
1

5 The Relational Data Model: 5 The Relational Data Model:
Algebraic operations on tabular dataAlgebraic operations on tabular data

5.1 Foundation of relational languages
5.2 Relational Algebra operations
5.3 Relational Algebra: Syntax and Semantics
5.4. More Operators
5.5 Special Topics of RA

Kemper / Eickler: 3.4, 4.6+7; Elmasri /Navathe: chap. 74-7.6,
Garcia-Molina, Ullman, Widom: chap. 5, D. Maier Theory of RDB (Online Book -> Lit.)

6 The Relational Data Model: Logic foundation of Data 6 The Relational Data Model: Logic foundation of Data
ManipulationManipulation Not presented in class!

07-DBS-RLang-2© HS-2010

ContextContext
Database Design:
- developing a relational

database schema

Using the Database
from application progs

Physical Schema

Part 2: DWH, IR .. Transactions

Pa
rt

 1
:D

es
i g

ni
ng

 a
nd

 u
s i

ng
 d

a t
ab

as
e

Data handling in rela-:
tional databases
-Algebra, -Calculus, SQL/DML

Design:
- formal theory

07-DBS-RLang-3© HS-2010

5.1 Foundation of relational languages5.1 Foundation of relational languages
Data Model:

Language for definition and
handling (manipulation) of data

Languages for data handling:
– Relational Algebra (RA) as a semantically well

defined applicative language
– Relational tuple calculus (domain calculus):

predicate logic interpretation of data and queries
– SQL / DML ('Sequel') – based on RA and calculus

SQL: very important in practice

07-DBS-RLang-4© HS-2010

Relational LanguagesRelational Languages
Goal of DB language design:
Simple and powerful expressions for querying a

database

Language should be declarative ("descriptive")

Historically: “Make query formulation ‘as easy as in natural
language’ “

More serious: Queries should be independent of
representation of data and implementation aspects
(Codd's principle).

07-DBS-RLang-5© HS-2010

Relational AlgebraRelational Algebra
Algebra objects:

Relations (tables)
R1(a1,...,an), Rn(b1,...,bm) over domains ai, bj,..

Algebra operators:

Operators : transform one or more relations into a relation:
τ : Ri1(...) ×... × Rik(...) → Rim(...)

Relational Algebra: only unary and binary operators

07-DBS-RLang-6© HS-2010

Relational AlgebraRelational Algebra

City (name r_id popul ..)

Oslo .. 1.31

Berlin B 3.47...

Vienna .. 957

Country (c_id r.id capital..)

'GER' 'B' Berlin

'AU' 'V' Vienna

...

"Name and population of capital of 'Germany' "

NAME POPULATION
----------------------------------- ----------------------
Berlin 3472009

2

07-DBS-RLang-7© HS-2010

Basic Basic OperationsOperations informallyinformally ((fromfrom chapterchapter 4)4)

(Renaming)

Projection

Selection

∪Union

-
Difference

Cross Product A
B
C

I
II

A
B
B
C
C

II
I
II
I
II

A I

07-DBS-RLang-8© HS-2010

Relational Algebra OperatorsRelational Algebra Operators

{ Projection π,
(Extended) Cross product × ,
Selection σ,
Union ∪ ,
Set difference \ ,
Renaming ρ }

is a base of relational operators.
Other operators like join () can be expressed
by π,σ,ρ , ×, ∪

All operators can be expressed in SQL

07-DBS-RLang-9© HS-2010

5.2 Relational Algebra operations5.2 Relational Algebra operations

Basic terminology (rep. from above)

Universal set of attributes A , ai ∈A has domain D(ai)

Relation Schema: named n-tuple of attributes
RS = R (a1,...,an), {a1,…an} ⊆ A

Schema operator Σ applied to relation R results in
the type signature of R: Σ (R) = RA

Relational Database Schema: set of relation
schemas

Database Relation R: subset of D(ai1) X ...X D(ain)

07-DBS-RLang-10© HS-2010

Projection Projection
Let Σ(R) = B’, B ⊆ B’

Projection πB (R) of R on B:
Set of rows from R with the columns not in B eliminated

No duplicates in πB (R) (in theory!)

project

B'

B

Def.: πB (R) = {r restricted to B | r ∈ R}
= {r’ | there is a tuple r ∈ R such that

r’ is the restriction of r to the attributes in B}

07-DBS-RLang-11© HS-2010

Projection (2)Projection (2)

Properties of projection:

• |R| ≥ |πB(R)|, B ⊆ Σ(R)

• B contains a key of R fl |πB (R)| = |R|

Useful for estimating the size of query results
Important for optimization.

