5 The Relational Data Model:

Algebraic operations on tabular data
5.1 Foundation of relational languages
5.2 Relational Algebra operations
5.3 Relational Algebra: Syntax and Semantics
5.4. More Operators
5.5 Special Topics of RA

6 The Relational Data Model: Logic foundation of Data Manipulation Not presented in class!

Kemper / Eickler: 3.4, 4.6+7; Elmasri /Navathe: chap. 74-7.6, Garcia-Molina, Ullman, Widom: chap. 5, D. Maier Theory of RDB (Online Book -> Lit.)

Relational Algebra

Freie Universitat
Algebra objects:
Relations (tables)
$R_{1}\left(a_{1}, \ldots, a_{n}\right), R_{n}\left(b_{1}, \ldots, b_{m}\right)$ over domains ai, bj,..

Algebra operators:

Operators : transform one or more relations into a relation: $\tau: \mathrm{R}_{\mathrm{i} 1}(\ldots) \times \ldots \times \mathrm{R}_{\mathrm{ik}}(\ldots) \rightarrow \mathrm{R}_{\mathrm{im}}(\ldots)$

Relational Algebra: only unary and binary operators
\qquad
© HS-2010 07-DBS-RLang-5

5.1 Foundation of relational languages universitat

Data Model:

Language for definition and
handling (manipulation) of data
Languages for data handling:

- Relational Algebra (RA) as a semantically well defined applicative language
- Relational tuple calculus (domain calculus): predicate logic interpretation of data and queries
- SQL I DML ('Sequel') - based on RA and calculus

Projection

Let $\Sigma(\mathrm{R})=\mathrm{B}, \quad \mathrm{B} \subseteq \mathrm{B}$
Projection $\pi_{B}(R)$ of R on B :
Set of rows from R with the columns not in B eliminated

> project

No duplicates in $\pi_{B}(\mathrm{R})$ (in theory!)
Def.: $\pi_{B}(R)=\{r$ restricted to $B \mid r \in R\}$ $=\left\{r^{\prime} \mid\right.$ there is a tuple $r \in R$ such that r ' is the restriction of r to the attributes in $B\}$

Projection (2)

Properties of projection:

- $|R| \geq\left|\pi_{B}(R)\right|, B \subseteq \Sigma(R)$
- B contains a key of $R \Rightarrow\left|\pi_{B}(R)\right|=|R|$

Useful for estimating the size of query results Important for optimization.

SQL equivalent:
SELECT DISTINCT $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{n}}$ FROM R
All operators can be expressed in SQL
© HS-2010
07-DBS-RLang-8
5.2 Relational Algebra operations Freie Universitat (4) Berlin

Basic terminology (rep. from above)
Universal set of attributes $A, a_{i} \in A$ has domain $D\left(a_{i}\right)$
Relation Schema: named n-tuple of attributes $R S=R(a 1, \ldots, a n),\{a 1, \ldots a n\} \subseteq A$
Schema operator Σ applied to relation R results in the type signature of $\mathrm{R}: \Sigma(\mathrm{R})=\mathrm{R}_{\mathrm{A}}$
Relational Database Schema: set of relation schemas

Database Relation R: subset of $D\left(a_{i 1}\right) \times \ldots \times D\left(a_{i n}\right)$

Def.: Renaming

Attributes: if $\Sigma(\mathrm{R}) \cap \Sigma(\mathrm{S})!=\varnothing$
ρ <attrname> \leftarrow <newAttrname> (<relname>)
Relations :
$\rho_{\text {<newname> (<relname>) }}$

$$
\Sigma\left(\rho_{\mathrm{a} 2 \leftarrow \mathrm{~b} 2}(\mathrm{~S})\right)=\{\mathrm{b} 1, \mathrm{~b} 2\}
$$

