
4.Normalization: Quality of relational designs4.Normalization: Quality of relational designs
4.1 Functional Dependencies

4.1.1 Design quality
4.1.2 Update anomalies
4.1.3 Functional Dependencies: definition
4.1.4 Properties of Functional Dependencies

4.2 Normal forms
4.2.1 Informal introduction
4.2.2 Normal Forms and FDs
4.2.3 Normal forms (2NF, 3NF, BCNF, MV NF)
4.2.4 Lossless join and dependency preservation
4.2.5 Multivalued dependencies and 4NF

4.3 Algorithms for finding Normal Forms
4.4 Normal Forms: Critical review

Lit: Kemper/Eickler: chap 6; Garcia-Molina/Ullman/Widom: chap 3.4 ff.;
Elmasr/Navathe: chap 14 , Kifer et al.: chap. 6

04-DBS-NF-2© HS-2010

4.1.1 Design quality 4.1.1 Design quality
What is a “good” conceptual model ?

Usually many alternatives.
No clear guidelines, best practice.

Wanted: Formal methods for comparing designs

But…
Use common sense!
Simple problems have simple solutions!
"Design is an art but a science"

04-DBS-NF-3© HS-2010

Informal guidelines (1)Informal guidelines (1)
Avoid redundancies:

Example:
CREATE TABLE employee (

p# serial,
name VARCHAR(30),
...
qualification VARCHAR(20), -- typicallymore

-- than one
--

PRIMARY KEY (p#, qualification));

More than one qualification, primitive values
⇒ p# is not a key. Why?

Dumb design!

p# name ... qual

22 Meyer ... programmer

27 Müller ... secretary

22 Meyer ... DB admin

04-DBS-NF-4© HS-2010

Informal guidelines (2)Informal guidelines (2)

Avoid modeling more than one object from reality in
one entity / relation

CREATE TABLE Experiment (
id SERIAL PRIMARY KEY,

purpose VARCHAR(100),
start TIMESTAMP,
endTime TIMESTAMP,
result INT)

responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT,

What is the problem with this table design?

04-DBS-NF-5© HS-2010

Informal guidelines (2)Informal guidelines (2)

Avoid modeling more than one object from reality in
one entity / relation

CREATE TABLE Experiment (
id SERIAL PRIMARY KEY,

purpose VARCHAR(100),
start TIMESTAMP,
endTime TIMESTAMP,
result INT)

responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT,

Redundancy

04-DBS-NF-6© HS-2010

4.1.2 Update Anomalies 4.1.2 Update Anomalies
Redundancies may cause "anomalies"

Deletion of a row may delete all data about a different
object

Update of an attribute may cause update on many rows

Insertion may be difficult / impossible, since
data are missing

"update anomaly": deletion, update or insertion anomaly

04-DBS-NF-7© HS-2010

Update anomalies: ExamplesUpdate anomalies: Examples

CREATE TABLE Experiment (

id SERIAL PRIMARY KEY,
responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT,
purpose VARCHAR(100),
start TIMESTAMP,
endTime TIMESTAMP,
result INT)

DELETE FROM Experiment WHERE result < 10

Data on experimenter may be lost!

Table definition using
SQL / DDL
(PostgresSQL)

04-DBS-NF-8© HS-2010

Update anomalyUpdate anomaly

Example
update Experiment set phone = 37784

where responsible_Scientist
= 'Müller-Lüdenscheid'

all those experiment tuples the experimentor of
which was 'Müller-Lüdenscheid' have to be
changed

update anomaly

What is an insertion anomaly?

04-DBS-NF-9© HS-2010

4.1.3 Functions, Functional dependencies4.1.3 Functions, Functional dependencies

FDs are used to formalize integrity constraints on
attributes and relationships

Remember keys and 1:N relationships.

If k is a key of relation R(k,a,b,...c)
and k_val a key-value, what can be said about the
attribute values?