SQL equivalent:
SELECT DISTINCT b1, b2,…bn FROM R

07-DBS-RLang-12© HS-2010

Extended Cross Product XExtended Cross Product X

–

R (a1 a2)

1 'A'

5 'Z'

S (b1 b2)

3 'A'

1 'B'

X

T ((a1 , a2) (b1 a2))

(1 'A') (3 'A')

(5 'Z') (3 'A')

(1 'A') (1 'B')

(5 'Z') (1 'B')

=

Def.: (Extended) Cross product R X S =
{(a1,...an,b1,...,bm) | (a1,...,an) ∈ R, (b1,...,bm) ∈ S}

T (a1 , a2 b1 b2)

(1 'A' 3 'A')

(5 'Z' 3 'A')

(1 'A' 1 'B')

(5 'Z' 1 'B')

=

SQL equivalent:
SELECT …
FROM R,S

SELECT …
FROM
R CROSS JOIN S

3

07-DBS-RLang-13© HS-2010

Renaming Renaming ρρ

Def.: Renaming
Attributes: if Σ(R) ∩ Σ(S) != ∅

ρ <attrname> ← <newAttrname> (<relname>)

Relations :
ρ <newname> (<relname>)

R (a1 a2)

1 'A'

5 'Z'

S (b1 a2)

3 'A'

1 'B'

X

Σ (ρ a2 ← b2 (S)) = {b1, b2}
Dot notation R.a2, S.a2 or explicit renaming

07-DBS-RLang-14© HS-2010

RenamingRenaming
ρ <newname> (<relname>)
Relation <relname> is renamed to <newname> in the
context of expression

π Sub.name (σ Q (σ P (Employee X (ρSub (Employee)))))
where P = "Employee.name = 'Miller' "

Q = "Sub.boss = Employee.id "

ρ <attrname> ← <newAttrname> (<relname>)
Attribute <attrname> of relation <relname> is renamed
to <newAttrname> in the context of expression

SELECT … FROM Employee, Employee Sub
WHERE …

07-DBS-RLang-15© HS-2010

Set operationsSet operations
r (a1 a2)

1 'B'
5 'A'
6 'B'

S (a1 a2)

'A' 2

'B' 5

∪
?

Def.: R and S are called union-compatible
if the domains of Σ (R) = Σ (S)

R , S union-compatible,
then set union and set difference
R ∪ S and R \ S as defined on mathematical sets

SELECT …. FROM R …
{UNION | EXCEPT| INTERSECT}
SELECT … FROM S …

07-DBS-RLang-16© HS-2010

Selection Selection σσ

"Find cities with population more than 1 Mill .

Selection of tuples from a table R according
to a predicate P defined on R

Select P

Def.: Selection σP (R)
Row predicate P:: R → {true, false}
σP(R) = {r | r∈R, P(r) = true}

07-DBS-RLang-17© HS-2010

PredicatesPredicates

Row predicates:
inductively defined by primitive predicates
and boolean operators and, or not

Def.: Primitive (simple) predicates
Let a, b be attributes, w value from dom (a)

a θ b and a θ w are primitive predicates
where θ ∈ { =, !=, <, <=, >, >=}

Primitive predicates compare
either an attribute and a value
or two attributes

07-DBS-RLang-18© HS-2010

Row predicatesRow predicates

Syntax for (row) predicates

(i) Primitive predicates are predicates
(ii) If Q, Q’ are predicates,

then Q ∧ Q’ , Q ∨ Q’ and ¬ (Q)
are predicates

(iii) Operator preference and brackets as usual
(iv) There are no other predicates

"Find countries with more than 5 Mill population
and GNP <= 500

4

07-DBS-RLang-19© HS-2010

Selection of rowsSelection of rows
Note:
Selection operator selects the row with all attributes:

Σ(R) = Σ (σ P (R))
Size of result depends on selectivity of P

selectivity := | σ P (R) | / | R |
important for optimization

SQL equivalent (but dupl.):
SELECT … FROM R
WHERE <row predicate P >

Note:
SQL block allows
to combine
π, ×, σ

07-DBS-RLang-20© HS-2010

Combining operatorsCombining operators

'Find Countries which only consist of its capital and the population > 10000'
(Monaco is an example, Vatican not)

Country(C_id,name,...,population, ..)

