4.Normalization: Quality of relational designs

4.1 Functional Dependencies
4.1.1 Design quality
4.1.2 Update anomalies
4.1.3 Functional Dependencies: definition
4.1.4 Properties of Functional Dependencies
4.2 Normal forms
4.2.1 Informal introduction
4.2.2 Normal Forms and FDs
4.2.3 Normal forms (2NF, 3NF, BCNF, MV NF)
4.2.4 Lossless join and dependency preservation
4.2.5 Multivalued dependencies and 4NF
4.3 Algorithms for finding Normal Forms
4.4 Normal Forms: Critical review

Lit: Kemper/Eickler: chap 6; Garcia-Molina/Ullman/Widom: chap 3.4 ff.; Elmasr/Navathe: chap 14 , Kifer et al.: chap. 6

4.1.1 Design quality

Freie Universitảt
What is a "good" conceptual model ?
Usually many alternatives.
No clear guidelines, best practice.

Wanted: Formal methods for comparing designs

But..
Use common sense!
Simple problems have simple solutions!
"Design is an art but a science"

Informal guidelines (2)

Avoid modeling more than one object from reality in one entity I relation

CREATE TABLE Experiment (
id SERIAL PRIMARY KEY,
responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT
$\begin{array}{ll}\text { purpose } & \text { VARCHAR(100), } \\ \text { start } & \text { TIMESTAMP, }\end{array}$
start TIMESTAMP,
endTime TIMESTAMP,
result INT)
What is the problem with this table design?

4.1.2 Update Anomalies

Redundancies may cause "anomalies"

Deletion of a row may delete all data about a different object

Update of an attribute may cause update on many rows
Insertion may be difficult / impossible, since data are missing

[^0]Redundancy


```
Update anomaly
    Freie Universităt
Example
    update Experiment set phone = 37784
        where responsible_Scientist
            = 'Müller-Lüdenscheid'
    A all those experiment tuples the experimentor of
        which was 'Müller-Lüdenscheid' have to be
        changed
        update anomaly
```

 What is an insertion anomaly?

		Freie Universit
Relation: $\mathrm{R} \subseteq \operatorname{dom}(\mathrm{a} 1) \mathrm{x} \operatorname{dom}(\mathrm{a} 2) \mathrm{x} \ldots \mathrm{x}$ dom(an) Attribute set: $\Sigma(R)=\{a 1, a 2, \ldots, a n\}=R_{A}$, signatu Tuple: $r \in R$ Degree of R: number of attributes Relation Schema: R(a1, a2, ..., an) Database schema: set of relation schemas different notations in use		
Terminology:	Relation but rela tables m Tuple Attribute	file) cate entries cord omponent)
OHS2010		04.DBS

Functional Dependencies and keys Freie Universitat

Property of a key : at most one row for each value \Rightarrow

Given a key, i.e. values for the key attributes, then the value of each $a \in \Sigma(R)$ is unique or all values are undefined.
\Rightarrow each subset of $\Sigma(R)$ is functional dependent on K

For a given key value, there is a unique value for each attribute e.g. \{matrNo\} $\underset{\text { 04-DSS-NE-12 }}{\rightarrow}$ \{fName\}

Functional Dependencies

Functional and key dependencies are
constraints (invariants) of the application domain
"Functional dependency" constraints have to be identified during requirements engineering - like all constraints.

Ultimate goal: DBS monitors compliance with DB state.

Example:

Experiment (id, responsible_Scientist, institute, phone, ...result)

What has to be done, when a new experiment is inserted?

Motivation for Normal Forms

Suppose we can find a relational schema which has only keyinduced functional dependencies (FD)
(and "trivial" ones like $\{\mathrm{a}, \mathrm{b}\}->\{b\}$)
How can we efficiently check the DB state after an update with respect to FD? Do they still hold?