Dot notation R.a2, S.a2 or explicit renaming $\operatorname{07-BES-RLang-13}$

Selection σ

Predicates

Row predicates:

inductively defined by primitive predicates
and boolean operators and, or not

Def.: Primitive (simple) predicates
Let a, b be attributes, w value from dom (a)
$\mathbf{a} \theta \mathbf{b}$ and $\mathbf{a} \theta \mathbf{w}$ are primitive predicates
where $\theta \in\{=,!=,<,<=,>,>=\}$

where $\begin{aligned} P & =\text { 'Employee. name }=\text { 'Miller' } \\ Q & =\text { "Sub.boss = Employee.id " }\end{aligned}$

SELECT ... FROM Employee, Employee Sub WHERE

Primitive predicates compare either an attribute and a value or two attributes
then set union and set difference
$\mathbf{R} \cup \mathbf{S}$ and $\mathbf{R} \backslash \mathbf{S}$ as defined on mathematical sets
SELECT FROM R ...
\{UNION | EXCEPT INTERSECT $\}$
SELECT ... FROM S ...

Row predicates

Syntax for (row) predicates
(i) Primitive predicates are predicates
(ii) If Q, Q^{\prime} are predicates, then $\mathrm{Q} \wedge \mathrm{Q}^{\prime}, \mathrm{Q} \vee \mathrm{Q}^{\prime}$ and $\neg(\mathrm{Q})$ are predicates
(iii) Operator preference and brackets as usual
(iv) There are no other predicates

Selection of rows

Freie Universita th 14 Berlin

Note:

Selection operator selects the row with all attributes:
$\Sigma(R)=\Sigma\left(\sigma_{p}(R)\right)$
Size of result depends on selectivity of P
selectivity : $=\left|\sigma_{\mathrm{P}}(\mathrm{R})\right| /|R|$
important for optimization

© Hs -2010

Note:

SQL block allows to combine
π, \times, σ
07-DBS-RLang-19

5.3 Relational Algebra: Syntax and SemantioSJniversităt

Syntax of (simple) Relational Algebra defined inductively :
(1) Each table identifier is a RA expression
(2) $\rho_{A}(B), \rho_{s \leftarrow y}(A)$ are RA expressions where A, B table identifiers, s, v attribute identifiers
(3) If E and F are RA expressions then
$\pi_{D}(E), \sigma_{P}(E), E \times F, E \cup F, E \backslash F$ are RA expressions (if union-compatible etc.)
where $D \subseteq \Sigma(E)$
(4) These are all RA expressions

Semantics of Relational Algebra

 Freie Universitătval is a function which assigns to each relational algebra expression a result table:
val ('R') $=\quad R$
"The value of a relation name is the relation (table)"

$$
\operatorname{val}(' \tau(E) \text { ' } \quad=\quad \tau(\operatorname{val}(E))
$$

where τ is some unary rel. Operation like π
"The value of an unary relational operator applied to an relational algebra expression E is the result of applying the operator to the value of E "
$\operatorname{val}\left(' E \omega F^{\prime}\right) \quad=\quad \operatorname{val}(E) \omega \operatorname{val}(F)$
where ω is some binary operator like X
"The value of an unary relational operator applied to a
relational algebra expression E is the result of applying the operator to the value of $E^{\prime \prime}$
© HS-2010
07-DBS-RLang-23

Remarks on RA and SQL
 Freie Universität

- Rewrite rule

$$
\sigma_{Q \wedge P}(\mathrm{R})=\sigma_{\mathrm{Q}}\left(\sigma_{\mathrm{P}}(\mathrm{R})\right)
$$

implicitly used for SQL expression:
SELECT... FROM . . WHERE P (WHERE Q))
does not conform to SQL syntax

- RA results are sets (relations),

SQL results are bags (duplicates allowed)

To eliminate duplicates write:

WHERE ...P AND Q .

```
Renaming
Freie Universitat (1) Berlin
Renaming, why?
Example: Employee( id, name, boss, ...)
    Find subordinates of 'Miller'
```



```
    where P = "Employec name = 'Miller' "
    Q = "Employee.boss= Employee.id "
RA is a declarative language: a name denotes the same relation / attribute within one expression


Relational Algebra : more operators Freie Universitat

Equijoin: equality comparison
- Most important type of join: all primitive predicates in \(P\) compare equality of column values of two rows at a time: \(\quad \mathrm{P} \equiv \wedge \mathrm{R} . \mathrm{x}_{\mathrm{i}}=\mathrm{S} . \mathrm{y}_{\mathrm{i}},\left\{\mathrm{x}_{\mathrm{i}}\right\} \subseteq \Sigma(\mathrm{R}),\left\{\mathrm{y}_{\mathrm{i}}\right\} \subseteq \Sigma(\mathrm{S})\),
- Implements the "values as pointers" concept of RDB for foreign keys, but is more general.

Example using foreign key: Find Country name title of region having R_id = 'VAR'
\(\pi_{\text {name }} \overline{(C o u n t r y} \quad 凶 \sigma_{\text {R_id='VAR' }}(\) Region \(\left.)\right)\)
\[
c_{-} \text {id=c_id }
\]
© HS -2010
© HS-2010

```

5.4 Relational Algebra: More Operatorfsuniversitat(1) Berlin
Some operation sequences occur frequently
\Rightarrow define compound operators

```

\section*{Def.: Join ( \(\theta\)-join)}
```

R, S relations, $R \underset{p}{\longleftrightarrow} \mathrm{~S}$
$=\left\{\left(a_{1}, \ldots a_{n}, b_{1}, \ldots b_{m}\right) \mid P\left(a_{1}, \ldots a_{n}, b_{1}, \ldots b_{m}\right)\right.$ is true $\}$ $=\sigma_{P}(R \times S)$
where P is a (boolean) predicate composed of primitive predicates of the form
$\mathrm{a} \theta \mathrm{b}, \mathrm{a} \in \Sigma(\mathrm{R}), \mathrm{b} \in \Sigma(\mathrm{S}), \theta \in\{=, \neq,<,<=, \gg=\}$
(P is the join predicate)

Relational Algebra: renaming attributeisuniversitto

- Renaming required, if identical column names
- No canonical projection of columns if columns are redundant

$$
\begin{aligned}
& S\left(x^{\prime}, y, z^{\prime}\right) \\
& \begin{array}{|lll}
7 & a & 23 \\
6 & c & 15 \\
9 & a & 3
\end{array} \quad\left(\begin{array}{ll}
R & \bowtie \\
\text { R. } y=S
\end{array}\right)=
\end{aligned}
$$

$R\left(x, y, \quad z, x^{\prime}, y, z^{\prime}\right)$

1	a	11	7	a	23
1	a	11	9	a	3
6	a	12	7	a	23
6	a	12	9	a	3

Relational Algebra: Natural join

Freie Universitat 1 Berlin

Def.: Natural Join $R \bowtie S$:
equijoin over all literally identical column names of R and S and projection of redundant columns. Join predicate implicit.

SELECT ... FROM R NATURAL JOIN S

Relational Algebra: outer join

Right outer join R \mathbb{K} I S
Includes (NULL,...NULL, s) - if there is no join partner for $s \in S$

Full outer join: union of left and right outer join

Relational algebra: outer join

Freie Universitat (1) Berlin
Motivation: only tuples of S participate in a join $\mathrm{R} \bowtie \mathrm{S}$, which have a "counterpart" in R .

Customer (c_no, name, f_name, zip, city) Phones (phoneNo, c_no)
"Print telephon list of customers"
π name, phoneNo (Customer \bowtie Phones)

Customers without phoneNo will not appear

```
\odotHS-2010
```

Relational Algebra: More operators Freie Universitat

Def.: Semjoin

$$
R \underset{p}{㐅_{\mathrm{P}}} \mathrm{~S}=\Pi \Sigma(\mathrm{R})\left(\mathrm{R} 凶_{\mathrm{p}} \mathrm{~S}\right)
$$

Left semijoin is the subset of R, each r of which has a corresponding tuple s from S in the join.