Select Q Select P +Proj.

Country City
π name (σ P (σ Q (country X City))

where Q = "population > 10000 "

P = "capital = City.name ∧
Country.pop = City.pop ∧.. ∧

SELECT Country.name FROM Country, City
WHERE C_id = City.C_id

and capital = City.name and R_id = City.R_id
and Country.population = City.population
and Country.population > 10000

07-DBS-RLang-21© HS-2010

SQL99 syntaxSQL99 syntax

SELECT Country.name
FROM Country JOIN City ON C_id = City.C_id

and capital = City.name
and R_id = City.R_id

WHERE Country.population = City.population
AND Country.population > 10000

07-DBS-RLang-22© HS-2010

5.3 Relational Algebra: Syntax and Semantics 5.3 Relational Algebra: Syntax and Semantics

Syntax of (simple) Relational Algebra defined inductively :
(1) Each table identifier is a RA expression
(2) ρ A (B), ρ s ← y (A) are RA expressions where

A,B table identifiers, s, v attribute identifiers

(3) If E and F are RA expressions then
π D (E), σ P (E), E X F, E ∪ F, E \ F are RA expressions (if

union-compatible etc.)
where D ⊆ Σ(E)

(4) These are all RA expressions

07-DBS-RLang-23© HS-2010

Semantics of Relational AlgebraSemantics of Relational Algebra

val is a function which assigns to each relational algebra expression a
result table:

val ('R') = R
"The value of a relation name is the relation (table)"

val ('τ (E)') = τ (val (E))
where τ is some unary rel. Operation like π
"The value of an unary relational operator applied to an

relational algebra expression E is the result of applying the
operator to the value of E "

val ('E ω F') = val (E) ω val (F)
where ω is some binary operator like X
"The value of an unary relational operator applied to a

relational algebra expression E is the result of applying the
operator to the value of E"

07-DBS-RLang-24© HS-2010

Remarks on RA and SQLRemarks on RA and SQL

• Rewrite rule
σQ ∧ P (R) = σ Q (σ P (R))

implicitly used for SQL expression:
SELECT… FROM .. WHERE P (WHERE Q))
does not conform to SQL syntax

• RA results are sets (relations),
SQL results are bags (duplicates allowed)

To eliminate duplicates write:

SELECT DISTINCT … FROM…
WHERE …P AND Q ...

5

07-DBS-RLang-25© HS-2010

RenamingRenaming

Renaming , why?

Example: Employee(id, name, boss, …)

Find subordinates of 'Miller'

π name (σ P (σ Q (Employee) X Employee)))
where P = "Employee.name = 'Miller' "

Q = "Employee.boss = Employee.id "

RA is a declarative language: a name denotes
the same relation / attribute within one expression

07-DBS-RLang-26© HS-2010

EvalutionEvalution example: one table example: one table –– two rolestwo roles

Employee
name

Abel
Bebel
Cebel
Miller
Debel

boss

NULL
005
005
001
001
....

id

001
002
004
005
006

Employee
name

Abel
Bebel
Cebel
Miller
Debel

boss

NULL
005
005
001
001
....

id

001
002
004
005
006

Employee

name
Abel
Abel

Bebel
Bebel

…
Miller
Miller
Miller
Miller
Miller

…
Debel
Debel

boss
NULL
NULL

005
005
…

001
001
001
001
001
…

001
001

id
001
001
…

002
002
…

005
005
005
005
005
..

006
006

Employee

name
Abel
Bebel

…
Abel
Bebel

…l
Abel
Bebel
Cebel
Miller
Debel

…
Miller
Debel

boss
NULL
004

NULL
005
…

Null
005
005
001
001
…

001
001

id
001
002
…

001
002
…

001
002
004
005
006
…

005
006

Sub

Bebel
Cebel

π name

Sub

ρSub (Employee)

σQ
σP

Renaming

07-DBS-RLang-27© HS-2010

5.4 Relational Algebra5.4 Relational Algebra: : MoreMore OperatorsOperators
Some operation sequences occur frequently

define compound operators

Important concept
Def.: Join (θ-join)

