SIFT - The Scale Invariant Feature Transform

Distinctive image features from scale-invariant keypoints. David G. Lowe, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

Presented by Ofir Pele.

Based upon slides from:

- Sebastian Thrun and Jana Košecká
- Neeraj Kumar

Correspondence

- Fundamental to many of the core vision problems
 - Recognition
 - Motion tracking
 - Multiview geometry

Local features are the key

Images from: M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the the International Conference on Computer Vision (ICCV2003 (

Local Features: Detectors & Descriptors

Detected
Interest Points/Regions

Descriptors

- <0 12 31 0 0 23 ...>
- <5 0 0 11 37 15 ...>
- <14 21 10 0 3 22 ...>

Ideal Interest Points/Regions

- Lots of them
- Repeatable
- Representative orientation/scale
- Fast to extract and match

SIFT Overview

Detector

- Find Scale-Space Extrema
- 2. Keypoint Localization & Filtering
 - Improve keypoints and throw out bad ones

- 3. Orientation Assignment
 - Remove effects of rotation and scale
- 4. Create descriptor
 - Using histograms of orientations

Descriptor

SIFT Overview

Detector

- Find Scale-Space Extrema
- 2. Keypoint Localization & Filtering
 - Improve keypoints and throw out bad ones

- Orientation Assignment
 - Remove effects of rotation and scale
- 4. Create descriptor
 - Using histograms of orientations

Descriptor

Scale Space

- Need to find 'characteristic scale' for feature
- Scale-Space: Continuous function of scale σ
 - Only reasonable kernel is Gaussian:

$$L(x, y, \sigma_D) = G(x, y, \sigma_D) * I(x, y)$$

[Koenderink 1984, Lindeberg 1994]

Scale Selection

Experimentally, Maxima of Laplacian-of-Gaussian gives best notion of scale:

Thus use Laplacian-of-Gaussian (LoG) operator:

$$\sigma^{\mathsf{r}} \nabla^{\mathsf{r}} G$$

Approximate LoG

- LoG is expensive, so let's approximate it
- Using the heat-diffusion equation:

$$\sigma \nabla^{\mathsf{T}} G = \frac{\partial G}{\partial \sigma} \approx \frac{G(k\sigma) - G(\sigma)}{k\sigma - \sigma}$$

Define Difference-of-Gaussians (DoG):

$$(k-1)\sigma^{\mathsf{T}} G \approx G(k\sigma) - G(\sigma)$$

$$D(\sigma) \equiv (G(k\sigma) - G(\sigma)) * I$$

DoG Efficiency

- The smoothed images need to be computed in any case for feature description.
- We need only to subtract two images.

DoB Filter ('Difference of Boxes')

Even faster approximation is using box filters (by integral image)

Fig. 1. Left to right: the (discretised and cropped) Gaussian second order partial derivatives in y-direction and xy-direction, and our approximations thereof using box filters. The grey regions are equal to zero.

Integral Image Computation

Integral Image Usage

Using the integral image representation one can compute the value of any rectangular sum in constant time.

Example: Rectangle D

$$ii(4) + ii(1) - ii(2) - ii(3)$$

Scale-Space Construction

First construct scale-space:

Difference-of-Gaussianss

Now take differences:

Scale-Space Extrema

- Choose all extrema within 3x3x3 neighborhood.
- Low cost only several usually checked

SIFT Overview

Detector

Find Scale-Space Extrema

2. Keypoint Localization & Filtering

Improve keypoints and throw out bad ones

- 3. Orientation Assignment
 - Remove effects of rotation and scale
- 4. Create descriptor
 - Using histograms of orientations
 Descriptor

Keypoint Localization & Filtering

- Now we have much less points than pixels.
- However, still lots of points (~1000s)...
 - With only pixel-accuracy at best
 - At higher scales, this corresponds to several pixels in base image
 - And this includes many bad points

Keypoint Localization

The problem:

Keypoint Localization

- The Solution:
 - Take Taylor series expansion:

$$D(x) = D + \frac{\partial D_{\rightarrow}^{T}}{\partial x}x + \frac{1}{2}x^{T}\frac{\partial^{2}D^{T}}{\partial x^{2}}x$$

