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1.Introduction

Let P and Q® be two convex polygons in the plane. Suppose
now that polygon P is fixed, and that (° may be varied by
rotation, translation and expansion in size.

The images of Q° with respect to the three operations are
called rotation—translation—expansion—images of Q (RTE -

images for short). An RTE-image Q is said to be i

allowed position if no point of Q lies outside of P.

The primary goal of this paper is to find that RTE-image
O in allowed position that realizes the largest expansion
of (*. We will call such an RTE-image RT - optimal in P.

To this end we consider the following idea. First
consider a T - optimal image 05 of O, 1i.e. a
displacement of (° in allowed position with maximal

expansion factor. We will see that 1023 is unique,
provided that no two edges of P are parallel, see figure
1.
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figure 1
Then we start to rotate & , while (i) keeping it in

allowed position, and (ii) expanding it as much as
possible. In other words, for every image Qe oObtained



from @° by rotation around the origin by any angle & 1in
the interval [0,2wx), we look for the T-optimal 1image
s 0f Qe (we use [a,b) for real numbers a and b to
denote the set of real numbers c with a £ ¢ < b). We will
see that the range 0 £ & < 2x can be partitioned into

rotation intervals ([&',8") such that all images Qa,
a8' (a8 8" can be obtained from Q& by rotation and
expansion around a fixed center M(®&',8") {without

translation!). This center M(®',8") will be called the
rotation center of @ for the interval [&',8").

In an algorithmic treatment we will see that we can
proceed from rotation interval to rotation interval and
that the number of rotation intervals 1is bounded by
O(kn®) (where k is the number of vertices in Q° and n is
the number of wvertices in P). The algorithm for
"rotating" 0 inside P has a space requirement
proportional “toDk + njand a # time complexity O(k*n®
log Q/) which means that we can solve the following
problems within these bounds:

(1) Pind a (or all) RT-optimal images of O in P.
(2) Construct a datastructure for  and P, such that for
every angle of rotation & of Q° the T-optimal image

99 can be computed in O(log kn) time.

(3) Find the largest expansion of @ that can be

completely rotated inside P (using only tfanslaffon 

without changing 1its size).

The first problem has been studied before by Sharir [SH]
who gives a O(kn® * log® kn) solution which outperforms
our result unless k is very small, 1i.e. unless k £ O(log
n). This is true for example, for constant k or n}

It is not clear whether or not Sharir's algo}ithm is
linear in space (i.e. Ok + n)): because 1in the
preversion of his paper [SH] he assumes that he will use
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a divide and congquer algorithm, and for reasons which
will be more reasonable later in this paper, we expect a
O(kn®) solution.

One section of this paper is dedicated to a paper of
Bernard Chazelle ([CH]) in which a optimal solution for
the translation-rotation restricted problem (i.e no
expansion of polygon Q is allowed) is shown. The reason
why we present this paper is, that Chazelle uses two very
powerful means of the computational geometry, namely, the
"duality", 1i.e. the transformation of E® into a dual
space, in which every line of E¥ is represented as point;
and the "Divide and Congquer" method.



2. Preliminary definitions and remarks

First we will introduce some terminology related toc the
geometric objects we are talking about.

definition 1: We define a point as a pair V = (x,y) of
coordinates in the plane E®*. A line segment v is the

convex hull of two points Vi = (X1,¥Y:) and
Ve = (Xa,y=), i.e., the set
Vv = {#(X1,y1) + (1/3) (%X=,y=) | 0<% <1}, Vi and V=

are called the endpoints of the line segment v.

All along this paper we will use capital letters for
points and lower case letters for line segments.

definition 2: A polygon R 1s a sequence (Vi,....,Vam),

m > 3, of pairwise different points. V., 1 < i < m,
are called the vertices of R and the line segments wi
with endpoints Vi and Vi+s (for 1 < i {m1) or V.,
and V» (for 1 = m) are called the edges of polygon R.