R, S relations, R S

= {(a1, ...an, b1,...bm) | P(a1,...an,b1,...bm) is true}
= σP (R X S)

where P is a (boolean) predicate composed of
primitive predicates of the form
a θ b , a ∈Σ(R), b ∈ Σ(S), θ ∈ { =, ≠, <, <=, > >=}

(P is the join predicate)

P

07-DBS-RLang-28© HS-2010

1 3 A

2 2 B

1 2 C

S(a c d)

Relational Algebra Relational Algebra JoinJoin

1 A 2

2 A 2

3 C 1

R(a b c)

R.a < S.c ∧ R.b=S.d
R S = 1 A 2 1 3 A

2 A 2 1 3 A The result usually
does not have a
name

1 A 2 1 3 A

1 A 2 2 2 B

1 A 2 1 2 C
2 A 2 1 3 A
2 A 2 2 2 B
2 A 2 1 2 C
3 C 1 1 3 A
3 C 1 2 2 B
3 C 1 1 2 C

R X S

Note: exactly the same as
taking the set of all pairs of
R and S rows and checking
the predicate subsequently

SELECT …
FROM R JOIN S on (R.a<S.d)

AND (R.b = S.d)
WHERE …

07-DBS-RLang-29© HS-2010

Relational Algebra : Relational Algebra : more operatorsmore operators

– Most important type of join: all primitive predicates in
P compare equality of column values of two rows at
a time : P ≡ ∧ R.xi = S.yi , {xi} ⊆ Σ(R), {yi} ⊆ Σ(S),

– Implements the "values as pointers" concept of RDB
for foreign keys, but is more general.

Example using foreign key: Find Country name title of region
having R_id = 'VAR'

π name (Country σ R_id='VAR' (Region))
c_id=c_id

P
Equijoin: equality comparison

07-DBS-RLang-30© HS-2010

Relational Algebra: renaming attributesRelational Algebra: renaming attributes

– Renaming required, if identical column names
– No canonical projection of columns if columns

are redundant

(R S) =
R.y = S.y

1 a 11

5 b 12

6 a 12

R (x, y, z)

7 a 23

6 c 15

9 a 3

S(x', y, z')

1 a 11 7 a 23

1 a 11 9 a 3

6 a 12 7 a 23

6 a 12 9 a 3

R (x, y, z , x' , y, z')

6

07-DBS-RLang-31© HS-2010

Relational Algebra: Relational Algebra: NaturalNatural joinjoin

1 A 2

2 A 2

3 C 1

R(a b c)

1 3 A

2 2 B

1 2 C

S(a c d)

2 A 2 B
1 A 2 CR S =

R.a, R.b, R.c, S.d

R S = π Σ(R) ∪ Σ(S) (σ P (R X S))

where P ≡ ∧ R.x = S.x, x ∈ Σ(R) ∩ Σ(S)

Def.: Natural Join R S :
equijoin over all literally identical column names
of R and S and projection of redundant columns. Join
predicate implicit.

SELECT … FROM R NATURAL JOIN S

07-DBS-RLang-32© HS-2010

Relational algebra: outer joinRelational algebra: outer join

Motivation: only tuples of S participate in a join
R S, which have a "counterpart" in R.

Customer(c_no,name,f_name, zip, city)
Phones (phoneNo, c_no)

"Print telephon list of customers"

π name, phoneNo (Customer Phones)

Customers without phoneNo will not appear

07-DBS-RLang-33© HS-2010

Def.: R S =
R S ∪ { (r1,…rn, NULL,,…NULL)| (r1,…rn) ∈ R and

for all (s1,..,sm) ∈ S: P (r1,…rn, s1,..sm) = FALSE }

P

P

Relational Algebra: outer joinRelational Algebra: outer join

Left outer join R S

Includes (r, NULL,…NULL) – if there is no join partner for r ∈ R

1 A 2

2 A 2

3 C 1

1 3 A

2 2 B

1 2 C

R.a < S.c ∧ R.b=S.d 1 A 2 1 3 A
2 A 2 1 3 A
3 C 1 - - -

=

P

Outer join typically extension of equijoin

a b c a c d

07-DBS-RLang-34© HS-2010

Relational Algebra: outer joinRelational Algebra: outer join

Right outer join R S
Includes (NULL,…NULL, s) – if there is no join partner for s ∈ S

Full outer join: union of left and right outer join

1 A 2

2 A 2

3 C 1

1 3 A

2 2 B

1 2 C

R.a < S.c ∧ R.b=S.d 1 A 2 1 3 A
2 A 2 1 3 A
- - - 2 2 B
- - - 1 2 C

=

1 A 2

2 A 2

3 C 1

1 3 A

2 2 B

1 2 C

R.a < S.c ∧ R.b=S.d 1 A 2 1 3 A
2 A 2 1 3 A
3 C 1 - - -
- - - 2 2 B
- - - 1 2 C

=

a b c a c d

07-DBS-RLang-35© HS-2010

Def.: Semjoin
R S = Π Σ(R) (R S)

Left semijoin is the subset of R, each r of which has
a corresponding tuple s from S in the join.