Typically extension of equijoin or natural join

$$
\begin{aligned}
& R(a b c)
\end{aligned}
$$

Right Semijoin defined symmetrically : $R \rtimes S=\Pi_{\Sigma(S)}(R \bowtie S)$

[^0]Relational Algebra: outer join Freie Universitat (1) Berlin Left outer join $R \rrbracket \mathrm{~S}$ P
Includes (r, NULL, ...NULL) - if there is no join partner for $r \in R$

Def.: R \# $\mathrm{S}=$
$R \bowtie S \stackrel{P}{\cup}\left\{\left(r_{1}, \ldots r_{n}, N U L L, \ldots . . N U L L\right) \mid\left(r_{1}, \ldots r_{n}\right) \in R\right.$ and ${ }^{P}$ for all $\left(s_{1}, . ., S_{m}\right) \in S: P\left(r_{1}, \ldots r_{n}, s_{1}, . . s_{m}\right)=$ FALSE $\}$

Outer join typically extension of equijoin
© HS-2010
, 07-DBS-RLang-33

Relational Algebra: Base operators Freie Universitat Base
Set of operators which allow to express all other operators

Relational operators

$\pi, \sigma, \quad \times, \backslash$ and \cup form a basis of relational
algebra operators

Means: every RA expression may be expressed only with these operators

Example: $\quad \mathrm{R} \bowtie S=\sigma_{p}(R \times S)$
© HS-2010
P

$$
\begin{aligned}
& \text { Some rewrite rules for RA Freie Universitat Uerlin } \\
& \text { Properties of selection and projection } \\
& \begin{array}{l}
\sigma_{P}\left(\sigma_{Q}(R)\right)=\sigma_{Q}\left(\sigma_{P}(R)\right) \\
\sigma_{P}\left(\sigma_{P}(R)\right)=\sigma_{P}(R) \\
\sigma_{Q \wedge P}(R) \quad=\sigma_{Q}\left(\sigma_{P}(R)\right)=\sigma_{Q}(R) \cap \sigma_{P}(R) \\
\sigma_{Q \vee P}(R) \quad=\sigma_{Q}(R) \cup \sigma_{P}(R) \\
\sigma_{\neg P}(R) \quad=R \backslash \sigma_{P}(R) \text {, if } P(r) \text { defined for all } r \text { (no NULL!) } \\
\text { if } X \subseteq Y \subseteq \Sigma(R) \quad \text { then } \pi_{X}\left(\pi_{Y}(R)\right)=\pi_{x}(R) \\
\text { if } X, Y \subseteq \Sigma(R) \quad \text { then } \pi_{x}\left(\pi_{Y}(R)\right)=\pi_{X \cap Y}(R)=\pi_{Y}\left(\pi_{X}(R)\right) \\
\text { attr }(P) \subseteq X \subseteq \Sigma(R) \text { then } \pi_{X}\left(\sigma_{P}(R)\right)=\sigma_{P}\left(\pi_{x}(R)\right) \\
\text { where attr }(P) \text { denotes the set of attributes occuring in } P
\end{array}
\end{aligned}
$$

Relational Algebra operator trees Freie Universitat (1) Bertin

Algebraic Optimization

- Evaluation of RA expressions in canonical form

$$
\begin{aligned}
& \pi \ldots\left(\sigma_{P}\left(R_{1} \times R_{2} \times \ldots \times R_{n}\right)\right) \\
& \text { is very inefficient }
\end{aligned}
$$

- How to speed up evaluation of RA (and SQL) expressions?
- Example: Two tables R and S with n and m tuples Worst case complexity of :

$$
\sigma_{\mathrm{p}}(\mathrm{R} \bowtie \mathrm{~S})
$$

is $O(m * n)$

- Interchange of select and join may result in $O(n+m)$ time $\quad \sigma_{P} \quad(R) \bowtie S$ depending on the join algorithm © HS-2010 07-DBS-RLang-38

Relational Algebra: table predicatesfreie Universitat ()

Row predicates:

P defined over rows (or pairs of rows)

Table predicates

Example: find all countries which are neighbors of all european Countries with population more than 78 Mill Cannot be answered by comparing individual rows

Predicates with universal quantifier are table predicates
e.g. Find y_{0} such that $P(x)$ is true:
$P(x) \equiv \forall x$ (PopGT70MillEurope $(x) \Rightarrow \quad\left(Q\left(x, y_{0},\right)\right)$ $Q(x, y) \equiv x$ is neighbor of y