Important formal concept: Functions
Functional dependencies (FD) generalize key concept

Next to trivial: values are unique for a given key!

04-DBS-NF-10© HS-2010

Example:
Experiment (id, responsible_Scientist,

institute, phone,...result)

"The same responsible_person cannot have
different affiliations (institutes)"

{responsible_Scientist} -> {institute}

is a function which expresses the constraint:

04-DBS-NF-11© HS-2010

Formal Formal notationnotation of RDMof RDM

Relation: R ⊆ dom(a1) x dom(a2) x … x dom(an)
Attribute set: Σ(R) = {a1, a2, …, an} = RA , signature
Tuple: r ∈ R
Degree of R: number of attributes
Relation Schema: R(a1, a2, …, an)
Database schema: set of relation schemas

different notations in use

Relation = table (file)
but relations are sets.
tables may have duplicate entries

Tuple = row, record
Attribute = field (component)

Terminology:

04-DBS-NF-12© HS-2010

Functional Functional DependenciesDependencies and and keyskeys
Property of a key : at most one row for each value
⇒

Given a key, i.e. values for the key attributes,
then the value of each a ∈ Σ(R) is unique or all values
are undefined.

⇒ each subset of Σ(R) is functional
dependent on K

Student

name email
Müller
Meier
Maus

mueller@...
mei@...
piep@...

fName
Tina
Anna
Carla

matrNo
13555
12555
11222

key

For a given key value,
there is a unique value
for each attribute e.g.
{matrNo} → {fName}

04-DBS-NF-13© HS-2010

Functional Functional DependenciesDependencies

Functional and key dependencies are

constraints (invariants) of the application domain

"Functional dependency" constraints have to be identified
during requirements engineering – like all constraints.

Ultimate goal: DBS monitors compliance with DB state.

Example:
Experiment (id, responsible_Scientist, institute,

phone,...result)

What has to be done, when a new experiment is inserted?

04-DBS-NF-14© HS-2010

Motivation Motivation forfor Normal Normal FormsForms

Suppose we can find a relational schema which has only key-
induced functional dependencies (FD)
(and "trivial" ones like {a,b} -> {b})

How can we efficiently check the DB state after an update
with respect to FD? Do they still hold?

A "good" schema avoids
Update anomalies
Costly check of functional dependencies after update

04-DBS-NF-15© HS-2010

Functional Functional DependencyDependency: Definition: Definition

Def.: Functional Dependencies (FDs)
Let A = Σ(R)* = {a,b,c,...ai,..} be the attribute set

of a relation Rand X, Y ⊆ A , r, r' ∈ R, r ≠ r'
Y is functionally dependent on X (written: X → Y)
:⇔ (∀ xi ∈ X) r.xi = r’.xi ⇒ (∀ yi ∈ Y) r.yi = r’.yi

• As we know: invariants are independent of the particular
database state

• They must hold at all times,
i.e. they restrict the valid states of the database

* Σ(R) : Attribute set of relation R

04-DBS-NF-16© HS-2010

4.1.4 FD Properties 4.1.4 FD Properties

Trivial functional dependency
X ⊆ Y ⇒ Y → X

Augmentation
Z ⊆ A=Σ(R), X → Y ⇒ XZ → YZ

Transitivity
X,Y,Z ⊆ A=Σ(R), X → Y, Y → Z ⇒ X → Z

Proof?
Notation XY -> Z means X ∪ Y -> Z

04-DBS-NF-17© HS-2010

Implied and inferred FDImplied and inferred FD

A functional dependency Y → Z is called implied by a set
F= {F1, … , Fn} of functional dependencies, if Y → Z can
be proven from F.