Relational Algebra: More operatorsRelational Algebra: More operators

Typically extension of equijoin or natural join

1 A 2

2 A 2

3 C 1

1 3 A

2 2 B

1 2 C

R.a = S.c ∧ R.b=S.d 1 A 2=

R(a b c) S(a c d) (a b c)

Right Semijoin defined symmetrically :
R S = Π Σ(S) (R S)

P P

07-DBS-RLang-36© HS-2010

Relational Algebra: Base operatorsRelational Algebra: Base operators

Base
Set of operators which allow to express all other operators

Means: every RA expression may be expressed only with
these operators

Example: R S = σ P (R X S)
P

Relational operators
π, σ, μ , \ and ∪ form a basis of relational
algebra operators

7

07-DBS-RLang-37© HS-2010

Some rewrite rules for RASome rewrite rules for RA
Properties of selection and projection

σ P (σ Q (R)) = σ Q (σ P (R))
σ P (σ P (R)) = σ P (R)
σ Q ∧ P (R) = σ Q (σ P (R)) = σ Q (R) ∩ σ P (R)
σ Q ∨ P (R) = σ Q (R) ∪ σ P (R)
σ ¬ P (R) = R \ σ P (R), if P(r) defined for all r (no NULL!)

if X ⊆ Y ⊆ Σ(R) then πX(πY(R)) = πX(R)
if X, Y ⊆ Σ(R) then πX(πY(R)) = πX ∩Y(R) = πY(πX(R))
attr(P) ⊆ X ⊆ Σ(R) then πX(σ P(R)) = σ P (πx(R))

where attr(P) denotes the set of attributes occuring in P

07-DBS-RLang-38© HS-2010

Relational Algebra operator treesRelational Algebra operator trees
Algebraic Optimization

– Evaluation of RA expressions in canonical form
π …. (σ P (R1 × R2 × … × R n))
is very inefficient

– How to speed up evaluation of RA (and SQL)
expressions?

– Example: Two tables R and S with n and m tuples
Worst case complexity of :

σ P (R S)
is O(m*n)

– Interchange of select and join may result in O(n+m)
time σP (R) S depending on the join algorithm

07-DBS-RLang-40© HS-2010

Relational Algebra: table predicatesRelational Algebra: table predicates

Row predicates:
P defined over rows (or pairs of rows)

Table predicates
Example: find all countries which are neighbors of all
european Countries with population more than 78 Mill
Cannot be answered by comparing individual rows

Predicates with universal quantifier are table predicates
e.g. Find y0 such that P(x) is true:

P(x) ≡ ∀x (PopGT70MillEurope (x) ⇒ (Q(x,y0,))
Q(x,y) ≡ x is neighbor of y

• Express table predicates with base operators?

07-DBS-RLang-41© HS-2010

Relational Algebra: DivisionRelational Algebra: Division

ALP4 77

PSem 77

SW 55

SWT 12

SWT 77

ALP4 25

DBS 77

DBS 12

Course(id,title,semester)

ALP4

DBS

SWT

PSem

(σ semester=B4 Course(id,title, semester))

77Result:

Find MatrNo of students who take all courses
offered for semester B4.

