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4.1.1 Design quality 4.1.1 Design quality 
What is a “good” conceptual model ?

Usually many alternatives.
No clear guidelines, best practice.

Wanted: Formal methods for comparing designs 

But…
Use common sense!
Simple problems have simple solutions!
"Design is an art but a science"
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Informal guidelines (1)Informal guidelines (1)
Avoid redundancies:

Example:
CREATE TABLE employee (

p# serial,
name VARCHAR(30),
...
qualification VARCHAR(20), -- typicallymore

-- than one
--

PRIMARY KEY (p#, qualification));

More than one qualification, primitive values
⇒ p# is not a key. Why?

Dumb design!

p# name ...  qual

22 Meyer ... programmer

27 Müller ...  secretary

22    Meyer ... DB admin 
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Informal guidelines (2)Informal guidelines (2)

Avoid modeling more than one  object from reality in 
one entity / relation

CREATE TABLE Experiment (
id SERIAL PRIMARY KEY,

purpose  VARCHAR(100),
start TIMESTAMP,
endTime TIMESTAMP,
result INT)

responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT,

What is the problem with this table design?
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Informal guidelines (2)Informal guidelines (2)

Avoid modeling more than one  object from reality in 
one entity / relation

CREATE TABLE Experiment (
id SERIAL PRIMARY KEY,

purpose  VARCHAR(100),
start TIMESTAMP,
endTime TIMESTAMP,
result INT)

responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT, 

Redundancy ....
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4.1.2 Update Anomalies 4.1.2 Update Anomalies 
Redundancies may cause "anomalies"

Deletion of a row may delete all data about a different 
object

Update of an attribute may cause update on many rows 

Insertion may be difficult / impossible, since 
data are missing

"update anomaly":  deletion, update or insertion anomaly
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Update anomalies: ExamplesUpdate anomalies: Examples

CREATE TABLE Experiment (

id SERIAL PRIMARY KEY,
responsible_Scientist VARCHAR(40),
institute VARCHAR (30),
phone INT, 
purpose  VARCHAR(100),
start TIMESTAMP,
endTime TIMESTAMP,
result INT)

DELETE  FROM Experiment WHERE  result < 10

Data on experimenter may be lost!

Table definition using
SQL / DDL
(PostgresSQL)
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Update anomalyUpdate anomaly

Example
update Experiment set phone = 37784

where responsible_Scientist
= 'Müller-Lüdenscheid'

all those experiment tuples the experimentor of   
which was 'Müller-Lüdenscheid' have to be 
changed

update anomaly

What is an insertion anomaly?
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4.1.3 Functions, Functional dependencies4.1.3 Functions, Functional dependencies

FDs are used to formalize integrity constraints on 
attributes and relationships

Remember keys and  1:N relationships.

If k is a key of relation R(k,a,b,...c)
and k_val a key-value, what can be said about the 
attribute values? 

Important formal concept: Functions 
Functional dependencies (FD) generalize key concept

Next to trivial: values are unique for a given key! 
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Example:
Experiment (id, responsible_Scientist, 

institute, phone,...result)

"The same responsible_person cannot have   
different affiliations (institutes)"

{responsible_Scientist} -> {institute}

is a function which expresses the constraint:
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Formal Formal notationnotation of RDMof RDM

Relation:  R ⊆ dom(a1) x dom(a2) x … x dom(an) 
Attribute set: Σ(R) = {a1, a2, …, an} = RA ,  signature 
Tuple: r ∈ R
Degree of R: number of attributes
Relation Schema:  R(a1, a2, …, an)
Database schema: set of relation schemas

different notations in use

Relation  = table ( file)             
but relations are sets.
tables may have duplicate entries

Tuple       = row,  record
Attribute   = field (component)

Terminology:
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Functional Functional DependenciesDependencies and and keyskeys
Property of a key : at most one row for each value
⇒

Given a key, i.e. values for the key attributes, 
then the value of each a ∈ Σ(R)  is unique or all values 
are undefined. 