A functional dependency Y → Z can be inferred (¢)by a
set of inference rules R = {r1,…rm} from set
F = {F1, … , Fn} of functional dependencies
if Y → Z can be constructed by a finite number of syntactic
transformations of F according to rules ri

04-DBS-NF-18© HS-2010

Armstrong Armstrong inferenceinference rulesrules

Given a set of FDs, find all implied FD's

A sound, complete, minimal set (Armstrong axioms):

Y ⊆ X ¢ X → Y (I: inclusion)

{X → Y , Y → Z} ¢ X → Z (T: transitivity)

{X → Y} ¢ XZ → YZ (A: augmentation)

Sound:
Only implied FDs are constructed by the inference rules

Complete:
Every implied FD will be produced by a finite number of

inferences

04-DBS-NF-19© HS-2010

TypesTypes of Functional of Functional DependenciesDependencies

Given
• schema signature Σ(R) = {a1,…,an}
• Primary key P = {p1,…pe}
• Set of candidate keys C = { {k1,..,kf}, …,{k'1,…,k'g}}

Def.: K = P ∪ (» C) are called prime (or key) attributes
i.e. attributes belonging to any candidate key.

S(R) \ K : non-prime (or non-key) attributes

04-DBS-NF-20© HS-2010

Types of Types of FDsFDs

3. Dependencies among non-key attributes
expl.: {responsible_Scientist} -> {institute}

4. Dependencies among attributes of different
candidate keys

Types of functional dependencies:
1. Key dependencies
2. Partial dependencies on one of the candidate keys

expl.: {p#} -> {name}
// R(p#,name,qualification, ...)

since key is {p#,qualification}

04-DBS-NF-21© HS-2010

Normalization Normalization

Roadmap
Functional dependencies may cause "update anomalies"
Update anomalies cause troubles

⇒ find relational schema without "anomalies" in case of
update

Define "Normal forms" for relations which do not show (all)
anomalies

Given a set of functional dependencies, find algorithm
which generates a relational schema in some normal
form

04-DBS-NF-22© HS-2010

4.2 4.2 Normal Normal FormsForms

4.2.1 Definitions

Def.: First normal form
A relation is in 1NF :⇔
all attributes are single valued and atomic

Example:
Customer (c_id, name, …, {phone}, …)
(53,'Miller', …, {47653, 478992},…)

Equivalent to Key dependency property:
every attribute is functionally dependent on e
very candidate key

04-DBS-NF-23© HS-2010

Second Normal Form (2NF)Second Normal Form (2NF)

This means: No non-prime attribute functionally depends
on only a part of a key ("No partial dependency")

Def.: R is in Second Normal Form (2NF), :⇔
∀ X ⊆ Σ (R) , ∀ a ∈ Σ (R) :
a ∉ X ∧ a is not a prime attribute ∧ X -> a

⇒ X is a key or a superset of a key
but not a proper subset of any key of R

Example: Building(bNo, roomNo, rSeats, bAdr, bNoRooms,…)

04-DBS-NF-24© HS-2010

Third Normal Form (3NF)Third Normal Form (3NF)

⇔
There is no functional dependency between
non-prime attributes (or attribute sets). Proof?

Def.: R is in third normal form (3NF) :⇔
∀ X ⊆ Σ (R) ,∀ a ∈ Σ (R) : a ∉ X ∧ X -> a
⇒ X contains a key or a is prime

Example:
Experiment (id, responsible_Scientist, institute,

phone,...result)

but: {responsible_Scientist} → {institute}
⇒ not in 3NF

04-DBS-NF-25© HS-2010

More on 3NFMore on 3NF

A non-prime attribute y is transitively dependent on a key
K, if K → X and X → y and not X → K
Notation: K → X → y

Equivalent definition: R is in 3NF :⇔
no non-prime attribute depends transitively
on a key.