- Express table predicates with base operators?
© HS-2010
07-DBS-RLang-40

Relational Algebra: Division

Course(id, title, semester)
T \equiv Course_Stud(cid, matr\#)

Relational Algebra: Division

Def.: Relational Division T. /. F
Attributes of F are a subset of the attributes of T :

- $\Sigma(F) \subset \Sigma(T)$
- Signature of T./. F is $D=\Sigma(T) \backslash \Sigma(F)$
T.I. $\mathbf{F}:=\left\{\mathrm{t}^{\prime} \mid \mathrm{t}^{\prime} \in \pi_{\mathrm{D}}(\mathrm{T}) \wedge(\forall \mathrm{s} \in \mathrm{F})(\exists \mathrm{t} \in \mathrm{T}) \pi_{\Sigma(\mathrm{F})}(\{\mathrm{t}\})=\right.$ $\left.\mathrm{s} \wedge \pi_{\mathrm{D}}(\{\mathrm{t}\})=\mathrm{t}^{\prime}\right\}$

Simulates a finite "universal" quantification:
"For all items \mathbf{x} in the table holds the predicate \mathbf{P} "
Property of relational division:
Let $\mathrm{D}=\Sigma(\mathrm{T}) \backslash \Sigma(\mathrm{F})$,
if D contains the key of T and $|\mathrm{F}|>1$ then $\mathrm{T} . / . \mathrm{F}=\varnothing$

- HS-2010
07-DBS-RLang-44
Relational Algebra Division Freie Universitat A) Berlin T ./. F may be defined in terms of other relational operators

Proof: Assignment

RA for optimization

An relational algebra operator tree is the data structure representing a RA expression
Algebraic optimization: systematic interchange of operation according to the laws of RA
Does not change time complexity in general,
but "makes n small".
Implementation of Algebraic Optimization by transformation of the operator tree

- Systematic treatment of different optimization techniques \rightarrow course "DB-Tech"
techniques \rightarrow course "DB

> e

What is missing in RA

Freie Universitāt

- Arithmetic operators,
- many practically important operators like grouping of results:
"List Students and number of courses they take"

Matr\#	NoOfCorses
77	4
55	1
12	2
25	1

- More Predicates on tables (not rows)

Anyway relational algebra important conceptual basis for query languages and query evaluation

Summary
Relational algebra: algebra on tables
Operators: project, select, cartesian product, union, set
difference, (rename)
Several compound operators : join, outer join, semi-join,
division
Serves as a basis for relational DB languages
No recursion \Rightarrow not computationally complete
Base of SQL
Used for optimization by operator tree transformation

©HS-2010
6. The Relational Data Model (*) :

Logic foundation of data manipulation

- in a nutshell -
6.1 Logical foundations of the RDM
6.2 Relational Calculus Languages
6.2.1 Tuple calculus
6.2.2 Brief overview of domain calculus
6.3 Equivalence of relational languages

Kemper / Eickler: Chap 3.5 , Elmasri/ Navathe: chap. 9.3+9.4 Garcia-Molina, Ullman, Widom: chap. 10,
(*) not discussed in class, not required for exam -

Open formula as queries

 Freie Universitảt 11 Berlin
Open formula

$\exists \mathrm{t}($ Tape $(\mathrm{t}) \wedge \mathrm{t}$. movield $=\mathrm{m} . \mathrm{mld} \wedge \mathrm{t}$. format='DVD')
An open formula, the free (tuple) variable is m
$\exists \mathrm{m}(\operatorname{Movie}(\mathrm{m}) \wedge \exists \mathrm{t}($ Tape $(\mathrm{t}) \wedge \mathrm{t}$. movield $=\mathrm{m} . \mathrm{mld} \wedge$
m.mld='4711' \wedge t.format='DVD'))
and also
$\exists \mathrm{m}($ Movie $(\mathrm{m}) \wedge \exists \mathrm{t}($ Tape $(\mathrm{t}) \wedge \mathrm{t}$. movield $=\mathrm{m} . \mathrm{mld}$ \wedge t.format='DVD'))
are closed and can be evaluated to TRUE | False..