⇒ each subset of Σ(R)  is functional 
dependent on K 

Student

name email
Müller
Meier
Maus

mueller@...
mei@...
piep@...

fName
Tina
Anna
Carla

matrNo
13555
12555
11222

key

For a given key value, 
there is a unique value 
for each attribute e.g. 
{matrNo}  → {fName}
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Functional Functional DependenciesDependencies

Functional and key dependencies are  

constraints (invariants) of the application domain

"Functional dependency" constraints have to be identified 
during requirements engineering – like all  constraints.

Ultimate goal: DBS monitors compliance with DB state. 

Example:
Experiment (id, responsible_Scientist, institute, 

phone,...result)

What has to be done, when a new experiment is inserted?
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Motivation Motivation forfor Normal Normal FormsForms

Suppose we can find a relational schema which has only key-
induced functional dependencies (FD) 
(and "trivial" ones like {a,b} -> {b} )

How can we efficiently check the DB state after an update 
with respect to FD? Do they still hold?

A "good" schema avoids
Update anomalies
Costly check of functional dependencies after update
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Functional Functional DependencyDependency: Definition: Definition

Def.: Functional Dependencies (FDs)
Let A = Σ(R)* = {a,b,c,...ai,..} be the attribute set

of a relation Rand X, Y ⊆ A , r, r'  ∈ R, r  ≠ r'
Y is functionally dependent on X ( written: X → Y)
:⇔ (∀ xi ∈ X ) r.xi = r’.xi ⇒ (∀ yi ∈ Y ) r.yi = r’.yi

• As we know: invariants are independent of the particular 
database state

• They must hold at all times, 
i.e.  they restrict the valid states of the database 

* Σ(R) : Attribute set of relation R
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4.1.4 FD Properties  4.1.4 FD Properties  

Trivial functional dependency
X ⊆ Y ⇒ Y → X

Augmentation
Z ⊆ A=Σ(R),   X → Y ⇒ XZ → YZ

Transitivity
X,Y,Z ⊆ A=Σ(R), X → Y, Y → Z  ⇒ X → Z

Proof?
Notation XY -> Z  means X ∪ Y -> Z
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Implied and inferred FDImplied and inferred FD

A  functional dependency   Y → Z is called implied by a set  
F= {F1, … , Fn} of functional dependencies, if Y → Z  can 
be proven from F.

A  functional dependency   Y → Z can be inferred (¢ )by a 
set of inference rules R = {r1,…rm} from set 
F = {F1, … , Fn} of functional dependencies 
if Y → Z can be constructed by a finite number of syntactic 
transformations of F according to rules ri
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Armstrong Armstrong inferenceinference rulesrules

Given a set of FDs, find all implied FD's

A sound, complete, minimal set (Armstrong axioms):

Y ⊆ X  ¢ X → Y    (I: inclusion)

{X → Y  , Y → Z} ¢ X → Z       (T: transitivity)

{X → Y} ¢ XZ → YZ (A: augmentation)

Sound: 
Only implied FDs are constructed by the inference rules

Complete: 
Every implied FD will be produced by a finite number of  

inferences
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TypesTypes of Functional of Functional DependenciesDependencies

Given 
• schema signature Σ(R) = {a1,…,an} 
• Primary key  P = {p1,…pe}
• Set of candidate keys C = { {k1,..,kf}, …,{k'1,…,k'g}}

Def.: K = P ∪  (» C )  are called  prime (or key) attributes
i.e. attributes belonging to any candidate key.

S(R) \ K  :  non-prime (or non-key) attributes
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Types of Types of FDsFDs

3. Dependencies among non-key attributes
expl.:  {responsible_Scientist} -> {institute}

4. Dependencies among attributes of different 
candidate keys

Types of functional dependencies: 
1. Key dependencies  
2. Partial dependencies on one of the candidate keys

expl.:  {p#} -> {name}           
// R(p#,name,qualification, ...)

since key is {p#,qualification}
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Normalization Normalization 

Roadmap
Functional dependencies may cause "update anomalies"
Update anomalies cause troubles

⇒ find relational schema without "anomalies" in case of 
update 

Define "Normal forms" for relations which do not show  (all) 
anomalies

Given a set of functional dependencies, find  algorithm 
which generates a relational schema in some normal 
form
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4.2 4.2 Normal Normal FormsForms

4.2.1 Definitions 

Def.: First normal form
A relation is in 1NF  :⇔
all attributes are single valued and atomic

Example: 
Customer (c_id, name, …, {phone}, …)
(53,'Miller', …, {47653, 478992},…)