Experiment
(id, responsible_Scientist, institute,..,result)

04-DBS-NF-26© HS-2010

2NF and 3NF2NF and 3NF

Proof:
Suppose R not in 2NF

⇒ exists candidate key K and X ⊂ K and non-prime attribute
a and X → a (i.e. exists partial dependency)

Since K is a key ⇒ K → X → a , contradiction to 3NF

R is in 3NF ⇒ R is in 2NF

04-DBS-NF-27© HS-2010

Design qualityDesign quality and Normal and Normal FormsForms

Indicates the modeling of two different 'real world
entities' as one relation

Split into two relations:

Experiment
(id, responsible_Scientist, institute,..,result)

Experiment
(id, purpose, start , responsible,..,result);

Experimentor (p_id, institute, phone,..)

foreign key
primary key

04-DBS-NF-28© HS-2010

DESIGN QUALITY: what do we have?DESIGN QUALITY: what do we have?

⇒ there is at least one more Normal Form which
excludes FDs between prime attributes.

1. Key dependencies ⇐ 1NF
2. No partial dependencies on candidate

keys ⇐ 2NF
3. No dependencies among non-key attributes

 ⇐ 3NF
4. Dependencies among attributes of different

candidate keys ??

04-DBS-NF-29© HS-2010

BeyondBeyond thirdthird NF NF

Dependencies among key attributes

There are relations in 3NF with nontrivial functional
dependencies!

Example (*): R(p, o, s, n)
with keys {o,s,n} and {p,s,n}, FD p -> o

R in 3NF, but transitive dependency involving
key attribute o: {p,s,n} -> p -> o

(*) Interpretation e.g.: PLZ, Ortsteil, Straße, Nummer (in Germany)
Annahme: (Ort, Straße, Nr) , (PLZ, Straße, Nr) eindeutig

04-DBS-NF-30© HS-2010

Beyond 3NFBeyond 3NF

Proposition:
If R is in 3NF and X is a proper subset

of a candidate key K and X → a for some attribute a
⇒ a ∉ K ∧ ∃ key K': a∈K'

Corollary: If X → a is an essential FD of a relation in 3NF,
and X not a superkey

⇒ X and a belong to different candidate keys

Characterizing essential (= nontrivial and no superkey involved)
FDs in 3NF relations

04-DBS-NF-31© HS-2010

BoyceBoyce CoddCodd Normal Form (BCNF)Normal Form (BCNF)

Equivalent to:

X → a ⇒
(i) trivial or
(ii) X contains a key of R
(iii) There a no essential FDs in R

Obvious consequence: BCNF ⇒ 3NF

Def.: A relation R is in BCNF
:⇔
if there is a non-trivial dependencies X → a
then X is a superkey of R

04-DBS-NF-32© HS-2010

3NF and BCNF3NF and BCNF

3NF more important in practice than BCNF
Partial dependencies of candidate keys infrequent
R relation in 3NF and candidate keys have only one

attribute each ⇒ R is in BCNF

R in 3 NF and at most one candidate key has more
than one attribute ⇒ R is in BCNF

Proof?

04-DBS-NF-33© HS-2010

BCNF BCNF vsvs 3NF3NF

Last proposition useful in many practical situation:
If a relation R has a multi-attribute key and a unique
identifier (e.g. a sequence number) then 3NF implies
BCNF

e.g. Customer (cID, name, city, street, no, discount, …)
has keys {cID} and {name, city, street, no}

04-DBS-NF-34© HS-2010

4.2.2 4.2.2 LosslessLossless propertyproperty and and
preservingpreserving dependenciesdependencies

Normalization (by decomposition)
Given relation R having schema Σ(R) and
FD = {X → Y | X,Y ⊆ Σ(R)} set of FDs,
Find a set R1, ..., Rn of relations in 3NF / BCNF
such that:

• Σ(R) = » Σ(Ri)

• For each f = X → Y ∈FD there exists Ri
such that X ∪ Y ⊆ Σ(Ri)

• R can be reconstructed from Ri, i=1..n
"Dependency preserving"

"Lossless"

04-DBS-NF-35© HS-2010

Joining relationsJoining relations

When relation R has been split into relations R1, R2, ..., Rn ,
reconstruction of R from R1, ..., Rn by means of the join
operator

Join operation (natural join):
concatenate those tuples of R and S which have same name and
same value. Eliminate the redundant attribute.

