
12-CC-32

12.3 12.3 NonlockingNonlocking schedulersschedulers

12.3.1 Time stamp ordering
Basic idea:
- assign timestamp when transaction starts
- if ts(t1) < ts(t2) … < ts(tn), then scheduler has to produce

history equivalent* to t1, t2, t3, t4, ... tn

Timestamp ordering rule:
If pi(x) and qj(x) are conflicting operations,
then pi(x) is executed before qj(x) ⇔ ts(ti) < ts(tj)
or: pi(x) < qj(x) ⇔ ts(ti) < ts(tj)

(*) in case of conflicting operations – otherwise order arbitrary.

12.3.1 not discussed in class

12-CC-33

Timestamp orderingTimestamp ordering

TO concurrency control guarantees conflict-serializable
schedules

Proof sketch:
Assume not ⇒ cycle in conflict graph (*)
cycle of length 2: ts(t1) < ts(t2) ∧ ts(t2) < ts(t1) #
induction over length of cycle ⇒ #

⇒ No cycle in conflict graph

(*) Do not confuse with Wait-For-Graph – only defined for locking protocols

12-CC-34

TO SchedulerTO Scheduler

Basic principle:
Abort transaction if its operation is "too late“

Each object x has two timestamps
maxW(x): timestamp of last writer (TA which wrote x)
maxR(x): timestamp of last reader

Whether op(x) of TA ti is "too late", depends on ts(ti) and
the read / write timestamps of x

12-CC-35

TO Scheduler: readTO Scheduler: read

Read: TA ti with timestamp ts(ti) wants to read x : ri(x)
(i) maxW(x) > ts(ti):

 there is a younger TA which has written x
contradicts timestamp ordering:

ti reads too late
abort TA ti , restart ti

(ii) maxW(x) < ts(ti) set maxR(x) = ts(ti), go ahead
example: ------|------|----------- >

wj(x) ri(x) ts(ti) < ts(tj)

What would happen in a locking scheduler in this case?

12-CC-36

TO Scheduler: writeTO Scheduler: write

Write: TA ti with timestamp ts(ti) wants to write x : wi(x)
(i) maxW(x) > ts(ti) ∨ maxR(x) > ts(ti) :

/* x has been written or read by younger
transaction:
contradicts timestamp ordering

abort TA ti
(ii) otherwise: schedule wi(x) for execution

set maxW(x) = ts(ti),
Why abort ?

wi(x) wj(x) abort(i) ts(ti) < ts(tj)

x would have been overwritten in serialization according
to timestamp order anyway! ... ti < ...< tj....

12-CC-37

Thomas Write RuleThomas Write Rule

Idea: younger write overwrites older write
without changing effect of timestamp ordering

maxR(x) maxW(x)

maxW(x) > ts(ti)

ti wants to write x, but too late

Rules for Writer t with timestamp ts(t):
1. maxR(x) > ts(t) : abort T
2. maxW(x) > ts(t) : skip write // Thomas write rule
3. otherwise write(x), maxW(x) = TS(t)

12-CC-38

• Lightweight solution.
– Serializable? Obvious
– Why not replace 2PL in DBS?

• Timestamp ordering optimistic or pessimistic??
• There are more protocols using timestamps

(BOT-timestamp or EOT-timestamp)
but different from timestamp ordering protocol

DiscussionDiscussion

12-CC-39

12.3.2 Optimistic CC12.3.2 Optimistic CC

Optimistic concurrency control
– Locks are expensive
– Few conflicts retrospective check for conflicts

cheaper

Basic idea: all transactions work on copies,
check for conflicts before write into DB
if conflict detected (*): abort TA else commit

(*) how to detect conflicts??

12-CC-40

Phases of optimistic ccPhases of optimistic cc

'Read' phase:
All data used are
copied to private
workspace and used
by the application,
some are modified, but
not written int0 DB.