Equivalent to Key dependency property: 
every attribute is functionally dependent on e
very candidate key
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Second Normal Form (2NF)Second Normal Form (2NF)

This means: No non-prime attribute functionally depends
on only a part of a key ("No partial dependency")

Def.: R is in Second Normal Form (2NF), :⇔
∀ X ⊆ Σ ( R ) , ∀ a ∈ Σ ( R ) :  
a ∉ X  ∧ a is not a prime attribute ∧ X -> a

⇒ X is a key or a superset of a key
but not a proper subset of any key of R 

Example:  Building(bNo, roomNo, rSeats, bAdr, bNoRooms,…)
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Third Normal Form (3NF)Third Normal Form (3NF)

⇔
There is no functional dependency between 
non-prime attributes (or attribute sets). Proof? 

Def.: R is in third normal form (3NF) :⇔
∀ X ⊆ Σ ( R ) ,∀ a ∈ Σ ( R ) :  a ∉ X ∧ X -> a
⇒ X contains a key or a is prime  

Example:
Experiment (id, responsible_Scientist, institute, 

phone,...result)

but: {responsible_Scientist} → {institute}
⇒ not in 3NF
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More on 3NFMore on 3NF

A non-prime attribute y is transitively dependent on a key
K, if K → X and X → y and not X → K 
Notation: K → X → y 

Equivalent definition:  R is in 3NF :⇔
no non-prime attribute depends transitively 
on a key.

Experiment 
(id, responsible_Scientist, institute,..,result) 
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2NF and 3NF2NF and 3NF

Proof: 
Suppose R not in 2NF 

⇒ exists candidate key K and X ⊂ K and non-prime attribute 
a  and  X → a   (i.e.  exists partial dependency)

Since K is a key ⇒ K → X → a , contradiction to 3NF

R is in 3NF  ⇒ R is in 2NF



04-DBS-NF-27© HS-2010

Design qualityDesign quality and Normal and Normal FormsForms

Indicates the modeling of two different 'real world 
entities' as one relation

Split into two relations:

Experiment 
(id, responsible_Scientist, institute,..,result) 

Experiment 
(id, purpose, start , responsible,..,result);

Experimentor ( p_id, institute, phone,..)           

foreign key
primary key
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DESIGN QUALITY: what do we have?DESIGN QUALITY: what do we have?

⇒ there is at least one more Normal Form which 
excludes FDs between prime attributes.   

1. Key dependencies  ⇐ 1NF
2. No partial dependencies on candidate   

keys  ⇐ 2NF
3. No dependencies among non-key attributes

 ⇐ 3NF
4. Dependencies among  attributes of different 

candidate keys   ??



04-DBS-NF-29© HS-2010

BeyondBeyond thirdthird NF NF 

Dependencies among key attributes

There are relations in 3NF with nontrivial functional 
dependencies!  

Example (*):  R(p, o, s, n)
with keys {o,s,n} and {p,s,n}, FD p -> o  

R in 3NF, but transitive dependency involving
key attribute o:  {p,s,n} -> p -> o

(*) Interpretation e.g.: PLZ, Ortsteil, Straße, Nummer (in Germany)
Annahme: (Ort, Straße, Nr) , (PLZ, Straße, Nr) eindeutig
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Beyond 3NFBeyond 3NF

Proposition:
If R is in 3NF and X is a proper subset

of a candidate key K and  X → a for some attribute a 
⇒ a  ∉ K ∧  ∃ key K': a∈K'

Corollary: If X → a is an essential FD of a relation in 3NF, 
and X not a superkey

⇒ X and a belong to different candidate keys

Characterizing essential (= nontrivial and no superkey involved)
FDs in 3NF relations
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BoyceBoyce CoddCodd Normal Form (BCNF)Normal Form (BCNF)

Equivalent to: 

X → a  ⇒
(i)  trivial or 
(ii) X contains a key of R
(iii) There a no essential FDs in R

Obvious consequence: BCNF ⇒ 3NF

Def.: A relation R is in BCNF
:⇔
if there is a non-trivial dependencies X → a  
then X is a superkey of R 
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3NF and BCNF3NF and BCNF