B4

B4

B4

B4

F ≡ π id

Relational Division
Informally T . /. F is the set of all tuples r of T projected on
attributes not belonging to F such that {(r)} X F ⊆ T

T ≡ Course_Stud(cid,matr#)

07-DBS-RLang-42© HS-2010

Relational Division: exampleRelational Division: example

ALP4

DBS

SWT

PSem

77

55

12

25

μ

⇒ (77) ∈ T./.F, {12,55,25} ⊄ T./.F

T

./.
F

ALP4 77

PSem 77

SW 55

SWT 12

SWT 77

ALP4 25

DBS 77

DBS 12

ALP4

DBS

SWT

PSem

77

55

12

25

ALP4

DBS

SWT

PSem

⊆

ALP4 77

PSem 77

SW 55

SWT 12

SWT 77

ALP4 25

DBS 77

DBS 12

8

07-DBS-RLang-43© HS-2010

Relational Algebra: Relational Algebra: DivisionDivision

Def.: Relational Division T . /. F
Attributes of F are a subset of the attributes of T:

- Σ(F) ⊂ Σ(T)
- Signature of T ./. F is D = Σ(T) \ Σ(F)

T ./. F := { t’ | t’ ∈ π D (T) ∧ (∀ s ∈ F) (∃ t ∈ T) π Σ(F) ({t}) =
s ∧ π D ({t}) = t' }

Simulates a finite "universal" quantification:
"For all items x in the table holds the predicate P"

07-DBS-RLang-44© HS-2010

Relational Algebra DivisionRelational Algebra Division

T ./. F may be defined in terms of other relational operators

Proof: Assignment
Property of relational division:

Let D = Σ(T) \ Σ(F) ,
if D contains the key of T and |F| > 1 then T ./. F = ∅

The "missing" tuples of T

Building the complement

D = Σ(T) \ Σ(F)

T ./. F = π D (T) \ (π D (π D (T) X F) \ T)

07-DBS-RLang-45© HS-2010

5.5. Relational completeness5.5. Relational completeness
Completeness

– A DB language L is called relational complete, if
every RA expression can be expressed in L

– Are there any operations on relations, which cannot
be expressed by a finite RA expression (select,
project, product or join; SPJ) ?

– Yes: transitive closure of a relation cannot be
expressed in this way

Pred Descend

Paul Mary

Mary Peter

John Bill

Peter George

No RA expression to find all
decendents of 'Paul'.

Recursion is missing!

07-DBS-RLang-46© HS-2010

What is missing in RAWhat is missing in RA
– Arithmetic operators,
– many practically important operators like grouping of

results:
"List Students and number of courses they take"

– More Predicates on tables (not rows)

Matr# NoOfCorses
77 4
55 1
12 2
25 1

Anyway relational algebra important conceptual basis
for query languages and query evaluation

ALP4 77

PSem 77

SW 55

SWT 12

SWT 77

ALP4 25

DBS 77

DBS 12

07-DBS-RLang-47© HS-2010

RA for optimizationRA for optimization
An relational algebra operator tree is the data structure

representing a RA expression
Algebraic optimization: systematic interchange of operation

according to the laws of RA
Does not change time complexity in general,

but “makes n small”.
Implementation of Algebraic Optimization by transformation of

the operator tree
– Systematic treatment of different optimization

techniques course "DB-Tech"

07-DBS-RLang-48© HS-2010

SummarySummary

Relational algebra: algebra on tables
Operators: project, select, cartesian product, union, set

difference, (rename)
Several compound operators : join, outer join, semi-join,

division
Serves as a basis for relational DB languages
No recursion not computationally complete
Base of SQL
Used for optimization by operator tree transformation

9

6. The Relational Data Model6. The Relational Data Model (*) (*) : :
Logic foundation of data manipulationLogic foundation of data manipulation

-- in a nutshell in a nutshell --

6.1 Logical foundations of the RDM
6.2 Relational Calculus Languages
6.2.1 Tuple calculus
6.2.2 Brief overview of domain calculus
6.3 Equivalence of relational languages

Kemper / Eickler: Chap 3.5 , Elmasri/ Navathe: chap. 9.3+9.4
Garcia-Molina, Ullman, Widom: chap. 10,

(*) not discussed in class, not required for exam -

see also reader: logic&databases.pdf

07-DBS-RLang-50© HS-2010

6.1 Logical foundations of the RDM6.1 Logical foundations of the RDM
Predicate logic (PL) view of a DB

Database may be seen as a set of facts:
• r = (r1,...,rn) ∈ R for some relation R
• assign a predicate R’ to R which is

defined:
R’(r) = TRUE <=> r ∈ R
R' is a called a database predicate

Example:
Movie (25, Amistad, History, 1, Spielberg, 01.05.97)
is a fact, "Movie" is a db predicate

07-DBS-RLang-51© HS-2010

RDM and predicate logicRDM and predicate logic
Restrictions on PL formula

– only database predicates and comparison predicates
(>, <, =, <=, >=, <>)