A "good" schema avoids
Update anomalies
Costly check of functional dependencies after update

Functional Dependency: Definition Freie Universitảt $^{\text {D }}$

4.1.4 FD Properties

 Freie Universităt
Trivial functional dependency

$$
X \subseteq Y \Rightarrow Y \rightarrow X
$$

Augmentation

$Z \subseteq A=\Sigma(R), \quad X \rightarrow Y \Rightarrow X Z \rightarrow Y Z$

Transitivity

$$
X, Y, Z \subseteq A=\Sigma(R), X \rightarrow Y, Y \rightarrow Z \Rightarrow X \rightarrow Z
$$

Proof?

$$
\text { Notation } \quad X Y \text {-> } Z \text { means } X \cup Y \text {-> } Z
$$

Implied and inferred FD

A functional dependency $Y \rightarrow Z$ is called implied by a set
$\mathrm{F}=\{\mathrm{F} 1, \ldots$, Fn $\}$ of functional dependencies, if $\mathrm{Y} \rightarrow \mathrm{Z}$ can be proven from F.
:---

A functional dependency $Y \rightarrow Z$ can be inferred (\vdash)by a set of inference rules $R=\{r 1, \ldots \mathrm{rm}\}$ from set
$F=\{F 1, \ldots, F n\}$ of functional dependencies
if $Y \rightarrow Z$ can be constructed by a finite number of syntactic transformations of F according to rules ri

Armstrong inference rules

Given a set of FDs, find all implied FD's
A sound, complete, minimal set (Armstrong axioms):

$$
\begin{array}{lc}
Y \subseteq X+X \rightarrow Y & \quad \text { (I: inclusion) } \\
\{X \rightarrow Y, Y \rightarrow Z\} \vdash X \rightarrow Z & \text { (T: transitivity) } \\
\{X \rightarrow Y\} \vdash X Z \rightarrow Y Z & \text { (A: augmentation) }
\end{array}
$$

Sound:

Only implied FDs are constructed by the inference rules

Complete:

Every implied FD will be produced by a finite number of inferences

[^1]04-DBS-NF-18

Types of Functional Dependencies Freie Universitat (1) Bertin

Given

- schema signature $\Sigma(R)=\{a 1, \ldots, a n\}$
- Primary key $P=\left\{p_{1}, \ldots p_{e}\right\}$
- Set of candidate keys $\mathrm{C}=\left\{\left\{\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{f}}\right\}, \ldots,\left\{\mathrm{k}_{1}^{\prime}, \ldots, \mathrm{k}_{\mathrm{g}}\right\}\right\}$

Def.: $K=P \cup(\cup C)$ are called prime (or key) attributes
i.e. attributes belonging to any candidate key
$S(R) \backslash K$: non-prime (or non-key) attributes

Normalization

Roadmap

Functional dependencies may cause "update anomalies" \downarrow Update anomalies cause troubles
\Rightarrow find relational schema without "anomalies" in case of update \downarrow

Define "Normal forms" for relations which do not show (all) anomalies
Given a set of functional dependencies, find algorithm which generates a relational schema in some normal form
© HS-2010 04-DBS-NF-21

Second Normal Form (2NF)

Def.: R is in Second Normal Form (2NF), : \Leftrightarrow
$\forall X \subseteq \Sigma(R), \forall a \in \Sigma(R):$
$a \notin X \wedge a$ is not a prime attribute $\wedge X->a$
$\Rightarrow X$ is a key or a superset of a key but not a proper subset of any key of R

This means: No non-prime attribute functionally depends on only a part of a key ("No partial dependency")

Example: Building(bNo, roomNo, rSeats, bAdr, bNoRooms,...)

Third Normal Form (3NF)

Types of FDs
 Freie Universitat

Types of functional dependencies:

1. Key dependencies
2. Partial dependencies on one of the candidate keys expl.: \{p\#\} -> \{name\}
// R(p\#, name,qualification, ...)
since key is \{p\#,qualification\}
3. Dependencies among non-key attributes
expl.: \{responsible_Scientist\} -> \{institute\}
4. Dependencies among attributes of different candidate keys

4.2 Normal Forms

 Freie Universitat4.2.1 Definitions

Def.: First normal form

A relation is in 1NF $: \Leftrightarrow$
all attributes are single valued and atomic

Example:
Customer (c_id, name, ..., \{phone\}, ...)
(53,'Miller', ..., \{47653, 478992\}, ...)
Equivalent to Key dependency property:
every attribute is functionally dependent on e very candidate key
© HS -2010

> Def.: R is in third normal form (3NF) $: \Leftrightarrow$
> $\forall X \subseteq \Sigma(\mathrm{R}), \forall \mathrm{a} \in \Sigma(\mathrm{R}): \mathrm{a} \notin \mathrm{X} \wedge \mathrm{X}-\mathrm{a}$
> $\Rightarrow \mathrm{X}$ contains a key or a is prime
> \Leftrightarrow
> There is no functional dependency between non-prime attributes (or attribute sets). Proof?