3NF more important in practice than BCNF
Partial dependencies of candidate keys infrequent
R relation in 3NF and candidate keys have only one

attribute each ⇒ R is in BCNF

R in 3 NF and  at most one candidate key has more 
than one attribute ⇒ R is in BCNF

Proof?
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BCNF BCNF vsvs 3NF3NF

Last proposition useful in many practical situation: 
If a relation R has a multi-attribute key and a unique 
identifier (e.g. a sequence number) then 3NF implies 
BCNF

e.g. Customer ( cID, name, city, street, no, discount, …)
has keys  {cID} and {name, city, street, no}
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4.2.2 4.2.2 LosslessLossless propertyproperty and and 
preservingpreserving dependenciesdependencies

Normalization (by decomposition)
Given relation R having schema Σ(R) and 
FD = {X → Y | X,Y  ⊆ Σ(R)} set of FDs, 
Find a set R1, ..., Rn of relations in 3NF / BCNF
such that: 

• Σ(R)  = » Σ(Ri)

• For each f = X → Y ∈FD there exists Ri
such that X ∪ Y ⊆ Σ(Ri)

• R can be reconstructed from Ri, i=1..n
"Dependency preserving"

"Lossless"
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Joining relationsJoining relations

When relation R has been split into relations R1, R2, ..., Rn , 
reconstruction of R from R1, ..., Rn by means of the join 
operator

Join operation (natural join):
concatenate those tuples of R and S which have same name and 
same value. Eliminate the redundant attribute.

=

"Natural join"

24
21
ba

53
32
cb

b=b

R1 R2

33

324
321
cba

2
2
b

533 3
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Lossless propertyLossless property

Criterion for „preserved information 
(losslessness)“: 

R1 R2             …             Rn = R

Example:

524
321
cba

24
21
ba

524
321
cba

52
32
cb

1 2 5
4 2 3

=
R =

 ⊃ R
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LosslessLossless joinsjoins

But

In general: 
Decomposition of R into R1 and R2 is lossless, if
Σ(R1) ∩ Σ(R2) → Σ(R2)    or Σ(R1) ∩ Σ(R2) → Σ(R1)

524
321
cba

54
31
ca

524
321
cba

25
23
bc

=

FD = {a -> b, c -> b}



04-DBS-NF-38© HS-2010

LosslessLossless joinsjoins

Lossless decomposition and keys
Σ(R1) ∩ Σ(R2) -> Σ(R2)   or Σ(R1) ∩ Σ(R2) -> Σ(R1)

The common attribute(s) of R1 and R2 are a key (or a 
superset of a key) of R1 or R2 

Functional dependencies are transformed into
key dependencies

Invariance property expressed by FDs may
now be checked by checking the primary key
property - efficiently done by every DBS
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BCNF and 3NFBCNF and 3NF

BCNF does not always guarantees both the 
lossless property and dependency preservation

Example:
R(p, o, s, n)  with keys {o,s,n} and {p,s,n}, FD p -> o  
Normalisation to BCNF: 

R1 (p,s,n)  and R2( p,o) 
Dependency (o,s,n) -> p is lost 

Consequence: 
Normalization to 3NF is the best to achieve in 
general
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4.2.5 4.2.5 MultivaluedMultivalued dependencies and 4NFdependencies and 4NF

tennisFUSchulze 

skatingHUSchulze

trekkingFUBMeier

trekkingTUBMüller
skiingFUBMeier

• Two multivalued attributes: affiliation, hobbies, 
both dependent on name.

• Introduce redundancy
• MVD defines which tuples must exist. 

Assumption: a person
can have one or more 
affiliations, and one or 
more hobbies, e.g

These rows must 
exist (MVD restriction)tennisHUSchulze

skatingFUSchulze

Example
Hobbies(name,affiliation,hobby)

Schulze | {HU.FU} | {tennis,skating}
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MVDMVD

Def.: MVD (multivalued dependency)
Let R = (a, y, b), 
b is multivalued dependent on a  (a ->>b) 
if for each value v  of a    
{v} × (πy(σ a=v R)) × (πb(σ a=v R)) ⊆ R

{tennis,skating}{FU, HU}Schulze 

Example with MV attributes: 

MVD are invariants on the existence of tuples 
if multivalued attributes are represented in 1NF
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MVD: exampleMVD: example

