
1

see Kemper/Eickler chap. 14, Elmasri chap. 6.8, O'Neill: Chap. 4,
Melton: SQL99, Postgres and Oracle Manuals (PL/PGSQL,PL/SQL)

8. 8. MoreMore SQL SQL featuresfeatures: :
ViewsViews, PL/SQL, , PL/SQL, Functions,TriggersFunctions,Triggers

8.1 Views and view updates
8.2 Application architectures
8.3 PL/SQL – PL/pgSQL
8.4 Functions and Procedures
8.5 Triggers
8.6 Abstract Data Types

08-PLSQLetc-2© HS-2010

8.1 Views8.1 Views

Intention
• Casting the database schema for different

applications
• Access protection
• Privacy
• Structuring of SQL programs

⇒ The RDM concept for external schemas
("3-schema-architecture")

Def.: A view is a named SQL-query, which
becomes part of the schema as a virtual table

08-PLSQLetc-3© HS-2010

Materialized Views Materialized Views

Def.: A materialized view is a temporary Table , which
contains the result set of an SQL query

• Not in all DBMS
• Often used in replication scenarios
• No way to insert / delete data
• But refreshing of the view makes sense
• Sometimes called snapshot

• Different from temporary tables
CREATE TEMPORARY TABLE Temp AS (<Query>)

• Insertion / Deletion allowed
• Dropped at the end of a session

08-PLSQLetc-4© HS-2010

SQL ViewsSQL Views
May be defined on base tables (ordinary tables)
or on views (or both)

CREATE VIEW LargeCities
(name,population,country, code,fraction)

AS
(SELECT ci.name, ci.population, co.name, co.code,

ci.population/co.population
FROM City ci JOIN Country co ON ci.country = co.code
WHERE ci.population > 1000000)

CREATE VIEW VeryLargeCities AS
(SELECT name, population, country
FROM LargeCities l
WHERE l.population >= 3000000)

implicite
column
names

08-PLSQLetc-5© HS-2010

Views and privacyViews and privacy

Very large American cities:
JOIN with encompasses(continent,country...)

CREATE OR REPLACE VIEW VLAmeriCities AS
(SELECT c.name, c.population, c.country

FROM LargeCities c JOIN Encompasses e
ON c.code =e.country
WHERE e.continent = 'America'
AND c.population >= 3000000)

Privacy: column access may be granted even if access
to base table is not allowed !

Views may be used like ordinary table in queries.

08-PLSQLetc-6© HS-2010

Views and code readabilityViews and code readability

.. simplify SQL queries

Countries having more inhabitants than all american big cities

SELECT c.name, c.population
FROM country c
WHERE c.population < ALL(SELECT population

FROM VLAmeriCities)

Operator tree of query more complicated...

2

08-PLSQLetc-7© HS-2010

Query planQuery plan

Joint optimization of
views and query

08-PLSQLetc-8© HS-2010

Evaluation of viewsEvaluation of views

Steps:

[1. Transform query on view using its definition]
2. Construct operator tree including view definitions

and query
3. Optimize plan
4. Execute query on base tables

08-PLSQLetc-9© HS-2010

Views in Views in PostgresPostgres

More general substitution concept in Postgres
Rules are "first class objects": CREATE RULE...

CREATE VIEW myview AS SELECT * FROM mytab;

equivalent to

CREATE TABLE myview (<same column list as mytab>);

CREATE RULE "_RETURN" AS ON SELECT TO myview DO
INSTEAD SELECT * FROM mytab;

Kind of dynamic view evaluation compared to
static rewrite of query or query tree

08-PLSQLetc-10© HS-2010

8.2 8.2 UpdatableUpdatable viewsviews

View updates
Many views are not updatable. Obviously:

CREATE OR REPLACE VIEW PopulInCities (country,
cityPop)
AS
(SELECT co.name, sum(ci.population)
FROM City ci JOIN Country co ON

ci.country=co.code
GROUP BY co.name)