R is a convex polygon if for all edges vi, 1 < i < m,
all vertices of R except for the endpoints of vi, lie

on one side of the line through wv: .

definition 3: All along this paper Q° will be a convex

polygon with k wvertices o7, ....,08 and edges
Q¥,...,982. P will be a convex polygon with n
vertices Pi,...,P. and edges pi,...,Pn. Both, the

vertices of QQ and the vertices of P are sorted in

counterclockwise order on the boundary of polygon Q,
and P respectively.



For the sake of simplicity we assume that no two edges of
P are parallel.

definition 4: Let hs be the closed halfplane which is
bounded by line 1l — this is the line through edge

p. — and contains all vertices of polygon P. We will
say that a point G lies inside P (G=(Xgy.Ys) € P) or a
set N of points lies inside P (N={Ni ,N=...} &« P) if
point G, or every point of set N respectively lies in

the intersection H. of the halfplanes his to h. 1i.e.
H =hs ~h: ~ ... »n ha.

definition 5: We <can apply one or several of the

following transformations concurrently on polygon Q°
{the mathematical operations on each vertex of Q° will
be described for vertex Qf = (%Xf.vf)):

(a) T — transformation: (* is a translation image

(T - image for short) of @Q°, if Q* = Q° + v©.
(Qr = QF + (AX®,AY®) = (X¥+AX°,yP+AYC)) .

(b)) R - transformation: Qe 1is the rotation image
(R — image) of Q°, if Qe = R®(0,8)(Q® and R®(0,8) is
the rotation-matrix for a rotation around the

origin by angle #, 0 { & < 2x
cos © sin &

-sin & cos B

= (X ¥ cos & — yf * sin &,
X ¥ gin & + v * cos &)).



(¢ E — transformation: Q' 1is the expansion image
(E_ — image) of ¢, 1if Q' = wu*(0)Q°® and u*(0) is
the expansion factor for the expansion of Q° around
the origin. (Q/ = u(0)Qf = (M°(0)x?,n=(0)Y?)).

Every polygon 09 of the form 0a8' =
HE(MRO (M, &) + v will be called a RTE — image of
. (MR M,B)Q° is the RE-image of polygon (O when
¥ 1is RE-transformed around M, with uyu°MPRe(M,8)Q°
= (u® (0)R° (0,8)) (Q*-M) + M.

And therefore the complete formula for the RTE-image
of vertex Qf is O8' = (xX&.',Y&:+') with

X5 ' =
He(0) * ((Xf — %Xm) * cos ® — (YT — ym) ¥ sin &)
+ Xm + AX® and

Y& ' o=
He(0) * ((X — Xm) * sin & + (y? — vm) * cos 8)
+ vm + AY©.

We will speak of the orientation of polygon Q when we

mean the angle on which polygon  has been rotated +to
obtain Q8°'.

We will write Qe or  instead of Q&' if the meaning is
clear.

We are now able to describe how polygon Q&' can be

calculated from @° by simultaneously applying e,
R® (M,a®) and pu©(M) on Q°. But as we will see later in
this paper we will have to calculate various RTE-images
of Q © for various orientations . And this RTE-images



will not Dbe calculated by applying Ve, Re(M,A®) and
He (M) on Q° (except for the first one), but by applying

the corresponding function v, R(M,a®) and u(M) to an
other RTE~image.

definition 6: Assume that we are given a polygon
Q&- ' at orientation &',
We define

(i) R(Merw- ,A8) as the rotation of polygon Q&'
to polygon Q&'+aa@ around the not vet
defined rotation center Mo o-.

(ii) pn(Me-e+) as the guotient of the expansion of Q
at orientation &'+4a8& divided by the expansion
of Q at orientation &',

(iii) v determines the vector for which polygon
0&'+ne is T- transformed after rotation and
expansion.

For a detailed mathematical description replace u®,
R, v, and @ 1in definition 5 by u, R, v, and
0&- ' respectively.

definition 7: If wvertex Q. of Q is in contact with
edge P of P, i.e. Qi & pa={¥(xs,ys) +
(1) (xs,¥3) 1 0 ¢ <1y, it 1is said to make an
obstacle contact C;; with that edge.