BOT

Validation phase:
any conflicts?
if yes: resolve

Commit phase:
write all (changed)
data into DB

EOT

12-CC-41

Backward oriented concurrency control (BOCC)

r(y)
T2

T1

T3

EOT

EOT

Commit or rollback?
r(x)

w(x) w(y)

w(z)

• ReadSet R(T) = data, transaction T has read in read phase
• WriteSet W (T) = data (on copies!), T has changed in read phase

Assumption: W(T) ⊆ R(T) - necessary? why?
Example above: x,y ∈ R(T2), x,y ∈ W(T3), z ∈ W(T1)

still activeTA4
r4(a)

w4(x)

12-CC-42

What is a conflict?
• Let x ∈ R(T) . T wants to validate.
• If a transaction S different from T read x,

but did not commit no problem

• If a transaction S different from T committed after BOT(T),
DB state of x may be different from x at BOT(T) conflict

BOCC_validate(T) :
if for all transactions T' which committed after BOT(T) :
R(T) ∩ W(T') = ∅ then T.commit // successful validation

else T.abort

12-CC-43

Optimistic CC: BOCCOptimistic CC: BOCC

TA2

TA1

TA3

EOT

EOT

Commit or rollback?
r(a)

w(x) w(y)

r(y)

w(z)

Question: Validation - what happens, if more than one TA validates?

More aborts than necessary :
R(TA2) ∩ W(TA3) != ∅ .
Note: No abort when 2PL synchronization !

w4(x)
still active

12-CC-44

ImplementationImplementation

Implementation of backward oriented OCC

– Each object x has a timestamp t , where t is the
commit time of the last transaction which modified x

– When T validates, it compares the current timestamp
tnew of each object x with the timestamp told of x had
when it was read by T.

– if (for all x read by T: told = tnew) commit;
else abort T; start T again;

These timestamps have NOTHING to do with Concurrency Control
using timestamp ordering !!

12-CC-45

ImplementationImplementation

Have timestamps of objects x read but not written by T
to be compared during validation?

r(x)

w(x)

T1

T0

r(y)

Validation/
Write phase

w(y=y+x)

Serializable: T0; T1

12-CC-46

ImplementationImplementation

Have timestamps of objects x read but not written by T
to compared during validation?

r(x)

w(x)
w(y)

T1

T0

r(y)

Validation/
Write phase

w(y=y+x)

Cycle in conflict graph : T0; T1; T0

Consequence: records have to be checked which T0 read only!

12-CC-47

ImplementationImplementation

... timestamps of objects x read but not written by T
have also to be compared during validation.

r(x)

w(x)
w(y)

T1

T0

r(y) w(y new)

Cycle in conflict graph : T0; T1; T0

Only a problem, if ynew depends on x!

Implementations often assume,
that update of x is only dependent
on the old value of x, e.g.
many OR mappers.
SQLServer: cursor can be defined
OPTIMISTIC WITH VALUE,
In case of update of a row
compares value read and
value in database.
OPTIMISTIC WITH VERSIONS

12-CC-48

Optimistic CC: FOCCOptimistic CC: FOCC

Forward oriented optimistic Concurrency control (FOCC)
Forward looking validation phase:

If there is a running transaction T' which read data
written by the validating transaction T then solve
the conflict (e.g. kill T'), else commit

TA2

TA1

TA3

EOT

EOT

Commit or solve conflict?

r(a)

r(x) w(x) r(y) w(y)

r(y)

r(z) ..w(z)

12-CC-49

Concurrency: Optimistic CCConcurrency: Optimistic CC

FOCC_validate(T) : if(for all running transactions (T')
R(T') ∩ W(T) = ∅)

T.commit // successful validation
else solve_conflict (T, T')

R(T'): Read set of T' at validation time of T (current read set)

TA2

TA3 EOT Commit or solve conflict?

r(a)

r(x) w(x) r(y) w(y)

r(y)

12-CC-50

Optimistic Concurrency controlOptimistic Concurrency control
Validation of "read only" transactions T:

FOCC guarantees successful validation !
FOCC has greater flexibility

Validating TA may decide on victims!

• Issues for both approaches:
fast validation – only one TA can validate at a time.
Fast and atomic commit processing,

• Useful in situation with few expected conflicts.