View not updatable if defined using:
• Aggregation
• Arithmetic in Projection
• DISTINCT

08-PLSQLetc-11© HS-2010

Semantic characterization of updatable viewsSemantic characterization of updatable views

Def: A view V is updatable if for every update u (*)

there exist one or more updates cu which applied to
the base relations and the subsequent application of the
view definition result in the same result:

u (V(D)) = V (cu (D))

• Semantic characterization,
• Wanted: syntactic criteria for updatability

(*) as if it were materialized

08-PLSQLetc-12© HS-2010

SyntacticSyntactic criteriacriteria

Read only views may be arbitrarily defined,
Update is rejected, if view not updatable.

Syntactic criteria
Not updatable (SQL 92)

• if grouped (GROUP BY), HAVING or aggregated
• DISTINCT in SELECT clause
• set operators (INTERSECT, EXCEPT, UNION)
• more than one table in FROM clause
• No updates on join views (restrictive!)

3

08-PLSQLetc-13© HS-2010

Views and joinsViews and joins

CREATE VIEW CCP AS
(SELECT c.name, c.capital, ci.population
FROM Country c JOIN City ci
ON c.capital=ci.name and c.code=ci.country

WHERE ci.population > 1000000
ORDER BY c.name)

Base tables: Country, City,
Join on key: row insertion in one table (Country) may
generate one new row in in the other (City), if not
already present.

08-PLSQLetc-14© HS-2010

SyntacticSyntactic criteriacriteria (2)(2)

SQL 1999
Columns (of views) are potentially updatable if ...

no DISTINCT operator
no GROUP BY, HAVING clause
no derived columns (e.g. arithmetic expressions)

(1) Column is updatable if potentially updatable
and one table in FROM clause (!)

08-PLSQLetc-15© HS-2010

Key Key preservedpreserved tablestables

… SQL 1999: more than one table in FROM clause
(2) Column c is updatable if potentially updatable

and
- c belongs to exactly one table
- the key of the table is preserved, i.e. the update of c
may be traced back to exactly one row.

Table is key preserved if every key of the table can also
be a key of the join result table.
A key-preserved table has its keys preserved
through a join.

08-PLSQLetc-16© HS-2010

Find updatable columnsFind updatable columns

Find updatable columns by querying the
catalogue

SELECT column_name, updatable
FROM user_updatable_columns
WHERE table_name ='LARGECITIES'
-- Oracle

COLUMN_NAME UPDATABLE
------------------------------ ---------
NAME YES
POPULATION YES
COUNTRY NO
CODE NO
FRACTION NO

must be upper case

This is a (system) view

08-PLSQLetc-17© HS-2010

ViewsViews WITH CHECKWITH CHECK OPTIONOPTION
Issue: side effects on base table rows, no effect on view

UPDATE TABLE CC_Large
SET population = population - 20000
WHERE capital = 'Amsterdam' --has 1011000 inhabitants

WITH CHECK OPTION

CREATE VIEW CCLarge(ctryName, capital, population) AS
(SELECT c.name as ctryName, c.capital, ci.population
FROM Country c JOIN City ci

ON c.capital=ci.name and c.code=ci.country
and c.province = ci.province

WHERE ci.population > 1000000)

What happens?

08-PLSQLetc-18© HS-2010

CHECK OPTIONCHECK OPTION

Update may result in insertion and deletion (!) of rows

CHECK OPTION: update and insert must result in rows the
view can select , otherwise exception raised

Example above: update has to be performed on base table

4

08-PLSQLetc-19© HS-2010

ViewView update update byby triggerstriggers

Triggers: Event – Condition – Action rules
Event: Update, insert, delete (basically)
Condition: WHEN < some conditon on table>
Action: some operation (expressed as DML, DB-

Script language expression, even Java)