6.1 Logical foundations of the RDMie Universitat

Predicate logic (PL) view of a DB
Database may be seen as a set of facts:

- $r=\left(r_{1}, \ldots, r_{n}\right) \in R$ for some relation R
- assign a predicate R^{\prime} to R which is
defined:
$R^{\prime}(r)=$ TRUE $<=>r \in R$
R^{\prime} is a called a database predicate
Example:
Movie (25, Amistad, History, 1, Spielberg, 01.05.97)
is a fact, "Movie" is a db predicate

Tuple calculus

Freie Universităt
Interpret $\{(\mathrm{s} .1) \mid P(x, y, \ldots, s)\}$ as:
all rows s which satisfy $P(.$.
s. 1 means first component of (tuple) variable s
$\{(\mathrm{s} .1) \mid \exists \mathrm{m}($ Movie $(\mathrm{m}) \wedge \exists \mathrm{t}($ Tape $(\mathrm{t}) \wedge \mathrm{t}$. movield $=\mathrm{m} . \mathrm{mld}$ ^ $\mathrm{s} .1=\mathrm{m}$. title \wedge t.format='DVD'))
Formula is open because of $s 1$
This is a declarative statement for the set given by the projection of all those s onto the first component, which make the predicate on the rifht hand side of \mid true.
© HS-2010
07-DBS-RLang-53

Open formula as queries Freie Universitat (1)	ertin
- Implicit requirement: the database predicate of the variables must be known Technically speaking: the variables must be range coupled	
Example $-\{x .3 \mid \operatorname{Movie}(x) \wedge$ x.title $=P(\ldots, x, \ldots)\}$ - ' x is a variable, which represents tuples of Movie', - Query result is the third component of those movie tuples which make P true.	

6.2 Calculus Languages

Predicate logic as a query language

Called "calculus" languages for historical reasons
Two types of languages
Domain calculus
All variables represent typed values (or domains) of the relations of the DB (domain variables)

Tuple calculus

The variables in expressions represent a row (tuple) of a relation (tuple variable)

Tuple Calculus

Tuple Calculus language

- Defined over
- predicates $\mathrm{R}, \mathrm{S}, \mathrm{T}, \ldots$ which correspond to database relations
- set A of attribute names $\{\mathrm{a}, \mathrm{b}, .$.
- values from the domains of A
- tuple variables $\mathrm{r}, \mathrm{s}, \mathrm{t}$, ..
- A tuple calculus expression (with one free variable) has the form

$$
\{s \mid F(s)\}
$$

where s is a tuple variable and $F(s)$ a formula in which s occurs free
Example

$\{(\mathrm{s} .1, \mathrm{~s} .2) \mid \exists \mathrm{m}($ Movie $(\mathrm{m}) \wedge \mathrm{m}$. title $=\mathrm{s} .1 \wedge$ and
m.year> '1992' $\wedge \mathrm{m} . \mathrm{year}=\mathrm{s} .2)\}$

- i.e. all movie and year of production titles product
after 1999

OHs.2010

Tuple calculus

Freie Universităt (1) Berlin

- s is called the target list
- s is not range coupled and its components are denoted $\mathrm{s} .1, \mathrm{~s} .2, \ldots . \mathrm{s} . \mathrm{k}$, if there are k output components
- s.i has to be connected in F to some range coupled variables

Example:

$\{(\mathrm{s} .1, \mathrm{~s} .2) \mid \exists \mathrm{m}$ (Movie(m)
/ m.titte $=5.1 \wedge$ and m.year> '1992' ^ m.year=s.2)\}
i.e. all movie and year of production titles produced after 1999