Example:
Experiment (id, responsible_Scientist, institute, phone, ...result)
but: \{responsible_Scientist\} \rightarrow \{institute\}
\Rightarrow not in 3NF
(id, responsible_Scientist, institute,.., result)
\qquad

2NF and 3NF

$$
R \text { is in } 3 N F \Rightarrow R \text { is in } 2 N F
$$

Proof:

Suppose R not in 2NF
\Rightarrow exists candidate key K and $\mathrm{X} \subset \mathrm{K}$ and non-prime attribute
a and $X \rightarrow a$ (i.e. exists partial dependency)
Since K is a key $\Rightarrow K \rightarrow X \rightarrow a$, contradiction to 3NF

Design quality and Normal Forms

Experiment
(id, responsible_Scientist, institute,..,result)

Indicates the modeling of two different 'real world entities' as one relation

Split into two relations:

Experiment
(id, purpose, start , responsible,..,result);
Experimentor (primary key id, institute, phone,..)
© Hs -2010
04-DBS-NF-27

DESIGN QUALITY: what do we haveße Universitat

1. Key dependencies $\Leftarrow 1 \mathrm{NF}$
2. No partial dependencies on candidate keys $\Leftarrow 2 N F$
3. No dependencies among non-key attributes $\Leftarrow 3 N F$
4. Dependencies among attributes of different candidate keys ??
\Rightarrow there is at least one more Normal Form which excludes FDs between prime attributes.
© HS -2010

Beyond third NF

 Freie Universităt
Beyond 3NF

Dependencies among key attributes

There are relations in 3NF with nontrivial functional dependencies!

Example (*): R(p, o, s, n) with keys $\{0, s, n\}$ and $\{p, s, n\}, F D p->o$

R in 3NF, but transitive dependency involving key attribute $\mathrm{o}:\{\mathrm{p}, \mathrm{s}, \mathrm{n}\}$-> p -> o
(*) Interpretation e.g.: PLZ, Ortsteil, Straße, Nummer (in Germany) Annahme: (Ort, Straße, Nr) , (PLZ, Straße, Nr) eindeutig

Boyce Codd Normal Form (BCNF)

Freie Universitat

3NF and BCNF

Freie Universitat

3NF more important in practice than BCNF
Partial dependencies of candidate keys infrequent
R relation in 3NF and candidate keys have only one attribute each $\Rightarrow R$ is in BCNF

R in 3 NF and at most one candidate key has more than one attribute $\Rightarrow R$ is in BCNF

Proof?
BCNF vs 3NF
Last proposition useful in many practical situation:
If a relation \mathbf{R} has a multi-attribute key and a unique
identifier (e.g. a sequence number) then 3NF implies
BCNF

e.g. Customer (cID, name, city, street, no, discount, ...)
has keys \{cID and \{name, city, street, no $\}$

ons-2010

4.2.2 Lossless property and
 preserving dependencies

Normalization (by decomposition)

Given relation R having schema $\Sigma(\mathrm{R})$ and
$F D=\{X \rightarrow Y \mid X, Y \subseteq \Sigma(R)\}$ set of FDs,
Find a set R_{1}, \ldots, R_{n} of relations in 3NF / BCNF such that:

- $\Sigma(\mathrm{R})=\cup \Sigma\left(\mathrm{R}_{\mathrm{i}}\right)$
- For each $f=X \rightarrow Y \in F D$ there exists R_{i} such that $X \cup Y \subseteq \Sigma\left(R_{i}\right)$
"Dependency preserving"
- R can be reconstructed from $\mathrm{R}_{\mathrm{i}}, \mathrm{i}=1$..n
๑HS-2010 "Lossless 04-DBS-NF-34