INSTEAD OF Triggers (Postgres: rules)
- defined on views
- specify what to do in case of an update
of the view

details on triggers: see below

08-PLSQLetc-20© HS-2010

SummarySummary viewsviews

• Views: important mechanism for
access protection / privacy
simplyfy SQL application programming

• The mechanism for defining external schemas in the RDM
• Useful for modeling generalization hierarchies
• Disadvantage: updates (inserts, deletes) not always

possible
• Criteria for updatable views complex
• INSTEAD OF triggers are a convenient work around

08-PLSQLetc-21© HS-2010

8.2 Application Architectures8.2 Application Architectures

• SQL is an interactive language, but...
• Main usage: access database from application program

Means basically: SQL-statements statically
known, but parameterized:
SELECT name INTO :ctryName
FROM Country JOIN Economy ON...
WHERE gdp < :threshold

"Impedance mismatch": tuple sets vs records or objects
• Typical database usage:

independent applications concurrently access DB
• Web based user interface is standard today

⇒ Big differences of (application) system
architectures

08-PLSQLetc-22© HS-2010

Business logicBusiness logic

Big question: where sits the "business logic" ?

• Business logic: the steps which have to be
made in order to process a user query.
e.g. "go to check out" in an Internet shop is implemented
by several steps, most of them access the DB:
User logged in? if not..., perform stock keeping operations, prepare
invoice, charge client,

• Two tier or Three tier: ~ business logic separated
from user interaction as well as data access?

08-PLSQLetc-23© HS-2010

ArchitecturesArchitectures

Client server model
– Business logic sits in application program
– Runs on a machine different from database server
– Interaction by means of SQL queries, inserts, updates

Application
code

Application
code

...
DB-
Server

SQL,
Result sets

User interaction: web browser or integrated (e.g. Swing)

08-PLSQLetc-24© HS-2010

Client server exampleClient server example
class JdbcTest {
public static void main (String args []) throws SQLException {
// Load driver
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());
// Connect to the local database
Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:orcl",

"hr", "hr");
// Query the employee names
Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery ("SELECT last_name FROM

employees");
// Print the name out
while (rset.next ())

System.out.println (rset.getString (1));
// Close the result set, statement, and the connection
rset.close();
stmt.close();
conn.close();
}
}

5

08-PLSQLetc-25© HS-2010

Persistence abstraction mechanismsPersistence abstraction mechanisms

Object oriented programming model with persistence
abstraction hides SQL database access

"Business Logic"

user interaction

DB access

Table
interface
(JDBC)

Object
interface

Generated
by OR-
mapping
tool

08-PLSQLetc-26© HS-2010

Server side application logicServer side application logic

• Business logic in stored procedures

"Thin"
app. code

"Thin"
app. code

...
DB-Server

Call procedure,
Result sets

Application code
(Stored Procedures)

Thin clients

• Stored procedures written in DB specific host language
e.g. PL/SQL, PL/pgSQL based on SQL/PSM standard

• Programming language like C, C++, Java,

08-PLSQLetc-27© HS-2010

Multi tier architectureMulti tier architecture

/GUI client Web
browser

Web
browser

DB client

Web Server

DB Application DB Application

DB-Server DB-Server DB-Server

Middleware layer Middle tier

File System

Application
Server

08-PLSQLetc-28© HS-2010

Server side architectures Server side architectures

Basically
stored
procedures

request handling
in web server

request handling
in DB server

08-PLSQLetc-29© HS-2010

Pros and ConsPros and Cons
Server based code:

+ performance
+ communication efficiency
+ Database servers provide (most of) the functionality

Multi tier architecture
+ scalability
+ interoperability of autonomous systems
+ secure and reliable transport of request / reply messages
+ Better workflow support

But base technologies are basically the same
in both architectures...