=

"Natural join"

24
21
ba

53
32
cb

b=b

R1 R2

33

324
321
cba

2
2
b

533 3

04-DBS-NF-36© HS-2010

Lossless propertyLossless property

Criterion for „preserved information
(losslessness)“:

R1 R2 … Rn = R

Example:

524
321
cba

24
21
ba

524
321
cba

52
32
cb

1 2 5
4 2 3

=
R =

 ⊃ R

04-DBS-NF-37© HS-2010

LosslessLossless joinsjoins

But

In general:
Decomposition of R into R1 and R2 is lossless, if
Σ(R1) ∩ Σ(R2) → Σ(R2) or Σ(R1) ∩ Σ(R2) → Σ(R1)

524
321
cba

54
31
ca

524
321
cba

25
23
bc

=

FD = {a -> b, c -> b}

04-DBS-NF-38© HS-2010

LosslessLossless joinsjoins

Lossless decomposition and keys
Σ(R1) ∩ Σ(R2) -> Σ(R2) or Σ(R1) ∩ Σ(R2) -> Σ(R1)

The common attribute(s) of R1 and R2 are a key (or a
superset of a key) of R1 or R2

Functional dependencies are transformed into
key dependencies

Invariance property expressed by FDs may
now be checked by checking the primary key
property - efficiently done by every DBS

04-DBS-NF-39© HS-2010

BCNF and 3NFBCNF and 3NF

BCNF does not always guarantees both the
lossless property and dependency preservation

Example:
R(p, o, s, n) with keys {o,s,n} and {p,s,n}, FD p -> o
Normalisation to BCNF:

R1 (p,s,n) and R2(p,o)
Dependency (o,s,n) -> p is lost

Consequence:
Normalization to 3NF is the best to achieve in
general

04-DBS-NF-40© HS-2010

4.2.5 4.2.5 MultivaluedMultivalued dependencies and 4NFdependencies and 4NF

tennisFUSchulze

skatingHUSchulze

trekkingFUBMeier

trekkingTUBMüller
skiingFUBMeier

• Two multivalued attributes: affiliation, hobbies,
both dependent on name.

• Introduce redundancy
• MVD defines which tuples must exist.

Assumption: a person
can have one or more
affiliations, and one or
more hobbies, e.g

These rows must
exist (MVD restriction)tennisHUSchulze

skatingFUSchulze

Example
Hobbies(name,affiliation,hobby)

Schulze | {HU.FU} | {tennis,skating}

04-DBS-NF-41© HS-2010

MVDMVD

Def.: MVD (multivalued dependency)
Let R = (a, y, b),
b is multivalued dependent on a (a ->>b)
if for each value v of a
{v} × (πy(σ a=v R)) × (πb(σ a=v R)) ⊆ R

{tennis,skating}{FU, HU}Schulze

Example with MV attributes:

MVD are invariants on the existence of tuples
if multivalued attributes are represented in 1NF

04-DBS-NF-42© HS-2010

MVD: exampleMVD: example

Example:
{'Meier'} × {'FU'} × {'skiing', 'trekking'} ⊆ Person
{'Müller'} × {'TU'} × {'trekking'} ⊆ Person
{'Schulze'} × {'HU',FU} × {'skating','tennis'} ⊆ Person

tennisFUSchulze

skatingHUSchulze

trekkingFUBMeier

trekkingTUBMüller
skiingFUBMeier

tennisHUSchulze

skatingFUSchulze

'hobby' is mv-dependent on 'name': name ->> hobby

04-DBS-NF-43© HS-2010

FourthFourth Normal FormNormal Form

FUSchulze

HUSchulze

FUBMeier

TUBMüller

tennisSchulze

skatingSchulze

skiingMeier

trekkingMeier

trekkingMüller

Def.: Let A, B ⊆ Σ(R); R is in Fourth Normal Form
if for every MVD A ->> B

(i) B ⊆ A or (ii) B = Σ(R) \ A or
(iii) A contains a key

Example not in 4NF, check

Normalized representation:

04-DBS-NF-44© HS-2010

Normal forms: summary Normal forms: summary

Normal forms are quality criteria for database design.
Important: 1NF – 3NF
Exotics: BCNF, 4NF (and higher!)