TA2

TA3 EOT solve conflict:
abort TA3 or TA2

r(x)

r(x) w(x) r(y) w(y)

r(y)

12-CC-51

Implementation of Read / Write setsImplementation of Read / Write sets

Thinkfood:

Is it possible to implement of Read / Write sets used by
FOCC by means of timestamps ts(x) as BOCC?

– what about committed TA concurrent to validating?
– Important detail: how to avoid that read-timestamps
attached to records have to be written back to disk? !

12-CC-52

12.3.3 12.3.3 Principle of Principle of MultiversionMultiversion Concurrency controlConcurrency control

Multiversion CC:
r1(x) w1(x) r2(x) w2(y) r1(y) w1(z) c1 w2(a) c2
not serializable.

If r1(y) had arrived at the scheduler before
w2(y) the schedule would have been serializable.

Main idea of multiversion concurrency control : Reads
should see a consistent (and committed) state, which
might be older than the current object state.

Arrows from
TA2-ops to
conflicting TA1-ops

12-CC-53

Update strategies and versionsUpdate strategies and versions

Required:
Different versions of an object
Particular important: 2 versions

Implementation depends on the how DB is updated:
– update in place: object is updated in the DB

(compare: update of copy in optimistic cc)

– No update at all:
each update is an insert
of a new version (Postgres solution).

12-CC-54

Isolation levels?Isolation levels?

• What does read committed mean exactly?

w0(x0) c0 r2(x0) w1(x1) w1(y1) c1 r2(y1) r2(x1) (*)

(*) wi(xi) means: TAi produces version i of x: xi;
rj(yk) means: TAj reads version of y produced by TAk

TA2 reads only committed data: READ COMMITTED

But not REPEATABLE, not SERIALIZABLE

12-CC-55

Transaction level consistencyTransaction level consistency

Idea: each transaction reads only objects from the
same DB state

Requirement: each version of an object has as a timestamp
the commit time ctsi of the TAi which produced this version:

e.g.: (xi, ctsi) means: TAi produced this version and
committed at tsi

12-CC-56

Transaction level consistencyTransaction level consistency

Def.: A Transaction TAi with BOT time stamp ts(i) is
transaction level consistent iff
for all objects x the version (xi,ctsi) is read by TAi which
is defined by:
ctsi = max {ctsj : (xj, ctsj) is a version and ctsj < tsi}

Def.: Snapshot number: cts assigned to TA .
Reflects the state of the DB which TA observes at BOT.

If only one version: nothing new – read committed.
Multiple versions: Need Read-only TA read locks at all?

12-CC-57

MVCC pragmaticsMVCC pragmatics

• Difficult to integrate MVCC into a DBS kernel
• Even difficult protocols in general

• Postgres: The design decision never to update but to
append new "record states" greatly alleviates MVC
synchronisation,

• Easy:
Process Read only transactions different from
R/W transactions.

12-CC-58

ReadRead--only Transactionsonly Transactions

Assume scheduler knows that TA t will only read,
why read-locks?

• Goal: r(x) of t should never be member of a conflict pair
⇒ no locks, no delay, execute immediately

SQL:
SET TRANSACTION READ ONLY
FOR READ ONLY in cursor definition

Important examples: e.g. browsing a product catalogue

12-CC-59

Read Only transactionRead Only transaction

• Why does it work?

• Why is more than one version needed?

Basic idea of Read-only transactions:
• several version of x with commit-timestamp of TA which
wrote x ("produced this version of x"): (x(1),ts1),..,(x(k),tsk)

• Read-only TA t with begin timestamp ts(t)
reads version (x(i),tsi) with tsi = max{tsj: tsj < ts(t)}

12-CC-60

Characteristics of ROCharacteristics of RO--TATA

• A RO-Transaction always is (reads) transaction
consistent.

• No Read locks !
Obvious: no conflicts – reads on committed versions

• More than two versions needed.