08-PLSQLetc-30© HS-2010

Base technologiesBase technologies

... to come:

• Database script languages (like PL/pgSQL)
also used for trigger programming

• Stored procedures using Java, C or alike
• Embedding SQL into programming languages

call level interface e.g. JDBC
integration in PL e.g. Embedded SQL ESQL/C,

java integration: SQLJ
• Object relational mapping: hiding data access and

persistence from application code.

6

08-PLSQLetc-31© HS-2010

8.3 Stored procedures 8.3 Stored procedures

Server extension by user defined functions

SQL based: PL/SQL (Oracle), PL/pgSQL
• adds control structures to SQL
• easy way to define complex functions on the DB

Programming language based
C, Java, ...,Perl, Python, Tcl for Postgres
Any Programming language suitable in principle

08-PLSQLetc-32© HS-2010

SQL standardsSQL standards

DB-Script languages
Based on SQL/PSM ("persistent stored modules") standard
Only propriatary implementations: PL/SQL (Oracle),

PL/pgSQL (Postgres), Transact-SQL (Micorsoft), SQL procedure
language (IBM)

But conceptually similar
Programming language based

SQL/OLB (object language binding)

SQL/JRT (SQL routines and types using the Java language)

SQL/CLI (SQL call level interface): How to call SQL from
Programming language.

08-PLSQLetc-33© HS-2010

DB DB scriptscript languageslanguages basicsbasics: Blocks: Blocks

Syntax

[DECLARE

/* Declarative section: variables, types, and local subprograms. */]
BEGIN

/* Executable section: procedural and SQL statements go here. */
/* This is the only section of the block that is required. */
[EXCEPTION

/* Exception handling section: error handling statements go here. */]
END;

Block: Scope as in programming languages,
nesting allowed.

08-PLSQLetc-34© HS-2010

UsageUsage

• Blocks used for direct excecution (e.g. SQL +)
(only for testing and some administrative tasks)

• Used within programs. e.g. C
EXEC SQL EXECUTE

< Block >

• Definition of independent functions / functions

CREATE PROCDURE … (…) IS

• For definition of triggers

• Inside object / type declarations
CREATE TYPE BODY

Type definitions: see
below

08-PLSQLetc-35© HS-2010

DeclarationsDeclarations

Standard declarations

Use table types

Use row type

DECLARE
price NUMBER;
prodName VARCHAR(20);

DECLARE
prodName Product.name%TYPE;

table

column

DECLARE productTuple Product%ROWTYPE;

This is a record type

All variables have
to be declared,
all SQL types
allowed.

08-PLSQLetc-36© HS-2010

Record typesRecord types

Example

DECLARE countryRec Country%ROWTYPE;
BEGIN
SELECT * INTO countryRec FROM Country WHERE CODE='D';
dbms_output.PUT_LINE('Name: ' || countryRec.name);

END;

• May be executed from the command line
• Works only with exactly one result row
• How to iterate over result sets?

Library function (Oracle)

PL/SQL syntax

7

08-PLSQLetc-37© HS-2010

PL/SQL PL/SQL ControlControl flowflow
CREATE TABLE TNumb

(x NUMBER, y NUMBER);

DECLARE
i NUMBER := 1;

BEGIN
LOOP
INSERT INTO T1 VALUES(i,i+1);
i := i+1;

EXIT WHEN i>100;
END LOOP;
END;

Similar : WHILE (<condition>) LOOP ... END LOOP
FOR <var> IN <start>..<finish> LOOP...END LOOP

see Manual

Only SQL/DML
within block

08-PLSQLetc-38© HS-2010

PL/SQL Insertion in FOR PL/SQL Insertion in FOR looploop

CREATE TABLE TestNormal (empno number(10), ename
varchar2(30), sal number(10));

BEGIN
FOR i in 1..1000000
LOOP

INSERT INTO Test_normal
VALUES (i, dbms_random.string('U',80),

dbms_random.value(1000,7000));
IF mod(i, 10000) = 0 THEN
COMMIT;
END IF;

END LOOP;
END;

Library function

Transaction commit: inserted
data stored in DB now.
All or nothing semantics.