– Minimize to get true location of extrema:

$$\hat{x} = -\frac{\partial^{\mathsf{T}} \mathcal{D}}{\partial x^{\mathsf{T}}} \frac{\partial \mathcal{D}}{\partial x}$$

Keypoints

(a) 233x189 image

(b) 832 DOG extrema

Keypoint Filtering - Low Contrast

Reject points with bad contrast

 $D(\hat{x})$ is smaller than 0.03 (image values in [0,1])

Keypoint Filtering - Edges

- Reject points with strong edge response in one direction only
- Like Harris using Trace and Determinant of Hessian

Keypoint Filtering - Edges

To check if ratio of principal curvatures is below some threshold, r, check:

$$\frac{Tr(H)^2}{Det(H)} < \frac{(r+1)^2}{r}$$

- **r**=10
- Only 20 floating points operations to test each keypoint

Keypoint Filtering

- (c) 729 left after peak value threshold (from 832)
- (d) 536 left after testing ratio of principle curvatures

SIFT Overview

Detector

- Find Scale-Space Extrema
- Keypoint Localization & Filtering
 - Improve keypoints and throw out bad ones

- Orientation Assignment
 - Remove effects of rotation and scale
- 4. Create descriptor
 - Using histograms of orientations

Descriptor

Ideal Descriptors

- Robust to:
 - Affine transformation
 - Lighting
 - Noise
- Distinctive
- Fast to match
 - Not too large
 - Usually L1 or L2 matching

SIFT Overview

Detector

- Find Scale-Space Extrema
- Keypoint Localization & Filtering
 - Improve keypoints and throw out bad ones

3. Orientation Assignment

- Remove effects of rotation and scale
- 4. Create descriptor
 - Using histograms of orientations
 Descriptor

- Now we have set of good points
- Choose a region around each point
 - Remove effects of scale and rotation

Use scale of point to choose correct image:

$$L(x,y) = G(x,y,\sigma) * I(x,y)$$

Compute gradient magnitude and orientation using finite differences:

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1} \left(\frac{(L(x,y+1) - L(x,y-1))}{(L(x+1,y) - L(x-1,y))} \right)$$

- Create gradient histogram (36 bins)
 - Weighted by magnitude and Gaussian window (σ is 1.5 times that of the scale of a keypoint)

- Any peak within 80% of the highest peak is used to create a keypoint with that orientation
- ~15% assigned multiplied orientations, but contribute significantly to the stability
- Finally a parabola is fit to the 3 histogram values closest to each peak to interpolate the peak position for better accuracy

SIFT Overview

Detector

- Find Scale-Space Extrema
- Keypoint Localization & Filtering
 - Improve keypoints and throw out bad ones

- Orientation Assignment
 - Remove effects of rotation and scale

4. Create descriptor

Using histograms of orientations
 Descriptor

SIFT Descriptor

- Each point so far has x, y, σ, m, θ
- Now we need a descriptor for the region
 - Could sample intensities around point, but...
 - Sensitive to lighting changes
 - Sensitive to slight errors in x, y, θ
- Look to biological vision
 - Neurons respond to gradients at certain frequency and orientation
 - But location of gradient can shift slightly!

SIFT Descriptor

- 4x4 Gradient window
- Histogram of 4x4 samples per window in 8 directions
- Gaussian weighting around center(σ is 0.5 times that of the scale of a keypoint)
- 4x4x8 = 128 dimensional feature vector

Image from: Jonas Hurreimann

SIFT Descriptor – Lighting changes

- Gains do not affect gradients
- Normalization to unit length removes contrast
- Saturation affects magnitudes much more than orientation
- Threshold gradient magnitudes to 0.2 and renormalize

Performance

- Very robust
 - 80% Repeatability at:
 - 10% image noise
 - 45° viewing angle
 - 1k-100k keypoints in database
- Best descriptor in [Mikolajczyk & Schmid 2005]'s extensive survey
- 3670+ citations on Google Scholar