© HS-2010
07-DBS-RLang-58


```
Tuple calculus and relational algebrareie Universitat
    4) 3
Tuple calculus expression for algebra operators
    - Projection, cross product
        \(\pi_{a, b}(R X S) \equiv\)
        \(\{(x . a, y . b) \mid R(x) \wedge S(y)\}\)
    - Join \(\mathrm{R}_{\mathrm{P}} \mathrm{S}\)
    \(-\equiv\{r . e, \ldots, t . k \mid R(r) \wedge S(t) \wedge P\}\)
    - Selection
    e.g. \(\quad \sigma_{(s . a=v \vee \text { s.a }=w) \wedge \text { s.b }=\text { s.c }}(R)\)
        \(\equiv\{(s . a, \ldots, ., s . k) \mid R(s) \wedge(s . a=v \vee s . a=w) \wedge s . b\)
            \(=s . c\}\)
- More examples in the class
```

Tuple calculus: examples(1)
Movies (title) all copies of which are on loan
{m.title | Movie(m)^\forallt(Tape(t)^ m.m_id = t.m_Id
=>\existsx (Rental(}x)\wedgex.t_id=t.t_id))

```

Find movie titles available in all formats (in the DB)
"... for all formats there exists a tape with this format and this movie"
\(\{\) m.title \(\mid \operatorname{Movie}(m) \wedge \forall f(\) Format \((f) \Rightarrow \exists \times(\operatorname{Tape}(x) \wedge\) f.format \(=x\). format \(\wedge\) x.m_id \(=\) m.m_id) \()\}\)

\section*{Examples (2)}
"Find actors who played together in the same movie." \(\equiv\)
'There exists an actor and another actor and two different "starring" entries, such that the movie-attributes of both entries are the same and the actor attribute values are the foreign key values for these two actors '
\{(a1.stage_name, a2.stage_name)| Actor(a1) ^Actor(a2) ^ \(\exists\) s1 (Starring(s1) ^ ヨ s2 (Starring(s2) ^ s1.actor_name =
ヨa1.stage_name \(\wedge\) s2.actor_name \(=\) a2.stage_name \(\wedge\)
\(\exists\) s1.movie_id = s2.movie_id and s1 <> s2 \}
Tuple calculus used in Ingres / UC Berkeley as data handling language QUEL. Successor Postgres : SQL
© HS-2010
07-DBS-RLang-62

\section*{Safeness of Relational Calculus expressions:}

\section*{(1) Bertir}

A tuple calculus expression is called safe, if the result is finite
- Unfortunately safety property is not decidable
- Roughly speaking (syntactically), expressions are safe, if no range variable occurs negated outside an expression which restricts the result set otherwise
- e.g. \(\{x \mid R(x)\}\) and \(\{x \mid T(x) \wedge \neg R(x)\}\) are safe,
- but \(\{x \mid \neg R(x)\}\) is NOT!

\subsection*{6.3 Relational completeness}

Relational Algebra and calculus are equivalent
- For each RA expression there is an equivalent safe tuple calculus expression
- For each safe tuple calculus expression there is an equivalent safe domain calculus expression
- For each safe domain calculus expression there is an equivalent RA expression

Equivalent means: results are the same when evaluated over the same DB
- This property of relational languages is called relational completeness

Relational complete does not mean computational complete.
© HS -2010
07-DBS-RLang-65

\section*{Relational completeness}


Has been considered as the base line for database query languages: every query language should be as expressive as relational algebra
SQL is in this tradition, but has introduced many concepts which are difficult or impossible to express in RA
- grouping and predicates over sets
e.g. find those movies having the maximal number of copies (DVDs)
- arithmetic in expressions, e.g. find cheapest product prices including taxes (in an appropriate DB)
- partial matches of attribute values, e.g. find movies the titles of which are LIKE 'To be\$'
- application specific comparison functions (and types), e.g:
find those customers whose names sound like "Maia"

\section*{Relational Languages \\ Summaryytat (4) Betin}

\section*{Relational Algebra}
- Applicative language on tables for specifying result tables
- Base for SQL (partially) and query optimization

Relational Calculus:
- Formal languages syntactically and sementically based on predicate claculus for handling data in relational model
- Declarative language, specify which, not how, data to retrieve
- Base for QUEL, QBE, SQL (partially)

1```


[^0]:    ©HS-2010