08-PLSQLetc-39© HS-2010

ResultResult setssets

Problem: how to process result set of unkown cardinality?

DECLARE countryRec Country%ROWTYPE;
BEGIN
SELECT * INTO countryRec FROM Country WHERE CODE='D%';
dbms_output.PUT_LINE('Name: ' || countryRec.name);

END;

...does not work – more than one result record expected.

Needed: a kind of pointer to result set records, which allows
to iterate through the result set.

08-PLSQLetc-40© HS-2010

Result set: exampleResult set: example

DECLARE
CURSOR ctry IS

SELECT * FROM Country WHERE CODE LIKE 'D%';
countryRec Country%ROWTYPE;

BEGIN
OPEN ctry;
LOOP
FETCH ctry INTO countryRec;
EXIT WHEN ctry%NOTFOUND;
dbms_output.PUT_LINE
('Name: ' || countryRec.name || ', Popul: '||
countryRec.population);

END LOOP;
CLOSE ctry;

END;

Cursor, internal object,
not a variable

and attributes:
%NOTFOUND,
%OPEN,
%ROWCOUNT et al

has few operations:
OPEN, CLOSE, FETCH

08-PLSQLetc-41© HS-2010

Cursor (*)Cursor (*)

Def: A cursor is an abstraction of a result set for a particular
SQL statement with operations: OPEN, FETCH, CLOSE
and attributes %ROWCOUNT, %FOUND, %NOTFOUND

• Explicit cursors have to be defined for SQL statements
with more than one result record

• Implicit cursors are defined for every SQL statement

(*) Important concept for embedding SQL in host (programming) languages,
typically more operations, see JDBC below

BEGIN
DELETE FROM TNUMB WHERE x > 50;
DBMS_OUTPUT.PUT_LINE('Deleted rows: ' || SQL%ROWCOUNT);
END;

08-PLSQLetc-42© HS-2010

Cursors and FOR loopsCursors and FOR loops
DECLARE
CURSOR ctry IS

SELECT * FROM Country WHERE CODE LIKE 'C%';
row# int;

BEGIN
FOR resRecord IN ctry LOOP
row# :=ctry%ROWCOUNT;
dbms_output.PUT_LINE

('Name: ' || resRecord.name ||
', Popul: '|| resRecord.population);

END LOOP;
dbms_output.PUT_LINE('Number of countries: ' || row#);

END;

• Implicit: open, close, record variable of result record.
• Cursor closed at END LOOP, no attributes defined
after that point.

LOOP is part of
FOR loop on
result set of implicit
cursor.

8

08-PLSQLetc-43© HS-2010

Collection variablesCollection variables

DECLARE
TYPE largeCtry IS RECORD (
name country.name%TYPE,
capital country.capital%TYPE);

TYPE largeCtryTab IS TABLE OF largeCtry;
lTab largeCtryTab;
i int;

BEGIN
SELECT name, capital BULK COLLECT INTO lTab
FROM country WHERE population >= 100000000;

FOR i IN 1..lTab.LAST LOOP
dbms_output.PUT_LINE

('Name: ' || lTab(i).name || ', capital: '||
lTab(i).capital);

END LOOP;
END;

TABLE variables allow
for manipulation
of sets within a block

Set operations in DB
usually preferrable

Bulk load from DB
or individual
assignement

08-PLSQLetc-44© HS-2010

8.4 Functions and procedures8.4 Functions and procedures

Recall...

Database
with business
logic as
stored procedures

Webserver:
- interpret request
- call stored procedure
- return html

Browser

Needed: procedures and functions , not just
anonymous blocks

• Major syntactic (and some semantic) differences
between PL/SQL and PL/pgSQL

• e.g. no procedure in PL/pgSQL but FUNCTION RETURNS VOID

08-PLSQLetc-45© HS-2010

PL/SQL PL/SQL proceduresprocedures

CREATE PROCEDURE addtuple2 (x IN T2.a%TYPE,
y IN T2.b%TYPE)

AS
i NUMBER = dbms_random.value(1000,7000)
-- here go declarations

BEGIN
INSERT INTO T2(k NUMBER,a, b)

VALUES(i, x, y);
END addtuple2;

No DECLARE (!)

