS

An index is a data structure which allows to locate
an objects faster than by sequential scan.

• Well known: binary search tree , hash maps.
Data: (key, value)-pairs.

•Traversing a search tree is efficient, if node
are in memory

10-Phys-18© HS-2010

PrimaryPrimary and and SecondarySecondary indexesindexes
Primary (unique) index

A mapping from key values to records (tuples)
Typically used for indexing PRIMARY KEY or one

UNIQUE column
Typically assigns a physical location to each record.

47

107

212

531

...
More than one
record (key)on a
disk page, one entry for
each key ("dense index")

10-Phys-19© HS-2010

SecondarySecondary indexindex
Secondary index on attribute a of table T:
Assigns to each value v of a the set of rows t with t.a=v

Example: Movie database
Movie (mId, title, genre, ..., director,...)

action
...
comic
...

soap

23
37
18
...

19
21
...

11
28
59

....

mId

Logical view:
• Each value v of the
attribute a references
a list of tuples t
with t.a = v

IDX_genre

Sparse (not dense)
index.

10-Phys-20© HS-2010

IndexingIndexing

Goal of DBS architect and implementor:
Find efficient data structure for indexing arbitrary data

(B-tree, R-tree, Hashing, ...?)

Goal of Database designer:
Define index for database Schema in order to increase

performance. Use one of the implementations supplied by
DBS and create an index for some or all tables.

10-Phys-21© HS-2010

TypesTypes of of indexesindexes and and indexindex definitiondefinition

CREATE INDEX
Most simple case
CREATE INDEX movie_idx1 ON Movie (cat);

CREATE INDEX customer_idx1 ON Customer (name, first_name);

CREATE INDEX customer_idx2 ON Customer(first_name,name);

Decision which indexes to create is an important task in
physical schema design

• Composite index is defined on multiple columns
• Different (search tree) indexes on the same

columns with different orders sometimes make
sense - e.g. abc and bca. Why?

10-Phys-22© HS-2010

DefiningDefining indexesindexes
Why not index each attribute?

Advantage: fast predicate evaluation
Select x from R where y = val

Disadvantages: they are not for free
• Redundancy

- Space, can double the space needed for the DB
- Extrem case: all attributes are indexed: do we need rows at

all? ⇒ ... "Column stores"
- database = set of indexes, no tuples !?

• Operational cost in case of updates
– insertion / deletion / of a row: each attribute

effected by the operation has to be updated
(delete, insert: all attributes)

– each index write implies disk I/O – expensive!

10-Phys-23© HS-2010

Disk based Search TreesDisk based Search Trees

Search trees well known,
e.g. binary Search Tree, (2,3) – trees, Red Black trees

Big issue of ST for Databases:

(1) Trees may degenerate ⇒ (2,3) trees, balanced!
i.e. same height h of all leaves

(2) nodes in RAM vs nodes on disk ⇒ traversing a disk
based tree is time consuming.
⇒ cost measured in Number of disk access, not

number of constant time operations !

k k'

10-Phys-24© HS-2010

Implementing indexesImplementing indexes

Index sequential (ISAM)
tree like index with a fixed number of levels (2-4)
records stored sequentially
index on lowest level contains one entry for

each record storage area (page, extent) ⇒ sparse index!
Example: one-level index

33
53

...

11

73
85
61

133
153
110

p10

p28

p35

(61, p28)
(11 , p10)

(110, p35)

Index: {(keyVal,page#)}

Simple idea, efficient,...

.. but what happens in case
of insertion or update ?

< 11

3

p0

5
8

10-Phys-25© HS-2010

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Insert 23*, 48*, 41*, 42* ...

ISAM example, 2 index levels

10-Phys-26© HS-2010

ISAM overflowISAM overflow

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Delete 51....