Example: 
{'Meier'} × {'FU'} × {'skiing', 'trekking'} ⊆ Person
{'Müller'} × {'TU'} × {'trekking'}              ⊆ Person 
{'Schulze'} × {'HU',FU} × {'skating','tennis'}   ⊆ Person 

tennisFUSchulze 

skatingHUSchulze

trekkingFUBMeier

trekkingTUBMüller
skiingFUBMeier

tennisHUSchulze

skatingFUSchulze

'hobby' is mv-dependent on 'name': name  ->>  hobby
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FourthFourth Normal FormNormal Form

FUSchulze

HUSchulze 

FUBMeier 

TUBMüller

tennisSchulze

skatingSchulze

skiingMeier

trekkingMeier

trekkingMüller

Def.: Let A, B ⊆ Σ(R);  R is in Fourth Normal Form 
if for every MVD A ->> B 

(i) B ⊆ A  or  (ii) B = Σ(R) \ A or  
(iii) A contains a key 

Example not in 4NF, check

Normalized representation:
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Normal forms: summary Normal forms: summary 

Normal forms are quality criteria for database design.
Important: 1NF – 3NF
Exotics: BCNF, 4NF (and higher!)

2NF / 3NF formalize the basic design principle:
"Never mix up different real world entities 
into a single design object (e.g. entity)"

2NF / 3NF already defined for ERM, since FDs
are given (result of requirement analysis, just 
like key dependencies) .
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4.3 4.3 FindingFinding Normal Normal FormsForms

Invariants of application domain have to be made explicit 
during requirements analysis

e.g.  “A scientist has at most one affiliation – her institute"

“ A region-id is unique within a country”
“ A person has exactly one date of birth”

Formalization Functional Dependencies
Wanted: algorithm producing "good" relational 

schemas from the set DEP of all FDs
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FDsFDs and Normal and Normal FormsForms
Given a set of dependencies DEP there are two approaches: 

• Synthesis
Set up relations  in such a way, that 

– All attributes are consumed 
– The relations are in normal form

• Decomposition
For a given set of relations find those which are not 
normalized with respect to DEP and decompose 
them into normalized relations
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Decomposition: eliminate Decomposition: eliminate FDsFDs

Given Σ(R) = U  and DEP the set of FDs
Algorithm DECOMP(R): 
(i) Find the set of keys K: 

K → U ∈ DEP or K → U ∈ DEP+
(DEP+ set of all implied dependencies) 

(ii) Eliminate all transitive dependencies by splitting recursively: 
{if  K → Y -> a  is a transitive FD in Rk, split Rk into Ri, Rj

Σ(Ri) = Σ(Rk)  \ {a},  Σ(Rj) = Y ∪ {a}
}

(iii) If no more relations Rk with transitive dependency
exit else for all Rk DECOMP(Rk)
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SynthesisSynthesis
Disadvantage of decomposition:

inefficient (e.g. determination of keys)
produces more relations than necessary

Synthesis
Given relation R and set of FDs DEP

Find a canonical set MIN of FDs which "covers" DEP 
and is minimal.
Construct normalized Relations Rk from MIN
with  » Σ(Rk)  = Σ(R)  
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Finding a canonical set of Finding a canonical set of FDsFDs

Given a set of FDs DEP and a relational schema R
- Find a minimal set MIN such that   DEP ⊆ MIN+

- Find a relational schema in 3NF, from which R can be 
losslessly reconstructed  

Definitions
X → Y ∈ MIN+ :⇔ X → Y  can be proven from 
the FDs ∈ MIN
e.g. {a → b, b →c}+  = {a → b, b →c, a →c } 

MIN is minimal :⇔ for every FD f  (MIN \ f)+ ≠ MIN+

MIN is called minimal cover of DEP
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FindingFinding a minimal a minimal covercover (1)(1)

Example: 
{ab → d, b →c, dc → e }+  = {ab → d, b →c, a →dc, dc →e, ab → e} }
Important first step: 

Given a set of attributes X, determine all attributes  (closure 
of X) which can be functionally determined by X? 

