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Correspondence

= Fundamental to many of the core vision problems
— Recognition
— Motion tracking
— Multiview geometry

= | ocal features are the ke

Images from: M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the
the International Conference on Computer Vision (ICCV2003 (



Local Features:

Detectors & Descriptors

Detected Descriptors
Interest Points/Regions
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|deal Interest Points/Regions

= | ots of them

= Repeatable

= Representative orientation/scale
= Fast to extract and match




SIFT Overview

Detector
1. Find Scale-Space Extrema

2. Keypoint Localization & Filtering
— Improve keypoints and throw out bad ones

3. Orientation Assignment
— Remove effects of rotation and scale

4. Create descriptor
— Using histograms of orientations

Descriptor
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Scale Space

= Need to find ‘characteristic scale’ for feature

= Scale-Space: Continuous function of scale o
— Only reasonable kernel is Gaussian:

L\x,,0,) =Glx,y,0,)*1(x. )

[Koenderink 1984, Lindeberg 1994]



Scale Selection

= Experimentally, Maxima of Laplacian-of-Gaussian gives
best notion of scale:

= Thus use Laplacian-of-Gaussian (LoG) operator:
o 0G

Mikolajczyk 2002



Approximate LoG

= LoG is expensive, so let's approximate it
= Using the heat-diffusion equation:

_0G _ Glka)-Glo]
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= Define Difference-of-Gaussians (DoG):

k=Y)o'0'G = Glko)-Glo)

D|o) =(Glko)-Glo))*1



DoG Efficiency

= The smoothed images need to be computed In
any case for feature description.

= We need only to subtract two images.
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DoB Filter (" Difference of Boxes')

= Even faster approximation is using box filters (by
integral image)

I

Fig.1. Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and ry-direction, and our approximations thereof using box
filters. The grev regions are equal to zero.

Bay et al., ECCV 2006



Integral Image Computation

®

D= B+C - A




Integral Image Usage

A B Using the integral image representation
one can compute the value of any

rectangular sum 1n constant time.

Example: Rectangle D

ii(4) + ii(1) — ii(2) — ii(3)




Scale-Space Construction

= First construct scale-space:

Increasing o
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Difference-of-Gaussianss

= Now take differences:
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Scale-Space Extrema

= Choose all extrema within 3x3x3 neighborhood.
= Low cost — only several usually checked
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SIFT Overview
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Keypoint Localization & Filtering

= Now we have much less points than pixels.

= However, still lots of points (~1000s)...

— With only pixel-accuracy at best

* At higher scales, this corresponds to several pixels in base
image

— And this includes many bad points

Brown & Lowe 2002



Keypoint Localization

= The problem:

True Extrema

Detected Extrema

Sampling




Keypoint Localization

= The Solution:
— Take Taylor series expansion:
K D'~ 17,0°D" "~
D(x):D+a = x+—x Dz X
0x 2 0x

— Minimize to get true location of extrema:
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Brown & Lowe 2002



Keypoints
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(a) 233x189 image
(b) 832 DOG extrema



Keypoint Filtering - Low Contrast

= Reject points with bad contrast

D(fc) is smaller than 0.03 (image values in [0,1])



Keypoint Filtering - Edges

= Reject points with strong edge response in one
direction only

= Like Harris - using Trace and Determinant of
Hessian

Point constrained

—o- —»

Point detection

Point detection Point can move along edge



Keypoint Filtering - Edges

= To check if ratio of principal curvatures is below some threshold, r, check:

Tr(H)’ - (r +1)°
Det(H) r

= Only 20 floating points operations to test each keypoint




Keypoint Filtering

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures
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ldeal Descriptors

= Robust to:
— Affine transformation
— Lighting
— Noise

= Distinctive

= Fast to match

— Not too large
— Usually L1 or L2 matching
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Orientation Assignment

= Now we have set of good points

= Choose a region around each point
— Remove effects of scale and rotation




Orientation Assignment

= Use scale of point to choose correct image:

L(x,y) =Glx,y,0)*1(x,y)

= Compute gradient magnitude and orientation
using finite differences:

m(x,y):\/(L(xﬂy) Lix=1,p))" +(L{x,y +1) = L(x, y = 1))’

+
_ L{x, y +1) L(xy D)
H(x,y) -t %L(x+l y x ly)




Orientation Assignment

= Create gradient histogram (36 bins)

— Weighted by magnitude and Gaussian window ( O is 1.5 times
that of the scale of a keypoint)
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Orientation Assignment

Any peak within 80% of the highest peak is used
to create a keypoint with that orientation

~15% assigned multiplied orientations, but
contribute significantly to the stability

Finally a parabola is fit to the 3 histogram values
closest to each peak to interpolate the peak
position for better accuracy
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SIFT Descriptor

= Each pointso farhas x,y, o, m, 6

= Now we need a descriptor for the region

— Could sample intensities around point, but...
* Sensitive to lighting changes
* Sensitive to slight errors in x, y, 6
= Look to biological vision

— Neurons respond to gradients at certain frequency and
orientation
* But location of gradient can shift slightly!