2NF / 3NF formalize the basic design principle:
"Never mix up different real world entities
into a single design object (e.g. entity)"

2NF / 3NF already defined for ERM, since FDs
are given (result of requirement analysis, just
like key dependencies) .

04-DBS-NF-45© HS-2010

4.3 4.3 FindingFinding Normal Normal FormsForms

Invariants of application domain have to be made explicit
during requirements analysis

e.g. “A scientist has at most one affiliation – her institute"

“ A region-id is unique within a country”
“ A person has exactly one date of birth”

Formalization Functional Dependencies
Wanted: algorithm producing "good" relational

schemas from the set DEP of all FDs

04-DBS-NF-46© HS-2010

FDsFDs and Normal and Normal FormsForms
Given a set of dependencies DEP there are two approaches:

• Synthesis
Set up relations in such a way, that

– All attributes are consumed
– The relations are in normal form

• Decomposition
For a given set of relations find those which are not
normalized with respect to DEP and decompose
them into normalized relations

04-DBS-NF-47© HS-2010

Decomposition: eliminate Decomposition: eliminate FDsFDs

Given Σ(R) = U and DEP the set of FDs
Algorithm DECOMP(R):
(i) Find the set of keys K:

K → U ∈ DEP or K → U ∈ DEP+
(DEP+ set of all implied dependencies)

(ii) Eliminate all transitive dependencies by splitting recursively:
{if K → Y -> a is a transitive FD in Rk, split Rk into Ri, Rj

Σ(Ri) = Σ(Rk) \ {a}, Σ(Rj) = Y ∪ {a}
}

(iii) If no more relations Rk with transitive dependency
exit else for all Rk DECOMP(Rk)

04-DBS-NF-48© HS-2010

SynthesisSynthesis
Disadvantage of decomposition:

inefficient (e.g. determination of keys)
produces more relations than necessary

Synthesis
Given relation R and set of FDs DEP

Find a canonical set MIN of FDs which "covers" DEP
and is minimal.
Construct normalized Relations Rk from MIN
with » Σ(Rk) = Σ(R)

04-DBS-NF-49© HS-2010

Finding a canonical set of Finding a canonical set of FDsFDs

Given a set of FDs DEP and a relational schema R
- Find a minimal set MIN such that DEP ⊆ MIN+

- Find a relational schema in 3NF, from which R can be
losslessly reconstructed

Definitions
X → Y ∈ MIN+ :⇔ X → Y can be proven from
the FDs ∈ MIN
e.g. {a → b, b →c}+ = {a → b, b →c, a →c }

MIN is minimal :⇔ for every FD f (MIN \ f)+ ≠ MIN+

MIN is called minimal cover of DEP

04-DBS-NF-50© HS-2010

FindingFinding a minimal a minimal covercover (1)(1)

Example:
{ab → d, b →c, dc → e }+ = {ab → d, b →c, a →dc, dc →e, ab → e} }
Important first step:

Given a set of attributes X, determine all attributes (closure
of X) which can be functionally determined by X?

Def.: Closure of attribute set X with respect to the set
DEP of FDs is the largest set Y of attributes such that
X → Y ∈ DEP+

04-DBS-NF-51© HS-2010

ClosureClosure of of attributeattribute setset XX

I = 0; X[0] = X; /* integer I, attr. set X[0] */
REPEAT /* loop to find larger X[I] */
I = I + 1; /* new I */
X[I] = X[I-1]; /* initialize new X[I] */
FOR ALL Z->W in DEP /* loop on all FDs Z ->W in DEP*/
IF Z ⊆ X[I] /* if Z contained in X[I] */
THEN X[I] = X[I]∪ W; /* add attributes in W to X[I]*/
END FOR /* end loop on FDs */
UNTIL X[I] = X[I-1]; /* loop till no new attributes*/
RETURN X = X[I] ; /* return closure of X */

Rule used: X -> YZ and Z -> W then X -> YZW
Proof?