– Variables represent tuples (!)
Open and closed PL formula

– Closed : no free variables, i.e. every variable is
bound by a quantifier.
Example: see above

– Open: there are free variables, i.e not closed
– Example:

∃ t (Tape(t) ∧ t.movieId = m.mId ∧ t.format='DVD')
Variable m is free in the formula

07-DBS-RLang-52© HS-2010

Open formula as queriesOpen formula as queries
Open formula

∃ t (Tape(t) ∧ t.movieId = m.mId ∧ t.format='DVD')
An open formula, the free (tuple) variable is m

∃ m (Movie(m) ∧ ∃ t (Tape(t) ∧ t.movieId = m.mId ∧
m.mId='4711' ∧ t.format='DVD'))

and also

∃ m (Movie(m) ∧ ∃ t (Tape(t) ∧ t.movieId = m.mId
∧ t.format='DVD'))

are closed and can be evaluated to TRUE | False..

07-DBS-RLang-53© HS-2010

Tuple calculusTuple calculus

Interpret { (s.1) | P(x,y,…,s) } as:
all rows s which satisfy P(..)

s.1 means first component of (tuple) variable s

{ (s.1) | ∃ m (Movie(m) ∧ ∃ t (Tape(t) ∧ t.movieId = m.mId
∧ s.1 =m.title ∧ t.format='DVD'))

Formula is open because of s1

This is a declarative statement for the set given by the
projection of all those s onto the first component, which
make the predicate on the rifht hand side of | true.

07-DBS-RLang-54© HS-2010

Open formula as queriesOpen formula as queries
– Implicit requirement: the database predicate of the

variables must be known
Technically speaking: the variables must be range
coupled

Example
– {x.3 | Movie(x) ∧ x.title = P(...,x,...)}
– ' x is a variable, which represents tuples of Movie',
– Query result is the third component of those movie

tuples which make P true.

10

07-DBS-RLang-55© HS-2010

6.2 Calculus Languages6.2 Calculus Languages
Predicate logic as a query language

Called "calculus" languages for historical reasons
Two types of languages
Domain calculus

All variables represent typed values (or
domains) of the relations of the DB (domain
variables)

Tuple calculus
The variables in expressions represent a row
(tuple) of a relation (tuple variable)

07-DBS-RLang-56© HS-2010

Tuple CalculusTuple Calculus
Tuple Calculus language

– Defined over
• predicates R, S, T,... which correspond to database relations
• set A of attribute names { a, b,.. }
• values from the domains of A
• tuple variables r,s,t,...

– A tuple calculus expression (with one free variable)
has the form

{s | F(s)}
where s is a tuple variable and F(s) a formula in which
s occurs free

07-DBS-RLang-57© HS-2010

ExampleExample

{(s.1,s.2) | ∃ m (Movie(m) ∧ m.title = s.1 ∧ and
m.year> '1992' ∧ m.year=s.2)}

– i.e. all movie and year of production titles produced
after 1999

07-DBS-RLang-58© HS-2010

Tuple calculusTuple calculus
• s is called the target list
• s is not range coupled and its components are denoted

s.1, s.2,….s.k, if there are k output components
• s.i has to be connected in F to some range coupled variables

Example:
{(s.1,s.2) | ∃ m (Movie(m)
∧ m.title = s.1 ∧ and m.year> '1992' ∧ m.year=s.2)}

i.e. all movie and year of production titles produced after 1999

07-DBS-RLang-59© HS-2010

Tuple calculusTuple calculus

Simplification
{(s.1,s.2) | ∃ m (Movie(m)

∧ m.title = s.1 ∧ and m.year> '1992' ∧ m.year=s.2)}

Substitute "logical variables" s.i by row variables
{(m.title, m.year) | ∃ m (Movie(m) ∧ and m.year> '1992')}

Eliminate existential quantifiers : "all free variables are
existentially quantified" … at least those in target list.