Edelman et al. 1997



SIFT Descriptor

= 4x4 Gradient window
= Histogram of 4x4 samples per window in 8 directions

= Gaussian weighting around center( O is 0.5 times that of the scale of
a keypoint)

m 4x4x8 = 128 dimensional feature vector

Image gradients Keypoint descriptor

Image from: Jonas Hurreimann



SIFT Descriptor — Lighting changes

= Gains do not affect gradients
= Normalization to unit length removes contrast

= Saturation affects magnitudes much more than
orientation

= Threshold gradient magnitudes to 0.2 and renormalize



Performance

= Very robust
— 80% Repeatability at:

10% image noise
* 45° viewing angle
1k-100k keypoints in database
= Best descriptor in [Mikolajczyk & Schmid 2005]'s
extensive survey

= 3670+ citations on Google Scholar



Typical Usage

= For set of database images:
1. Compute SIFT features
2. Save descriptors to database
= For query image:
1. Compute SIFT features

2. For each descriptor:
Find a match

3. Verify matches
Geometry
Hough transform



Matching Descriptors

= Threshold on Distance — bad performance
= Nearest Neighbor — better
= Ratio Test — best performance
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Matching Descriptors - Distance

= L2norm — used by Lowe

=  SlFToist: linear time EMD algorithm that adds
robustness to orientation shifts

Pele and Werman, ECCV 2008



Ratio Test

Image 2 Image 1

—

Best Match

True 2™
best match




Fast Nearest-Neighbor Matching to
Feature Database

Hypotheses are generated by approximate nearest neighbor
matching of each feature to vectors in the database

— SIFT use best-bin-first (Beis & Lowe, 97) modification to k-d
tree algorithm

— Use heap data structure to identify bins in order by their
distance from query point

Result: Can give speedup by factor of 1000 while finding
nearest neighbor (of interest) 95% of the time



3D Object Recognition

= Only 3 keys are needed for
recognition, so extra keys
provide robustness




Recognition under occlusion




Test of illumination Robustness

= Same image under differing illumination




Location recognition




Image Registration Results

[Brown & Lowe 2003]



Cases where SIFT didn’t work



Large illumination change

= Same object under differing illumination

= 43 keypoints in left image and the corresponding closest
keypoints on the right (1 for each)
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Large illumination change

= Same object under differing illumination

= 43 keypoints in left image and the corresponding closest
keypoints on the right (5 for each)




Non rigid deformations

= 11 keypoints in left image and the corresponding closest
keypoints on the right (1 for each)




Non rigid deformations

= 11 keypoints in left image and the corresponding closest
keypoints on the right (5 for each)




Conclusion: SIFT

= Built on strong foundations
— First principles (LoG and DoG)
— Biological vision (Descriptor)
— Empirical results

= Many heuristic optimizations
— Rejection of bad points
— Sub-pixel level fitting
— Thresholds carefully chosen



Conclusion: SIFT

= |n wide use both in academia and industry

= Many available implementations:
— Binaries available at Lowe’s website
— C/C++ open source by A. Vedaldi (UCLA)
— C# library by S. Nowozin (Tu-Berlin)

= Protected by a patent



Conclusion: SIFT

= Empirically found? to show very good performance, robust to
image rotation, scale, intensity change, and to moderate affine

transformations
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A note regarding invariance/robustness

= There is a tradeoff between invariance and
distinctiveness.

* For some tasks it is better not to be invariant

= | ocal features and kernels for classification of
texture and object categories: An in-depth
study - Zhang, Marszalek, Lazebnik and Schmid. [JCV 2007.

= 11 color names - J. van de Weijer, C. Schmid, Applying
Color Names to Image Description. ICIP 2007



Conclusion: Local features

= Much work left to be done
— Efficient search and matching
— Combining with global methods
— Finding better features



SIFT extensions



Color

= Color SIFT - G. J. Burghouts and J. M. Geusebroek.
Performance evaluation of local colour invariants.
Comput. Vision Image Understanding, 2009

= Hue and Opponent histograms - J. van de Weijer,
C. Schmid. Coloring Local Feature Extraction.

ECCV 2006

= 11 color names - J. van de Weijer, C. Schmid,
Applying Color Names to Image Description. ICIP 2007



PCA-SIFT

= Only change step 4 (creation of descriptor)

= Pre-compute an eigen-space for local gradient
patches of size 41x41

= 2x39x39=3042 elements
= Only keep 20 components

= A more compact descriptor

= |n K.Mikolajczyk, C.Schmid 2005 PCA-SIFT
tested inferior to original SIFT



Speed Improvements

= SURF - Bay et al. 2006
= Approx SIFT - Grabner et al. 2006
= GPU implementation - Sudipta N. Sinha et al. 2006
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GLOH (Gradient location-orientation
histogram)

jE 17 location bins
\< / 16 orientation bins
H{ Analyze the 17x16=272-d
ﬁ\/ E’J /' eigen-space, keep 128 components