10-Phys-27© HS-2010

ISAM deletionISAM deletion

10* 15* 20* 27* 33* 37* 40* 46* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

index entry 51
still exists

10-Phys-28© HS-2010

ISAMISAM

Index "Sequential" since records may be read in key
sequence

Operations
lookup of key k: straight forward
delete:

lookup; set delete bit or remove (in leaf, not inner
nodes)

insert:
lookup;
if sufficient space insert else insert into overflow
bucket

10-Phys-29© HS-2010

ISAM ISAM

Main disadvantage of ISAM organization:
no dynamic adaptation to growing and shrinking files,
periodical reorganization needed.

Insertion / deletion only affects leaf pages

Index setup algorithm?

10-Phys-30© HS-2010

BB++--TreeTree

Base requirement:
• node size = disk page (as before)
• no performance degradation: balanced search tree
• Rebalancing in case of inserts should be "easy"

Additional characteristics of B+ trees:
• no data in inner nodes but only keys and pointers

like ISAM
• Data (records) only in leaf pages

⇒ Sequential key sequence access enabled
if leafs are chained and search tree property

10-Phys-31© HS-2010

BB++--TreeTree

Basic idea of B- and B+-trees:
Dynamically growing and shrinking tree-structured

index

Very popular, implemented in most DB systems

...
...

⇒
...

⇒

temporary state

Rudolf Bayer, Edward M. McCreight:
Organization and Maintenance of
Large Ordered Indices.
Acta Informatica Vol 1,173-189 , 1972

10-Phys-32© HS-2010

B+ B+ -- index treesindex trees

Characteristics
• inner node (except root) has k ≤ t ≤ 2k keys and t+1

child nodes, degree k B+-tree.
• Search tree invariant: Subtree "between" keys si

and si+1stores all data with key s: si ≤ s < si+1

• All leaf nodes have depth h ⇒ height of the tree
• B+-property: (key, value) pairs in leafs, not in inner

nodes

35 40 50 53inner node:

k=2, # keys ≤ 4
3 ≤ child# ≤5

tuples(records) in DB context

10-Phys-33© HS-2010

B+ B+ --Trees Trees

Example: a very small B+-Tree:
Degree 2 B+ Index Tree on Movie

222112 290 345

112

10095

...2.00Lucas 1999SciFiStar Wars I345

...2.00Lucas1997ScFiStar Wars IV290

...2.20Van Sant1998suspensePsycho222

... 1.50 Spielberg1982comedyET112

...1.50Spielberg 1975horrorJaws100

.....................

...2.00Hitchcock1960suspensePsycho095

Root – the
only inner node
in this example (!)

Leafs

These are
different from
child pointers!

10-Phys-34© HS-2010

BB++--TreeTree: : exampleexample

Adam Bill Dick Eve Hank Jan
e

Bob Jill Tom

Bob Eve

Root Node

Leaf Nodes
RIDs
= physical pointer to record in heap

B+-tree

Following examples by Weikum/Vossen

Records in
heap storage,
(key, RID)
in index leafs

leafs:

10-Phys-35© HS-2010

Simple Insertion Simple Insertion intointo B+B+--TreeTree IndexIndex

Adam Bill Dick Eve Hank JaneCarl Jill Tom

Carl Eve

+ Ellen, + Bob

Adam Bill Dick Ellen Hank JaneBob Jill Tom

Carl Eve

Carl Eve

Space left for keys in
the leaf, a key should
be in.

+ Sue

10-Phys-36© HS-2010

Insertion Insertion intointo BB++--TreeTree withwith LeafLeaf NodeNode SplitSplit

Adam Bill Dick Ellen Hank JaneBob Jill Tom

Carl Eve

Carl Eve

+ Sue

Adam Bill Dick Ellen Hank Jane Sue TomBob Jill

Carl Eve Jill

Carl Eve

Leaf Node Split

Sue

Hank Jane Tom Sue

Jill

Jill

key+RID

key

10-Phys-37© HS-2010

Insertion Insertion intointo BB++--TreeTree withwith rootroot splitsplit
+ Betty

Adam Betty Dick Ellen Hank Jane Sue TomBill Jill

Carl XiEve Jill

Eve

Bob Carl

Bill

... induces root node split

Adam Betty Dick Ellen Hank Jane Sue TomBill Jill

Bill Carl

Eve

Bob Carl

Jill

Eve root
node

inner
nodes

leaf
nodesEach leaf node

Leaf split...