Parameter passing like in ADA:
• call by value (IN),
• call by result (OUT),
• call by value-result (INOUT)
Why no call by reference??

08-PLSQLetc-46© HS-2010

Functions in PL/SQLFunctions in PL/SQL
CREATE FUNCTION CountryCity(cname IN VARCHAR)
RETURNS int
IS
CURSOR ctry IS

SELECT * FROM Country WHERE CODE LIKE cname||'%';
row# int;

BEGIN
FOR resRecord IN ctry LOOP
row# :=ctry%ROWCOUNT;
dbms_output.PUT_LINE

('Name: ' || resRecord.name ||
', Capital: '|| resRecord.capital);

END LOOP;
RETURN (row#);

END;

08-PLSQLetc-47© HS-2010

Calling functions / proceduresCalling functions / procedures

• Embedded in host language like C, Java
similar to execution of plain SQL → below

• Big difference: no result set, but usage of INOUT, OUT
parameters and function values

• Inside PL/SQL block

BEGIN
dbms_output.Put_Line('Number of countries: ' ||

TO_CHAR(CountryCity('G')));
END;

• Postgres: Server Programming interface (SPI)

08-PLSQLetc-48© HS-2010

PackagesPackages
PL/SQL packages:

define API and its implementation for related
functions and procedures

CREATE PACKAGE MyMondial AS
TYPE myCity City%ROWTYPE;
Cursor myC RETURNS myCity;
FUNCTION BigCites(countryName VARCHAR) RETURN NUMBER;
PROCEDURE NewCityInsert(newC myCity);

END MyMondial;

CREATE PACKAGE BODY MyMondial AS
myVar NUMBER; -- local to package!
CURSOR myC AS SELECT * FROM City WHERE.. –-full def.
FUNCTION BigCities(...)AS ... –- full definition
PROCEDURE NewCityInsert(newC myCity) AS...; --full def.

BEGIN ... -- initializations
END MyMondial

The API for
this package

Implementation

9

08-PLSQLetc-49© HS-2010

PL/SQL: etcPL/SQL: etc

Exception handling

EXCEPTION
WHEN <exceptionname> [OR…]

THEN <SQL / PL/SQL – statement sequence>;
WHEN OTHERS

THEN <SQL /PL/SQL – statement sequence>

• Flexible concept comparable with Java exceptions.
• Different semantics for special situations.

(see manual)

08-PLSQLetc-50© HS-2010

Realistic PL/SQL (Oracle) exampleRealistic PL/SQL (Oracle) example
-- very simple purchase transaction
CREATE PROCEDURE Purchase() AS

qty_on_hand NUMBER(5);
BEGIN

SELECT quantity INTO qty_on_hand FROM inventory
WHERE product = 'TENNIS RACKET' --
FOR UPDATE OF quantity;

IF qty_on_hand > 0 THEN -- check quantity
UPDATE inventory SET quantity = quantity - 1

WHERE product = 'TENNIS RACKET';
INSERT INTO purchase_record

VALUES ('Tennis racket purchased', SYSDATE);
ELSE

INSERT INTO purchase_record
VALUES ('Out of tennis rackets', SYSDATE);

END IF;
COMMIT;

END;
/

08-PLSQLetc-51© HS-2010

PL/PL/pgSQLpgSQL in a nutshellin a nutshell

Example
CREATE FUNCTION foo (acc integer, amount numeric) RETURNS

numeric AS
B UPDATE bank SET balance = balance - amount

WHERE accountno = acc;
SELECT balance FROM bank WHERE accountno = acc;