04-DBS-NF-52© HS-2010

FindingFinding a a canonicalcanonical setset
Algorithm for determining a minimal cover in

polynomial time

Step 1: Normalization
Replace each FD X → Y of DEP in which Y contains more

than one attribute, by FDs with one attribute on the right
hand side

Example:
DEP = {ab -> cd, a -> e} {ab -> c, ab -> d, a -> e}

04-DBS-NF-53© HS-2010

FindingFinding a a canonicalcanonical setset (2)(2)

Step 2: Remove redundant FDs

f is redundant, if (DEP \ {f})+ = DEP+

For each f = X → Y∈ DEP :
if Y ⊆ (X+) using only FDs ∈ DEP \{f}

then f is redundant else not redundant

Example: {b d, d e, ef a, c f, bc a}
bc+ = {b,d,e,f,a} ⊇ {a}

⇒ FD f= bc -> a is redundant
Explicit derivation not using f:

b -> d, d -> e ⇒ b -> e, c -> f ⇒ bc -> ef , ef -> a ⇒ bc -> a

04-DBS-NF-54© HS-2010

FindingFinding a a canonicalcanonical setset (3)(3)

Step 3: Minimize left hand side
For of each FD f = X → Y ∈ DEP, a ∈ X

DEP'= {DEP \ f } ∪ { X \ {a} → Y}
if {DEP}+ = (DEP')+

then replace DEP by DEP'
end_for
If a FD f has been minimized repeat step 2

Example:
{bcd -> a, c -> e, e -> b} + = {cd -> a, c -> e, e -> b} +

04-DBS-NF-55© HS-2010

FindingFinding a a canonicalcanonical setset (4)(4)

Step 4: Unify left hand side
Applying the union rule
" X → Y ∧ X → Z ⇒ X → YZ "

Example: {cd -> a, cd -> e, d -> f}
unified: {cd -> ae, d -> f}

The remaining set of Functional Dependencies is the
minimal cover of the original set DEP of FDs

04-DBS-NF-56© HS-2010

Synthesis Synthesis algorithmalgorithm
Normalization problem:

Given a relation R in 1NF and a set DEP of FD
Find a lossless, dependency preserving
decomposition R1,…,Rk, all of them in 3NF

Synthesis Algorithm
Find minimal cover MIN of DEP;
For all X -> Y in MIN define a relation

RX with schema Σ(RX) = X ∪ Y
Assign all FDs X' -> Y' with X' ∪ Y' ⊆ Σ(RX) to RX
If none of the synthesized relations RX contains a

candidate key of R
then introduce a relation Rkey which contains a

candidate key of R
Remove relations RY where: Σ(RY) ⊆ Σ(RX)

04-DBS-NF-57© HS-2010

Normal Normal FormsForms: : CriticalCritical reviewreview
Should relations be always normalized ?

Yes : makes invariant checking easy, and no „update
anomalies“

No: Why should we normalize if there are no updates ?

Example: Customer(cu_Id, name, fname, zipCode, city, street, no)
No reason to normalize if only one address per customer and
updates are infrequent

Consider cost of joins / updates
• How expensive are selects which need joins because

of normalization?
• Updates which cause anomalies?

04-DBS-NF-58© HS-2010

ER modeling and Normal FormsER modeling and Normal Forms

ER and Normal Forms:
Two different mechanisms to design a database scheme

ER more intuitive,
NF uses algorithms

ER-models often already in 3NF

Use normalization as a complementary design method
– Set up ER model
– Transform to relations
– Normalize each non normalized relation if the tradeoff

of join processing and updating redundant data
suggests to do so