An obstacle contact of vertex (. of Q with vertex P,
of P (i.e. (Xi,¥s) = (Xi,v¥s)) is called a double
obstacle contact DCy; and will be counted as two
obstacle contacts, one for edge pi-i and the second
for p,.




definition 8: Polygon ( is said to be in optimal

position or T — optimal,. see figure 1, for any

orientation ® of Q and under the assumption that no
two edges of P are parallel if

(i) the expansion u is maximal for orientation ©
and an arbitrary translation v under the

condition that

(ii) Q 1s 1in allowed position, i.e. that each

vertex of polygon Q is inside polygon P
Q <P,

From definition 8 we can conclude that a T-optimal
polygon Q cannot be translated (T- transformed) such that
it is in allowed position after translation. But this
immediately implies that the T-optimal position of
polygon Q, for every orientation & is unique.

lemma 1: Assume that polygon @ is in T-optimal
pogition in polygon P and ® is the orientation of Q.
We define He as the intersection of those closed
halfplanes ha (hys defined as above) for which the
corresponding edge p. makes an obstacle contact with a
vertex of Q at orientation #.

We claim that this area He must be closed for Q Dbeing
T-optimal.

proof: We assume that Q is T-optimal and He is not
closed.

Let le be the set of lines li through those edges
ps  which make the obstacle contacts with vertices
of Q. We take those two lines 1. and 1, of Le which
are not intersected by lines of lLe at both sides of
that point at which a vertex of polygon () makes its



obstacle contact with them (see figure 2).

It is easy to verify that polygon Q can be T-
transformed parallel to either L. or 1, for any
sufficiently small aAv (choose Av such that Q is in
allowed position after the movement) and afterwards
E-transformed. But this is a contradiction to our

assumption (see figure 2).

I—o= {13;14'1&J19}J H9=h'2 r‘h“- f\m f\l’h
figure 2
It 1is obvious that the smallest set le which implies a
closed area Ha contains three lines (i.e. the ordinal of

le is 3, llel = 3), and results in a triangle shaped He.

corollary 2: 1If polygon Q is in T-optimal position in
polygon P it makes at least three obstacle contacts.




If polygon Q makes three obstacle contacts (ilel = 3),.
non of which is a double obstacle contact it is said to
be in general position.

problem—definition: Rotate (RE-transform) a convex

polygon @® inside a convex polygon P by an angle of 2%
such that the RTE-image (&' is in T-—optimal position
for every orientation ®, with 0 { & £ 2w,

In the first moment it seems that this problem cannot be
solved efficiently since an infinite number of various
orientations of polygon Q exist. But we have found a
method with which the range {[0,2x] can be partitioned
into a finite number of rotation interwvals such that we
can rotate polygon () around a fixed rotation center M for
each interval. We will see that for any orientation
inside of such a rotation interval the obstacle contacts
do not change (i.e. no vertex of (Q which makes an
obstacle contact escapes from its edge during rotation,
and Q makes no additional obstacle contact with P). With
help of this rotation center we do not need to T-
transform polygon Q, except in the initial part. We will
see 1in the following section that a unique rotation
center can only be found for situations where polygon Q
makes 3 obstacle contacts (i.e. IlLel = 3), except 1in
special cases.

- 10 -



3.

Calculating the rotation center

definition 9: Let Qe be in T—optimal position in
polygon P at orientation ®'. As we have seen 1n

corollary 2 polygon Qe- makes three or more obstacle
contacts with P. We define Me-e+: % E® (not necessarily
a point 1inside P) as the rotation center for the

interval ([&',8"] if Qe- can be RE-transformed around

Mo-e+ in the interval of orientation [&',8"}, with
a8' ¢ 8" { 2x, such that Qe is T-optimal for every
orientation & with 8 {8 e

note: We do not apply any T—-transformation on Q!