B LANGUAGE SQL;

- Many SQL-statements in one call: performance gain
- value returned: first row of last query result
- Compound result type and table valued functions allowed
⇒ Table valued function in FROM clause

$ quoting of PG

08-PLSQLetc-52© HS-2010

SQL based functionsSQL based functions

Table result types

CREATE FUNCTION getfoo(integer) RETURNS SETOF movie AS $$
SELECT * FROM movie
WHERE m_id = $1;

$$ LANGUAGE SQL;

SELECT title, director FROM getfoo(93) AS m1;

placeholder for parameters

Alias for returned table value

08-PLSQLetc-53© HS-2010

PL/PL/pgSQLpgSQL in a nutshellin a nutshell

Example
CREATE OR REPLACE FUNCTION rand (hi integer,low int4)
RETURNS integer AS
$BODY$
-- no DECLARE
BEGIN
RETURN low + ceil((hi-low) * random());

END;
$BODY$
LANGUAGE 'plpgsql' VOLATILE;

Here go the variable
declarations

Standard functions:
random() returns
uniformly distributed
values 0<= v <= 1.0

Function may not return the same
value for same argument:
hint for optimization

$-quote, useful for
string literals

08-PLSQLetc-54© HS-2010

PL/PL/pgSQLpgSQL in a nutshellin a nutshell
CREATE OR REPLACE FUNCTION video.randtab(count integer,

low integer, hi integer)
RETURNS integer AS
$BODY$

DECLARE c INTEGER :=0;
r INTEGER;

BEGIN
CREATE TABLE randomTable (numb integer, randVal

integer);
FOR i IN 1..count
LOOP
INSERT INTO randomTable VALUES(i, rand(low,hi));

END LOOP;
RETURN (SELECT MAX(numb) FROM randomTable);

END;
$BODY$
LANGUAGE 'plpgsql' VOLATILE;

variable declarations

side effects!

10

08-PLSQLetc-56© HS-2010

PL/PL/pgSQLpgSQL in a nutshellin a nutshell

Evaluation of functions
Within a select statement:
SELECT randtab(100,0,9)

Without result value
PERFORM my_function(args)

EXECUTE query plan
EXECUTE PROCEDURE emp_stamp();

Note: Functions may have side effects!
No (pretty) PRINT facilities

workarounds: SELECT 'This is my heading'
- put PLSQL-call into shell script
- use Programming language for I/O

08-PLSQLetc-57© HS-2010

8.5 Triggers8.5 Triggers

Triggers: Event – Condition – Action rules
Event: Update, insert, delete (basically)
Condition: WHEN < some conditon on table>
Action: some operation (expressed as DML, DB- Script language

expression, C, Java,…)

Triggers make data base systems pro-active
compared to re-active (and interactive)

08-PLSQLetc-58© HS-2010

Triggers: simple exampleTriggers: simple example

Basic Functionality

CREATE TRIGGER myTrigger
BEFORE [AFTER] event
ON TABLE myTable FOR EACH ROW { | STATEMENT}

EXECUTE PROCEDURE myFunction(myArgs);

event: UPDATE, INSERT, DELETE
Semantics

Execute the function after each event
once for each row changed or once per statement

e.g. per statement: write log-record
per row: write new time-stamp

08-PLSQLetc-59© HS-2010

AnatomyAnatomy of a of a triggertrigger (Oracle) (Oracle)
CREATE OR REPLACE TRIGGER movie_DVD_Trigger
INSTEAD OF INSERT ON T_M
FOR EACH ROW

DECLARE m_row NUMBER;
-- local variable
BEGIN
SELECT COUNT(*) INTO m_row
FROM Movie
WHERE m_id = :NEW.mid;

IF m_row = 0
THEN RAISE_APPLICATION_ERROR(-20300, 'Movie does not exist');
ELSE INSERT INTO DVD (DVD_id, m_id) VALUES (:NEW.DVD_id,
:NEW.mid);

END IF;
End;

Action
(here:
PL/SQL)

Semantics: trigger for
each row affected
(not only once per
excecuted statement)

CREATE view T_M
AS SELECT m.m_Id AS mid, DVD_id, title
...