Xi

10-Phys-38© HS-2010

BB++ tree insertiontree insertion

boolean insert(key, recPtr, nodePtr) {
if (! leaf(nodePtr)) // always insert in leaf

insert (key, recPtr, findChild(key)) //recursive traversal
else // we have reached a leaf
{if (space_enough) insertInLeaf (key,recPtr, nodePtr);
else { //split

splitkey = splitNode(left, right); // allocate
//a new page and distribute keys

if(key<=splitkey) insertInLeaf(key, recPtr,left);
else insertInLeaf (key, recPtr,right);
insertSplitKey(parent.nodePtr,splitkey,leftPtr,rightPtr);

}
}

insertSplitKey inserts splitkey and pointer to allocated page
into parent node – if space available. Else split the inner
node, insert splitkey and apply insertSpitKey recursively.

10-Phys-39© HS-2010

B+B+--Tree: real worldTree: real world
Deletion

- may cause underflow (< k keys in node)
- "join" two neighbor pages – inverse operation

to page spit.
- avoid unstable behaviour (delete-insert-delete-...):
postpone join until only k-delta keys in node

10-Phys-40© HS-2010

B+ trees: real world B+ trees: real world

... c..

(abel abend aber) (dart data database)

Page occupancy

Keys often have variable length (strings!)
⇒ replace k ≤ # keys ≤ 2*k by:

Node (= disk block) should be at least 50% full.

Fanout:
number of childs – the more the better
Compress keys in order to increase fanout.

10-Phys-41© HS-2010

10.3 Criteria for physical schema design10.3 Criteria for physical schema design

Design parameters for physical schema
Data volume:

• how many records and pages in a relation?
• how many leaves in the tree, how many inner node

Depends on
• The way, rows are stored in pages
• how pointers to rows ("tuple ids") are implemented
• how index pages are organized

Typical load:
which query / update types (the hardest part!)

Which attributes to index? Which type of index?

10-Phys-42© HS-2010

Physical Design: criteriaPhysical Design: criteria

Which kind of Index?
• B+ tree and variants as a standard index type
• Clustering: storing related data in physical

neighborhood
Physical I/Os
Number of page accesses is the most important cost

measure
Depends on height of the tree...

and buffering, e.g. root of an index is always in RAM

How to calculate the height?

10-Phys-43© HS-2010

PerformancePerformance
How many disk accesses to fetch a record?
Assumptions:

n = number of records: 1000000

r = average record size: 80 B

b = effective page size without header: 4000 B

ptr = Pointer size: 4 B, tid = TID / (RID) size: 6 B

k = average key size: 10 B

a = average node fill degree (both inner and leaf) 0.8

eLeaf = ⎣ (b / (k+tid)) * a⎦ # entries (max) per leaf,

Ln = ⎡n / eLeaf ⎤ = # leaf pages

Inner nodes: i = ⎣ (b/ (k+ptr)) * a ⎦ # (key, ptr)-entries

10-Phys-44© HS-2010

PerformancePerformance

Height (including leafs):
1 + ⎡ logi Ln ⎤ = 1+ ⎡ logi ⎡(n / eLeaf) ⎤ ⎤

Example: 1+ ⎡1.56 ⎤ = 3

Root in memory ⇒ effectively ⎡ logi L(n) ⎤ accesses

How to reduce disk accesses?
increase fan-out: larger blocksize, compression
store records in leaf-pages (instead of tids)

10-Phys-45© HS-2010

SummarySummary

Data stored on disk
Access time crucial in query processing

I/Os is THE cost measure
Access Time: Seek time + Rotational time + Transfer

time
Indexes accelerate access to secondary storage

B+ tree is standard in most DBs

Great differences in physical organization in DBS
Indexing (SQL interface) not standardized

(except CREATE INDEX...)