Issue: management of (in principle) arbitrary many versions

12-CC-61

MVCC / Read Only TAs: ExampleMVCC / Read Only TAs: Example

call sequence: TA1, TA4 and TA5 are RO
R1(x) r2(x)w2(x)r3(x)r2(y)R4(z)w2(y)c2R4(x)c4w3(x)R5(z)c3R1(y)c1R5(x)c5

R1(x0)__R1(y0)c1

r2(x0)w2(x2)__r2(y0)____w2(y2)c2

r3(x).......blocked..........r3(x2)__w3(x3)c3

R4(z0)____ R4(x0)c4
r6(y2)_w6(y6) c6

R5(z0)_________R5(x2)c5

R1(y0): there exists a newer version y2, but RO_TA1 is older
R5(x2): reads x2 since TA3 which produces x3, commits after TA 5 begins
R4(x0): same with TA2, which produces x2
TA3 has been blocked, since TA2 holds lock on x, r3(x2) after TA2 commited

3 version of y
needed!

12-CC-62

Multiple versions?Multiple versions?

Assumption: update in place – otherwise next to trivial

Use DBS log for reconstruction of old versions!

Log: all operation of the DBS have to logged in a log file
for recovery purposes (see below)

"Roll back" for reconstruction past states of object x.

When needed?

12-CC-63

MVCC: How to implement versions MVCC: How to implement versions

Read Only Multiple version CC (used in Oracle)

No read locks needed for consistent read,
S2PL write locks"system

change number
10023"
-> statement

SCN

Read those items with SCN' < SCN of statement
reconstruct all others from log records

Data have to be temporari-
ly stored anyway: System
has to be prepared for
Rollback"

… or transaction
commit time for
transaction
level read
consistency

12-CC-64

Roadmap MVCCRoadmap MVCC

What we have:
No Read-locks for RO-TA if more than one version per
object

What we would like:

- No Read locks at all!?

- No write locks??

Overall goal: decrease synchronization (locking) overhead
if more than on version available.

12-CC-65

Read Consistency MVCCRead Consistency MVCC
• Combine Read-only TA and lock based cc

– Read-only as above

– write (x):
write lock the most current version of x and

produce version (xi, ctsi)
⇒ other writers have to wait

– read(x):
read last committed version without locking(!)
⇒ READ COMMITTED , not repeatable

12-CC-66

Read consistent MVCCRead consistent MVCC

w0(x0) c0
r2(x0) r2(y1) r2(x1)

R3(x0) R3(y0) R3(x0)
w1(x1) w1(y1) c1

R= Read Only
why?

t

Remember:
READ_COMMITTED with 2PL requires a (short)
read lock on an item x to be read.
Why needed with one version, but not with more than one?

Example

12-CC-67

Read Consistency MVCC (2)Read Consistency MVCC (2)

• Most significant! No Read locks at all!
• More than READ COMMITTED

... since READ ONLY TA serializable

• Fits to standard 2PL for R/O transactions

but...
no repeatable read, not serializable

• How to avoid lost updates and guarantee repeatable read
without reintroducing read locks?

• Can write locks be avoided? ??

12-CC-68

SNAPSHOT IsolationSNAPSHOT Isolation

'writes' are the problem .

Suppose: w0(x0), c0, r1(x0) r2(x0) w1(x1) c1 w2(x2) c2

... and Repeatable Read?

• Avoid conflicting writes of concurrent transactions!

⇒ Write set of concurrent (overlapping!) transactions
must be disjoint.

12-CC-69

SNAPSHOT isolationSNAPSHOT isolation

• read(x): versionof x that was current when TA started
e.g. max (xj, ctsj), ctsj < ts(TA)

• if write set of TAj und TAi not disjoint:
abort one of them!

⇒ transaction level consistent, no read locks

How to implement with / without(!) write locks??

12-CC-70

SNAPSHOT isolation SNAPSHOT isolation

"First commit wins" implementation.

Transaction T:

1. make updates locally (like optimistic cc)
2. Commit step 1:

validate: have all updated objects the same
version number which T read?

3. If yes: commit else abort

No writes locks, no read locks!!

12-CC-71

SNAPSHOT isolationSNAPSHOT isolation

Lock based implementation

Let snapshot number of TA1 be s
TA1: write (x)

if s < current version of x: abort
Some TA* modified x after BOT(TA1) and committed!

example: r1(y0) r2(x0) w2(x2) c2 r1(x0) w1(x1)
TA1 aborts

... →

TA1 reads TA level consistent,
i.e. the version of x that was current
at BOT of TA1

else...