Joining relations				Freie Uni
When relation R has been split into relations $R_{1}, R_{2}, \ldots, R_{n}$, reconstruction of R from R_{1}, \ldots, R_{n} by means of the join operator				
Join operation (natural join): concatenate those tuples of R and S which have same name and same value. Eliminate the redundant attribute.				
ен¢2010 "Natural join"				

In general:
Decomposition of R into R1 and R2 is lossless, if
$\Sigma(\mathrm{R} 1) \cap \Sigma(\mathrm{R} 2) \rightarrow \Sigma(\mathrm{R} 2) \quad$ or $\Sigma(\mathrm{R} 1) \cap \Sigma(\mathrm{R} 2) \rightarrow \Sigma(\mathrm{R} 1)$

Lossless joins

Lossless decomposition and keys
$\Sigma(\mathrm{R} 1) \cap \Sigma(\mathrm{R} 2)->\Sigma(\mathrm{R} 2) \quad$ or $\Sigma(\mathrm{R} 1) \cap \Sigma(\mathrm{R} 2)->\Sigma(\mathrm{R} 1)$
\Rightarrow
The common attribute(s) of R1 and R2 are a key (or a superset of a key) of R1 or R2
\Rightarrow Functional dependencies are transformed into key dependencies
\Rightarrow Invariance property expressed by FDs may now be checked by checking the primary key property - efficiently done by every DBS

BCNF and 3NF

BCNF does not always guarantees both the

 lossless property and dependency preservation
Example:

$R(p, o, s, n)$ with keys $\{o, s, n\}$ and $\{p, s, n\}, F D p->o$
Normalisation to BCNF:

$$
\begin{aligned}
& \text { R1 }(p, s, n) \text { and R2 }(p, o) \\
& \Rightarrow \text { Dependency }(o, s, n) \text {-> } p \text { is lost }
\end{aligned}
$$

Consequence

Normalization to 3NF is the best to achieve in general
© Hs-2010

4.2.5 Multivalued dependencies andffiNFFiversitat

Example
Hobbies(name,affiliation,hobby)
Assumption: a person

Me9er	\% ${ }^{\text {a }}$	skiing
Müller	TUB	trekking
Seer $\%$	\%	trekking
Schulze	HU	skating
Schulze	FU	tennis
Schulze	FU	skating
Schulze	HU	tennis

- Two multivalued attributes: affiliation, hobbies, both dependent on name.
- Introduce redundancy
- MVD defines which tuples must exist.
© HS-2010
04-DBS-NF-40

MVD: example			Freie Universität
Example: $\{$ 'Meier' $\} \times\{$ 'FU'\} $\times\{$ 'skiing', 'trekking'\} \subseteq Person \{'Müller' $\} \times\{$ 'TU' $\} \times\{$ 'trekking' $\} \subseteq$ Person $\{$ 'Schulze' $\} \times\{$ 'HU',FU $\} \times\{$ 'skating','tennis' $\} \subseteq$ Person			
Meter		skiing	
Müller	TUB	trekking	
Mepor	beg	trekking	
Schulze	HU	skating	
Schulze	FU	tennis	
Schulze	FU	skating	
Schulze	HU	tennis	
'hobby' is mv-dependent on 'name': name			->> hobby
© HS-2010			04-DBS-NF-42

Fourth Normal Form

Def.: Let $A, B \subseteq \Sigma(R) ; R$ is in Fourth Normal Form if for every MVD A ->> B
(i) $B \subseteq A$ or (ii) $B=\Sigma(R) \backslash A$ or
(iii) A contains a key

Example not in 4NF, check
Normalized representation:

Müller	TUB
Meier	FUB
Schulze	HU
Schulze	FU

Müller	trekking
Meier	trekking
Meier	skiing
Schulze	skating
Schulze	tennis

Hs-2010 04-DBS-NF-43

Normal forms: summary

Normal forms are quality criteria for database design.
Important: 1NF - 3NF
Exotics: BCNF, 4NF (and higher!)

2NF / 3NF formalize the basic design principle:
"Never mix up different real world entities into a single design object (e.g. entity)"

2NF / 3NF already defined for ERM, since FDs are given (result of requirement analysis, just like key dependencies) .