Typical Usage

- For set of database images:
 - 1. Compute SIFT features
 - 2. Save descriptors to database
- For query image:
 - 1. Compute SIFT features
 - 2. For each descriptor:
 - Find a match
 - 3. Verify matches
 - Geometry
 - Hough transform

Matching Descriptors

- Threshold on Distance bad performance
- Nearest Neighbor better
- Ratio Test best performance

Matching Descriptors - Distance

- L2 norm used by Lowe
- SIFTDIST: linear time EMD algorithm that adds robustness to orientation shifts
 Pele and Werman, ECCV 2008

Ratio Test

Fast Nearest-Neighbor Matching to Feature Database

- Hypotheses are generated by approximate nearest neighbor matching of each feature to vectors in the database
 - SIFT use best-bin-first (Beis & Lowe, 97) modification to k-d tree algorithm
 - Use heap data structure to identify bins in order by their distance from query point
- Result: Can give speedup by factor of 1000 while finding nearest neighbor (of interest) 95% of the time

3D Object Recognition

 Only 3 keys are needed for recognition, so extra keys provide robustness

Recognition under occlusion

Test of illumination Robustness

Same image under differing illumination

273 keys verified in final match

Location recognition

Image Registration Results

Cases where SIFT didn't work

Large illumination change

- Same object under differing illumination
- 43 keypoints in left image and the corresponding closest keypoints on the right (1 for each)

Large illumination change

- Same object under differing illumination
- 43 keypoints in left image and the corresponding closest keypoints on the right (5 for each)

Non rigid deformations

11 keypoints in left image and the corresponding closest keypoints on the right (1 for each)

Non rigid deformations

11 keypoints in left image and the corresponding closest keypoints on the right (5 for each)

Conclusion: SIFT

- Built on strong foundations
 - First principles (LoG and DoG)
 - Biological vision (Descriptor)
 - Empirical results
- Many heuristic optimizations
 - Rejection of bad points
 - Sub-pixel level fitting
 - Thresholds carefully chosen

Conclusion: SIFT

- In wide use both in academia and industry
- Many available implementations:
 - Binaries available at Lowe's website
 - C/C++ open source by A. Vedaldi (UCLA)
 - C# library by S. Nowozin (Tu-Berlin)
- Protected by a patent

Conclusion: SIFT

Empirically found² to show very good performance, robust to image rotation, scale, intensity change, and to moderate affine transformations

Scale =
$$2.5$$

Rotation = 45°

A note regarding invariance/robustness

- There is a tradeoff between invariance and distinctiveness.
- For some tasks it is better not to be invariant
- Local features and kernels for classification of texture and object categories: An in-depth study - Zhang, Marszalek, Lazebnik and Schmid. IJCV 2007.
- 11 color names J. van de Weijer, C. Schmid, Applying Color Names to Image Description. ICIP 2007

Conclusion: Local features

- Much work left to be done
 - Efficient search and matching
 - Combining with global methods
 - Finding better features

SIFT extensions

Color

- Color SIFT G. J. Burghouts and J. M. Geusebroek. Performance evaluation of local colour invariants. Comput. Vision Image Understanding, 2009
- Hue and Opponent histograms J. van de Weijer,
 C. Schmid. Coloring Local Feature Extraction.
 ECCV 2006
- 11 color names J. van de Weijer, C. Schmid, Applying Color Names to Image Description. ICIP 2007

PCA-SIFT

- Only change step 4 (creation of descriptor)
- Pre-compute an eigen-space for local gradient patches of size 41x41
- 2x39x39=3042 elements
- Only keep 20 components
- A more compact descriptor
- In K.Mikolajczyk, C.Schmid 2005 PCA-SIFT tested inferior to original SIFT

Speed Improvements

- SURF Bay et al. 2006
- Approx SIFT Grabner et al. 2006
- GPU implementation Sudipta N. Sinha et al. 2006

GLOH (Gradient location-orientation histogram)

17 location bins
16 orientation bins
Analyze the 17x16=272-d
eigen-space, keep 128 components