08-PLSQLetc-60© HS-2010

UsingUsing an INSTEAD OF TRIGGERan INSTEAD OF TRIGGER

Without the trigger:
Insert into T_M (mid, DVD_id) VALUES(93,14);

*
FEHLER in Zeile 1:
ORA-01779: Kann keine Spalte, die einer Basistabelle zugeordnet

wird, verändern

Using the INSTEAD OF TRIGGER

Insert into T_M (mid, DVD_id) VALUES(93,14)
1 Zeile eingefügt

Insert into T_M (mid, DVD_id) VALUES(99,14)
*

FEHLER in Zeile 1:
ORA-20300: Movie does not exist
ORA-06512: in "VIDEODB.MOVIE_DVD_TRIGGER", Zeile 8
ORA-04088: Fehler bei der Ausführung von Trigger

'VIDEODB.MOVIE_DVD_TRIGGER'

08-PLSQLetc-61© HS-2010

Triggers...Triggers...

... are a powerful DB programming concept
Allow complex integrity constraints
Used in most real-life database applications
Sometimes dangerous:

CREATE TRIGGER myTrigger1
BEFORE INSERT
ON TABLE myTable1 EXCECUTE myfct (...)

-- inserts some record into myTable2

CREATE TRIGGER myTrigger2
BEFORE INSERT
ON TABLE myTable2 EXCECUTE myfct (...)

-- inserts some record into myTable1

Cycle!

11

08-PLSQLetc-62© HS-2010

8.6 SQL3: Abstract data types8.6 SQL3: Abstract data types

"ADT is a data type defined by the operations allowed on its
values"

CREATE TYPE <name> (
<list of component attributes>
<declaration of EQUAL, LESS>
< declaration of more methods>)

supported only by a few DBS
ADT equivalent to 'object type' (Oracle)
... or functions may be defined stand-alone (PG)

08-PLSQLetc-63© HS-2010

Functions, methods, proceduresFunctions, methods, procedures

Method interface in an object type definition
(Oracle flavor)

CREATE TYPE LineType AS OBJECT
(end1 PointType,
end2 PointType,
MEMBER FUNCTION length(scale IN NUMBER) RETURN

NUMBER,

PRAGMA RESTRICT_REFERENCES(length, WNDS));
CREATE TABLE Lines (lineID INT, line LineType);

Predicates defined over functions
SELECT lineID, k.length (1.0) FROM Lines k
WHERE k.length(1.0) > 8.0

08-PLSQLetc-64© HS-2010

Defining methods (Oracle)Defining methods (Oracle)
Implementation of a method signature*
CREATE TYPE BODY LineType AS
MEMBER FUNCTION length(scale NUMBER) RETURN NUMBER IS
BEGIN
RETURN scale * SQRT((SELF.end1.x-

SELF.end2.x)*(SELF.end1.x-SELF.end2.x) +
(SELF.end1.y-SELF.end2.y)*(SELF.end1.y-
SELF.end2.y));

END;
END;

Methods may be defined in Java or PL/SQL (Oracle)
Functions: independent of types, no SELF attribute

*compare: java interface vs. class

see: Ullman, J.: Object-Relational Features of Oracle
http://www-db.stanford.edu/~ullman/fcdb/oracle/or-objects.html

08-PLSQLetc-70© HS-2010

SummarySummary

• Extensions of relational model popular
• SQL 3 keeps extensions under control – somehow
• Object-relational extensions more important than

object oriented database systems
• Extensions basically are:

structured types and set types
functions, written in a db script language or

some programming language
active elements: triggers (SQL 3) , rules (only PGres)