Def.: Closure of attribute set X with respect to the set
DEP of FDs is the largest set Y of attributes such that 
X → Y ∈ DEP+



04-DBS-NF-51© HS-2010

ClosureClosure of of attributeattribute setset XX

I = 0; X[0] = X; /* integer I, attr. set X[0] */
REPEAT /* loop to find larger X[I] */
I = I + 1; /* new I */
X[I] = X[I-1]; /* initialize new X[I] */
FOR ALL Z->W in DEP /* loop on all FDs Z ->W in DEP*/
IF Z ⊆ X[I] /* if Z contained in X[I] */
THEN X[I] = X[I]∪ W; /* add attributes in W to X[I]*/
END FOR /* end loop on FDs */
UNTIL X[I] = X[I-1]; /* loop till no new attributes*/
RETURN X = X[I] ;    /* return closure of X */

Rule used: X -> YZ and Z -> W then X -> YZW
Proof?
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FindingFinding a a canonicalcanonical setset
Algorithm for determining a minimal cover in 

polynomial time

Step 1: Normalization
Replace each FD X → Y of DEP in which Y contains more 

than one attribute, by FDs with one attribute on the right 
hand side

Example:
DEP = {ab -> cd, a -> e} {ab -> c, ab -> d, a -> e}
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FindingFinding a a canonicalcanonical setset (2)(2)

Step 2: Remove redundant FDs

f is redundant, if (DEP \ {f} )+ = DEP+

For each f = X → Y∈ DEP :
if  Y ⊆ (X+) using only FDs ∈ DEP \{f}

then f is redundant else not redundant

Example: {b  d, d e,  ef a, c f, bc a} 
bc+ = {b,d,e,f,a}  ⊇ {a} 

⇒ FD f= bc -> a is redundant
Explicit derivation not using f:  

b -> d, d -> e ⇒ b -> e, c -> f ⇒ bc -> ef , ef -> a ⇒ bc -> a
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FindingFinding a a canonicalcanonical setset (3)(3)

Step 3: Minimize left hand side
For of each FD  f = X → Y ∈ DEP, a ∈ X

DEP'= {DEP \ f } ∪ { X \ {a} → Y}
if {DEP}+ = (DEP')+

then replace DEP by DEP' 
end_for
If a FD f has been minimized repeat step 2

Example: 
{bcd -> a, c -> e, e -> b} + = {cd -> a, c -> e, e -> b} +
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FindingFinding a a canonicalcanonical setset (4)(4)

Step 4: Unify left hand side
Applying the union rule
" X → Y  ∧ X → Z ⇒ X → YZ "

Example: {cd -> a, cd -> e, d -> f} 
unified: {cd -> ae, d -> f} 

The remaining set of Functional Dependencies is the 
minimal cover of the original set DEP of FDs
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Synthesis Synthesis algorithmalgorithm
Normalization problem: 

Given a relation R in 1NF and a set DEP of FD
Find a lossless, dependency preserving 
decomposition  R1,…,Rk, all of them in 3NF 

Synthesis Algorithm
Find minimal cover MIN of DEP;
For all X -> Y in MIN define a relation 

RX  with schema Σ(RX) = X ∪ Y
Assign all FDs X' -> Y' with X' ∪ Y' ⊆ Σ(RX) to RX
If none of the synthesized relations RX contains a 

candidate key of R 
then introduce a relation Rkey which contains a 

candidate key of R
Remove relations RY where:  Σ(RY) ⊆ Σ(RX)



04-DBS-NF-57© HS-2010

Normal Normal FormsForms: : CriticalCritical reviewreview
Should relations be always normalized ?

Yes : makes invariant checking easy, and no „update 
anomalies“

No: Why should we normalize if there are no updates ?

Example: Customer( cu_Id, name, fname, zipCode, city, street, no) 
No reason to normalize if only one address per customer and 
updates are infrequent

Consider cost of joins / updates
• How expensive are selects which need joins because

of normalization?
• Updates which cause anomalies? 



04-DBS-NF-58© HS-2010

ER modeling and Normal FormsER modeling and Normal Forms

ER and  Normal Forms: 
Two different mechanisms to design a database scheme

ER more intuitive, 
NF uses algorithms

ER-models often already in 3NF   

Use normalization as a complementary design method
– Set up ER model
– Transform to relations
– Normalize each non normalized relation if the tradeoff 

of join processing and updating redundant data 
suggests to do so