4.3 Finding Normal Forms

Invariants of application domain have to be made explicit during requirements analysis
e.g. "A scientist has at most one affiliation - her institute"
"A region-id is unique within a country"
"A person has exactly one date of birth"

Formalization \Rightarrow Functional Dependencies Wanted: algorithm producing "good" relational schemas from the set DEP of all FDs

```
\odotHs-2010
```

04-DBS-NF-45

FDs and Normal Forms

Given a set of dependencies DEP there are two approaches:

- Synthesis

Set up relations in such a way, that

- All attributes are consumed
- The relations are in normal form

- Decomposition

For a given set of relations find those which are not normalized with respect to DEP and decompose them into normalized relations

Decomposition: eliminate FDs

Freie Universităt Berlin

Given $\Sigma(\mathrm{R})=\mathrm{U}$ and DEP the set of FDs

Algorithm DECOMP(R):

(i) Find the set of keys K :

$$
K \rightarrow U \in D E P \text { or } K \rightarrow \underset{(D E P+\text { set of all in }}{U \in D E P^{+}}
$$

(ii) Eliminate all transitive dependencies by splitting recursively: \{if $K \rightarrow Y->a$ is a transitive FD in R_{k}, split R_{k} into R_{i}, R_{j}

$$
\Sigma\left(\mathrm{R}_{\mathrm{i}}\right)=\Sigma\left(\mathrm{R}_{\mathrm{k}}\right) \backslash\{\mathrm{a}\}, \Sigma\left(\mathrm{R}_{\mathrm{j}}\right)=\mathrm{Y} \cup\{\mathrm{a}\}
$$

\}
(iii) If no more relations R_{k} with transitive dependency exit else for all $R_{k} \operatorname{DECOMP}\left(R_{k}\right)$

Synthesis

Disadvantage of decomposition: inefficient (e.g. determination of keys) produces more relations than necessary

Synthesis

Given relation R and set of FDs DEP
Find a canonical set MIN of FDs which "covers" DEP and is minimal.
Construct normalized Relations R_{k} from MIN with $\cup \Sigma\left(\mathrm{R}_{\mathrm{k}}\right)=\Sigma(\mathrm{R})$

Finding a canonical set of FDs

Freie Universitadt
Given a set of FDs DEP and a relational schema R

- Find a minimal set MIN such that $\mathbf{D E P} \subseteq \mathbf{M I N}^{+}$
- Find a relational schema in 3NF, from which R can be losslessly reconstructed

MIN is called minimal cover of DEP
Definitions
$X \rightarrow Y \in \mathbf{M I N}^{+}: \Leftrightarrow X \rightarrow Y$ can be proven from the FDs \in MIN
e.g. $\{a \rightarrow b, b \rightarrow c\}+=\{a \rightarrow b, b \rightarrow c, a \rightarrow c\}$

MIN is minimal $: \Leftrightarrow$ for every FD $f(\mathrm{MIN} \backslash \mathrm{f})^{+} \neq \mathrm{MIN}^{+}$

Closure of attribute set X


```
I = 0; X[0] = X; /* integer I, attr. set X[0] */
REPEAT
    /*
    I=I + 1; /* new I 
    X[I] = X[I-1]; //* initialize new X[I] */
    FOR ALL Z->W in DEP /* loop on all FDs Z ->W in DEP*/
    IF Z \subseteqX[I] ( /* if Z contained in X[I] */
    THEN X[I] = X[I]\cup W; /* add attributes in W to X[I]*/
END FOR 
UNTIL X[I] = X[I-1]; /* loop till no new attributes*/
RETURN X = X[I]; ; /* return closure of X */
```

Rule used: X -> YZ and Z -> W then X -> YZW
Proof?
© HS-2010
04-DBS-NF-51

Finding a canonical set (2)

Finding a canonical set (3)

Step 3: Minimize left hand side
For of each FD $f=X \rightarrow Y \in D E P, a \in X$
$D E P^{\prime}=\{D E P \backslash f\} \cup\{X \backslash\{a\} \rightarrow Y\}$
if $\{D E P\}+=\left(D E P^{\prime}\right)^{+}$
then replace DEP by DEP'
end_for
If a FD f has been minimized repeat step 2

Example:
$\{b c d->a, c->e, e->b\}^{+}=\{c d->a, c->e, e->b\}^{+}$

Finding a canonical set
Algorithm for determining a minimal cover in polynomial time

Step 1: Normalization

Replace each FD $X \rightarrow Y$ of DEP in which Y contains more than one attribute, by FDs with one attribute on the right hand side

Example:
DEP $=\{a b->c d, a->e\} \rightarrow\{a b->c, a b->d, a->e\}$

Proof?