{(m.title,m.year) | Movie(m) ∧ and m.year> '1992' }

Range coupling of (row) variable m

07-DBS-RLang-60© HS-2010

Tuple calculus and relational algebraTuple calculus and relational algebra
Tuple calculus expression for algebra operators

– Projection, cross product
π a,b (R X S) ≡
{ (x.a, y.b) | R(x) ∧ S(y)}

– Join R S
P

– ≡ {r.e,…,t.k | R(r) ∧ S(t) ∧ P}

– Selection
e.g. σ (s.a = v ∨ s.a = w) ∧ s.b = s.c (R)
≡ {(s.a,….,s.k)| R(s) ∧ (s.a = v ∨ s.a = w) ∧ s.b

= s.c }

More examples in the class

11

07-DBS-RLang-61© HS-2010

Tuple calculus: examples(1) Tuple calculus: examples(1)

Movies (title) all copies of which are on loan
{m.title | Movie(m) ∧ ∀ t (Tape(t) ∧ m.m_id = t.m_Id
⇒ ∃ x (Rental(x) ∧ x.t_id = t.t_id)) }

Find movie titles available in all formats (in the DB)
"… for all formats there exists a tape with this format and

this movie"
{m.title | Movie(m) ∧ ∀ f (Format(f) ⇒ ∃ x (Tape(x) ∧

f.format = x.format ∧ x.m_id = m.m_id))}

07-DBS-RLang-62© HS-2010

Examples (2)Examples (2)

Tuple calculus used in Ingres / UC Berkeley as data handling
language QUEL. Successor Postgres : SQL

"Find actors who played together in the same movie."
≡
'There exists an actor and another actor and two
different "starring" entries, such that the movie-attributes of
both entries are the same and the actor attribute values are
the foreign key values for these two actors '

{(a1.stage_name, a2.stage_name)| Actor(a1) ∧ Actor(a2) ∧
∃s1 (Starring(s1) ∧ ∃ s2 (Starring(s2) ∧ s1.actor_name =
∃a1.stage_name ∧ s2.actor_name = a2.stage_name ∧
∃s1.movie_id = s2.movie_id and s1 <> s2 }

07-DBS-RLang-63© HS-2010

Limitations of Limitations of RCalcRCalc anandd safe expressionssafe expressions
Limitations, extensions and issues

– Difference to first order predicate logic (FOL)
• no functions ∀ x (x > 1 ⇒ square(x) > x) not allowed
• FOL interested in formula valid for all domains

e.g. ∀ x P(x) ∨ ¬ P(x)

• RC: Interpretation of tuple calculus expressions over the DB

– What does {x | ¬ R(x) } = {x | ¬ ∃ t (R(t) ∧ x = t} mean?

– All tuples NOT belonging to R may not even be a finite set

07-DBS-RLang-64© HS-2010

Safeness of Relational Calculus expressionsSafeness of Relational Calculus expressions

A tuple calculus expression is called safe,
if the result is finite

– Unfortunately safety property is not decidable

– Roughly speaking (syntactically), expressions are safe,
if no range variable occurs negated outside an
expression which restricts the result set otherwise

– e.g. {x | R(x) } and {x | T(x) ∧ ¬ R(x) } are safe,
– but {x | ¬ R(x) } is NOT!

07-DBS-RLang-65© HS-2010

6.3 Relational completeness 6.3 Relational completeness
Relational Algebra and calculus are equivalent

– For each RA expression there is an equivalent safe
tuple calculus expression

– For each safe tuple calculus expression there is an
equivalent safe domain calculus expression

– For each safe domain calculus expression there is an
equivalent RA expression

Equivalent means: results are the same when evaluated over the
same DB

– This property of relational languages is called
relational completeness

Relational complete does not mean computational complete.

07-DBS-RLang-66© HS-2010

Relational completenessRelational completeness

Has been considered as the base line for database query
languages: every query language should be as expressive as
relational algebra

SQL is in this tradition, but has introduced many concepts which are difficult
or impossible to express in RA
– grouping and predicates over sets

e.g. find those movies having the maximal number of copies (DVDs)
– arithmetic in expressions, e.g. find cheapest product prices

including taxes (in an appropriate DB)
– partial matches of attribute values, e.g. find movies the titles

of which are LIKE ‘To be$ ‘
– application specific comparison functions (and types),

e.g:
find those customers whose names sound like “Maia”

12

07-DBS-RLang-67© HS-2010

Relational Relational LanguagesLanguages SummarySummary
Relational Algebra

– Applicative language on tables for specifying
result tables

– Base for SQL (partially) and query optimization
Relational Calculus:

– Formal languages syntactically and sementically
based on predicate claculus for handling data in
relational model

– Declarative language, specify which, not how, data
to retrieve

– Base for QUEL, QBE, SQL (partially)
I