In the remainder of this paper we will use the short form

M

instead of Me-e-+ 1if the boundaries of the interval

[®@',8''] are unique.

observation 3: During an RE-transformation of polygon

O around M, as described above, each vertex of Q which
makes an obstacle contact with an edge p; of P will
slide along the boundary of P (especially along edge
ps) either in clockwise or counterclockwise direction.
The expansion u(M) from Qe to Qe: is thereby
determined by the prolongation (or shortening
respectively) of the euclidian distance
AM,Qers) = ((Xm—X:s)=+(ym—Y1)®)*7® with M= (Xm,¥Ym)
and Qe-s+ = (xX:,¥:i). Since this prolongation must be
equal for every vertex of Q, not only for those
vertices which make an obstacle contact, it is easy
to verify that also the vertices of Q which do not
make an obstacle contact with P move on an imaginary
straight halfline, say 1.

- 11 -
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perpendicular to p: (ps) through g: (gs), see figure 3 is
a rotation center for Ca: and Co.s.

And therefore we can imply that an infinite number of
rotation centers for two obstacle contacts exist.
Additionally it <can be checked out that the angle of
intersection of g. and g, is equal for every angle «, and
so, with help of the following lemma 4 we can prove that
all rotation centers for these two vertices lie on a
circle.

G‘:A‘Ff‘c’-“’
da"‘\"p“ﬁ

figure 4

The following lemma can be found in every formulary.

lemma 4: A circle which touches the four points of a
quadrangle can be drawn, if and only if the sum of the
angles of the quadrangle lying diagonally opposite is
© (see figure 4).

- 13 -



corollary 5: Let Q be a quadrangle with vertices A,
B, C and D and let da, dr, «c and 4o be the
corresponding inner angles of the quadrangle.
Furthermore let K be its circumference. Then K
remains the circumference if vertex A 1is moved
along the arc of the circle between B and D, and

angle «» does not change during this movement,
since angle &~ does not change, see figure 4.

But vice versa assume that we are given three
points A, B and D £ E¥. Then all other points
A' € E* which meet the same condition as A (i.e.
the angle between the two vectors (AB) and (AD) is
equal to the angle between the two vectors (A'B)
and (A'D)) lie on a circle

note: The special case when the angle between
(AB) and (AC) is w/2 is the well known circle of
Thales!

The construction of the center of this circle is the same
as the construction of the circumference of triangle
A (ABD) .

By exchanging the part of B and D by the two vertices Qa
and . and exchanging the part of A by the rotation
center M we can conclude lemma 6:

lemma 6: If we are given two edges of P, ps and ps,
and two vertices Q. and Q. making two obstacle
contacts Ca:, and Cos respectively we can calculate an
infinite number of rotation centers for these two
obstacle contacts. These rotation centers lie on a
circle which may be constructed in the following way:

a) Intersect the perpendiculars to pi. and ps; in Qa
and . respectively and

- 14 -



b} Calculate the circumference for the three points
O, O and the point of the intersection of the
perpendiculars.

0

note : In the remainder of this paper we will write
CIRCains for the circle on which the rotation centers
for the two obstacle contacts Ca: and Ceos lie.

Before we continue with the explanation of the
construction of M for three obstacle contacts let us
evaluate u(M) in dependence of the angle between the
vectors (Q«,M) and (Qa.,Ps;+1) for the obstacle contacts
defined in lemma 5.

Let us therefore give the following definition:

A Z/X//H///ﬂi //_/////m
F

S(A .0' p;) s(ha E.,
oo Sk Q)
CHY ,
% y B'M

figure 5

definition 10: Let ps; be any edge of P which makes
an obstacle contact with vertex O« of Q ( we assume
that Q is in allowed position). We define S(A,Q: .pPs),
with A £ E* as the angle between the vectors

(i) (& ,A) and (Qi,Pj+a1) 1if A lies in h; or
(1i) (s ,A) and (Q.,P3y) if A lies in the complement
area E*/h, .