Def.: Closure of attribute set X with respect to the set DEP of FDs is the largest set Y of attributes such that $X \rightarrow Y \in$ DEP $^{+}$
Finding a minimal cover (1)

Example:

$\{\mathrm{ab} \rightarrow \mathrm{d}, \mathrm{b} \rightarrow \mathrm{c}, \mathrm{dc} \rightarrow \mathrm{e}\}+=\{\mathrm{ab} \rightarrow \mathrm{d}, \mathrm{b} \rightarrow \mathrm{c}, \mathrm{a} \rightarrow \mathrm{dc}, \mathrm{dc} \rightarrow \mathrm{e}, \mathrm{ab} \rightarrow \mathrm{e}\}\}$
Important first step:
Given a set of attributes X, determine all attributes (closure of X) which can be functionally determined by X ?

Step 2: Remove redundant FDs

f is redundant, if $(\mathrm{DEP} \backslash\{f\})^{+}=\mathrm{DEP}^{+}$
For each $f=X \rightarrow Y \in D E P$
if $Y \subseteq(X+)$ using only FDs $\in D E P \backslash\{f\}$ then f is redundant else not redundant

Example: $\{b \rightarrow d, d \rightarrow e$, ef $\rightarrow a, c \rightarrow f, b c \rightarrow a\}$
$b c+=\{b, d, e, f, a\} \supseteq\{a\}$
$\Rightarrow F D f=b c->a$ is redundant
Explicit derivation not using f:
$b->d, d->e \Rightarrow b->e, c->f \Rightarrow b c->$ ef, ef -> $a \Rightarrow b c->a$

Finding a canonical set (4)

Step 4: Unify left hand side

Applying the union rule
$" X \rightarrow Y \wedge X \rightarrow Z \Rightarrow X \rightarrow Y Z "$

Example: $\{c d->a, c d->e, d->f\}$
unified: $\{c d->a e, d->f\}$

The remaining set of Functional Dependencies is the minimal cover of the original set DEP of FDs

Normal Forms: Critical review

Freie Universit dit 41 Berlin

Should relations be always normalized ?

Yes: makes invariant checking easy, and no „update anomalies"
No: Why should we normalize if there are no updates?

Example: Customer(cu_Id, name, fname, zipCode, city, street, no) No reason to normalize if only one address per customer and updates are infrequent

Consider cost of joins / updates

- How expensive are selects which need joins because of normalization?
- Updates which cause anomalies?

Synthesis algorithm
Normalization problem:

```
Freie Universitat (1) Berlin
```

Given a relation R in 1NF and a set DEP of FD Find a lossless, dependency preserving decomposition R_{1}, \ldots, R_{k}, all of them in 3NF

Synthesis Algorithm

Find minimal cover MIN of DEP;
For all $X \rightarrow Y$ in MIN define a relation
$R X$ with schema $\Sigma(R X)=X \cup Y$
Assign all FDs $X^{\prime}->Y^{\prime}$ with $X^{\prime} \cup Y^{\prime} \subseteq \Sigma(R X)$ to $R X$
If none of the synthesized relations $\frac{C}{R X}$ contains a candidate key of R
then introduce a relation Rkey which contains a candidate key of R
Remove relations RY where: $\Sigma(\mathrm{RY}) \subseteq \Sigma(\mathrm{RX})$

ER modeling and Normal Forms

ER and Normal Forms:
Two different mechanisms to design a database scheme ER more intuitive,
NF uses algorithms
ER-models often already in 3NF
Use normalization as a complementary design method

- Set up ER model
- Transform to relations
- Normalize each non normalized relation if the tradeoff of join processing and updating redundant data suggests to do so

[^0]: "update anomaly": deletion, update or insertion anomaly

[^1]: ©HS-2010