12-CC-72

SNAPSHOT isolation: lockingSNAPSHOT isolation: locking

else: TA1 locks x 2PL if it wants to produce a new
version.

if x already (write) locked by TA* TA1 waits until:
TA* commits ⇒ TA1 aborts
else
TA* aborts ⇒ TA1 commits

else commit.

• No read locks needed
• Repeatable Read, but not Serializable.
• Compatible with update in place, if version reconstructed

from the log.

12-CC-73

Serializability and versionsSerializability and versions

Disadvantage of snapshot isolation:
– not serializable in all cases
– Abort of a TA in case of w-w conflicts

Maybe waiting for the release of a lock would be
sufficient?

Generalized lock protocol with 2 versions only:
• only one TA can prepare a new version

⇒ Standard lock protocol (2 PL)
• Writer wants to publish new version of x:

no reader of x should still be active.

12-CC-74

MultiversionMultiversion CC: 2 versions (2VMVCC)CC: 2 versions (2VMVCC)

2 versions of each object x:
- a consistent one xj with commit time of last
modifying transaction tj as a timestamp

- a writer ti may prepare a second version xi, not
visible until commit of writing TA ti

Restrictions for 2VMCC:
• Never two writers at the same time on the same object

⇒ only one new version can be prepared
• New version cannot be published, if a reader of the
(consistent) old version is still active

12-CC-75

2VMVCC 2VMVCC

r1(x0) w1(x1) r1(z0) w1(z1) (delayed) c1
r2(x0) w2(y2) r2(z0) c2

r1(x0) w1(x1) r1(z0) w1(z1) c1
r2(x0) w2(y2) r2(z1) c2

Suppose z1 = z0+x1: inconsistent – two different states of x in
the TA t2 , read not repeatable – remember: only 2 versions

Delay the commit of t1 until all readers of objects
written by t1 (i.e. x, z) have committed:

12-CC-76

MultiversionMultiversion concurrencyconcurrency

---C

--+W

-++R

CWR
Compatibility matrix

Lock based MVCC ("MVCC2PL")

w(x): write lock x if not locked, else wait
r(x): read lock on x always granted for last

consistent version
c(x): acquire certify lock, if prepared version

of x is to become the current consistent version,
granted, if now reader or writer on x active.

12-CC-77

MultiversionMultiversion concurrencyconcurrency

Two-version-2PL MVCC
has only one uncommitted version, one consistent

("current") version because writes are incompatible
Readers benefit, not writers

- May be generalized to more than one uncommitted
- MVCC is most in practice

Deadlocks?

Read locks needed why?

Serializable?

12-CC-78

2PL2PL--MVCCMVCC

x0,y0,z0 : consistent state of x,y,z
xi := value of x produced by TAi

Call sequence:
r1(x) w2(y) r1(y) w1(x) c1 r3(y) r2(x) w2(x) c2 r3(x) c3

T1 r1(x0) r1(y0) w1(x1) c1

T2 w2(y2) r2(x1)w2(x2)c2

T3 r3(y0) r3(x1) c3

t

C_lock for y not granted, wait until
T3 finished.

Consistent version read, not the uncommitted y2!

12-CC-79

Update replaced by appendUpdate replaced by append

The Postgres solution...

• ... is much trickier
• ... will be presumably analyzed in DB-Tech (winter term)

• MVCC also employed in non-DB applications

12-CC-80

Summary: Transactions and concurrencySummary: Transactions and concurrency

• Transactions: very import concept
• Model for consistent, isolated execution of concurrent TAs
• Scheduler has to decide on interleaving of

operations
• Serializability: correctness criterion
• Implementation of serializability:

concurrency control:
2-phase-locking, time stamping, multiversion cc ...and more

• Strict 2PL restrictive, but employed in many DBS
• Read-mostly DB has fostered MVCC, today in most

DBS Oracle, Postgres, SQL-Server and more...

see comprehensive overview of synchronization in DBS in the reader