- 15 -



lemma 7: We are given two edges of P, p: and ps, and
two vertices Q. and O making two obstacle contacts
Cay and G respectively. The expansion of Q, which is
the prolongation of its edges after the rotation from
orientation ®&' to 8" is

H(M) = sin S(M,(Q..ps) / sin (B"-9'+5(M,Qs ,pP4))

for 0 { &"68' { *-S(M, ,pPs) .

observation 8: In the case when S(M,Q.,ps) is less
than /2 and (8"-©') is less then 28 polygon Q becomes
smaller after rotation, and the minimum is received
for (@"—a') = 5(M,Qi.,pPs).

lemma 9: Let Q be in T—-optimal position in P. We claim
that the angle S(M,Q, ,ii) between vector(Qi: ,M) and the
imaginary halfline i. is equal to angle S(M,Q,;.pw) for
any vertex (. which makes no obstacle contact with P
and vertex Qs which makes the obstacle contact Ciw.

proof: In observation 3 we have seen that the
prolongation of the distance d4d(M,Q:) for every
point of Q depends on u(M). And this together with
the fact that p(M) depends on the angle S(M.Q:.,pPw)

proves our claim.

Thus we can construct the rotation center for a polygon Q
in general and T-optimal position in polygon P in the
following way:

algorithm 1: a) For every pailr of edges of polygon Q

making obstacle contacts with
vertices of polygon P find the

- 16 -



circles of the rotation center.

b) Find the common point of
intersection M of these three
circles. I.e. choose that

point where all three circles
intersect.

observation 10: Let 0 be 1in general and T-optimal
position in P and let it make the obstacle contacts
Cow, Cos and Coqg. W.l.o.g. 1< a<b<c<k and
1{e< f<g<n Let M be the rotation center for
this situation. And furthermore let h., be the closed

halfplane which (i) is bounded by l.,., this is the
line through two vertices of 0 making an obstacle
contact (i.e. x,y £ {a,b,c} and x <> vy), and (ii)
contains the three vertices Qan, @ and Q-. Let C(hu.,)
be the open halfplane R®*\h.., .

it is easy to see that circle CIRCawn+ for the
obstacle contacts Cwae and Cw+ can intersect the
circle ClIRCawcqg for Cae and Cecqg either 1in the
intersection of haw and hae or in the intersection of
C(hee) and C(ha=). Therefore the rotation center M
must lie inside of area B (see figure 6a) which has
the following definition:

B = (hab“‘ Nae l'bc:) e (C(hnb)'-‘ C(m:)) Al
(C(hab)n C(hac)) ¥ (C(hec)n C(hac)) .

observation 11: Let  be in general and T-optimal

position in P with the obstacle contacts defined as in
observation 10. And let X be the point of intersection

- 17 -



of the straight line through Q. and . and the circle
CIRCu+eqo -

Then we can observe that Q. lies inside this circle if
the angle between the vectors (Qa,O) and {(Qu.Q=) is
smaller than the angle between the vectors (X,Q.) and

(X.Qz) . And since rotation center M cannot lie
inside P if Q. lies inside CIRCuo+ee because CIRCuscg
does not intersect area hue » hec & e, and since

the equality of the angles S(X,%.pP¢) = S(Qu,Q.ps)
implies that S(Qn,Q=.Pa) > S5(0Qsx.0-.p+) We can result
that M lies inside P if and only if

S5(Qa. Qu. P#) 5(Qa, Q=. Pa) and

2
S(. Q. Pa) 2 5(Qs. Qa. Pe) and
2 5(Qc. Q. Ps).

3(Qc. Qm, Pe)

C(hab) 0 Chac)

7

'Crﬂlub)’7cibkélﬁ

g

Iy

figure 6

- 18 -



In this case every vertex moves in counterclockwise
order on the boundary of P. Otherwise M is in the
exterior of P, see figure 6b, and that vertex for
which the factor S does not meet the unequality moves
in clockwise order.

lemma 12: Let () be in general and T-optimal position
in P and let it make the obstacle contacts Cae, Cos
and Cea - W.l.0.9. 1 {a<b<Kc<Kk and
1< e< f<g<n Furthermore let M be the rotation
center for this situation.

Then we claim that only one point of {Qa.Q.Q-} can
move 1in clockwise direction on the boundary of P
when polygon Q is RE-transformed around M.

proof: W.l.0.9 we assume that Q- moves in clockwise
direction. This implies that
S(Qa, O, P¢) < B8(Qa, . Pe). Let us now assume
that Q- is the second point that moves clockwise.
Then S(Q:, Qan, Pe) must be smaller than
S(Q=, O, P+). On the other hand S(Q=, Qu, Pe) must
be bigger than S(Qa, -, Pa) because otherwise the
edges Pm, Pf, Pa would not form a triangle. But
this implies that S(Qa, O, P¢s) < S(Qa, Q=. Pa) <
S(Q=, Qmn., Pe) and therefore S(Qn, O, Ps) <

S(Q=., . Pe). But since S5(Qa, Q. Pe) is
obviously bigger than 85(Q-, &, pP+¢) this is a
contradiction.

With the same argumentation we can prove that the
lemma is also true if we assume that Q. moves
clockwise.

We have seen that for three obstacle contacts a unique
rotation center M can be found. However, this is not

- 19 -



possible for four obstacle contacts (except in special
cases) .

How can such a '"four obstacle contact situation" occur?

Let us assume that Q is in general and T-optimal position
in P, and let M be the rotation center, and &' be the
orientation of Q. If we now RE-transform polygon Q around
M one of the following events will happen:

a) One of the vertices of Q which was not in contact with
a edge of P at orientation ®', say ., moves on his
imaginary line ii closer and closer to an edge of P, say
ps and, finally, makes an obstacle contact with ps; at
orientation ®". The point where . makes it obstacle
contact with p; is the intersection of halfline iy with
edge ps.

b) One of +the vertices of Q which is one of the three
obstacle contact at orientation &' (and also during the
rotation) reaches the end of the edge with which it is in
contact with before situation a) occurs. 1In this case it
makes a double obstacle contact.

In the moment when ( makes a fourth obstacle contact with
P the rotation has to be interrupted because in both
described situations polygon  would not be in allowed
position for any further RE-transformation around M.

In the following we will describe how the rotation center
can be calculated in all possible "four obstacle contact
situations".

observation 13: Assume that Q@ 1is in general and T-
optimal position. Let Caw, Cus¢ and C.g be the three

- 20 -



obstacle contacts that the vertices of polygon Q make

with edges of polygon P, with 1 < a< b< c < k and
1< e< f < g«<n.

1) A fourth vertex of ), say Q= makes the fourth
obstacle contact with with ps;. For these four
obstacle contacts we cannot find an unique rotation
center. Therefore we must omit one of the obstacle
contacts for the calculation of M.

a) O« makes an obstacle contact with an edge
already involved in another obstacle contact,
w.l.0.9. we assume p; = p+. In this case it is
obvious that . and Q« are vertices adjacent to
the same edge of ().

The new rotation center must be calculated for
the three obstacle contacts Cawe, Cus, and Cuq,
see figure 7.

figure 7

b) W.l.o.g f < j < g.
The new rotation center cannot be M:g,y; (this is
the rotation center calculated for the obstacle
contacts on edges p+., Po and p;), since rotating
O on Megs would have vertex Qa. leaving the

- 21 -



interior of polygon P (1.e.
S(Meos .O,.P¢) > S(Megs ,Qm,Pm)) .

If we decide to use M.gs; as new rotation center,
O will escape from p¢ and polygon Q can be
translated (T-transformed) in P and therefore
rotating on Mwg: does not meet the condition of
optimality.

The resulting decision for the rotation center
is Me¢+rs and we can formulate the general
condition for the calculation of M for this kind
of a four obstacle contact situation:

Select those three edges of le for which the
intersection of the corresponding area He
forms a triangle, and the edge making the
new obstacle contact is one of them.

2) W.l.0.9. assume that vertex Qm moves in

counterclockwise direction (i.e.
S(Qa.0.Pe) > S(Qa,Q=.Pa)) and makes a double
obstacle contact with Pe+i .

a) The point of 1intersection of the three
halfplanes he+s » hy » he forms a triangle:
In this case the vertex Q. 1is not further
considered to be in contact with pe. And we
calculate the common rotation center Mawi+sq.

b) otherwise:
We choose vertex Q. as new rotation center M,
see figure 8. It can easily be verified that RE-
transforming Q on M keeps the optimality of Q
(vertex O escapes from p¢).

note: If S(Qa,B:.P+) € S(Qa,.Q=.Pa) in @) Pw+: must

be replaced by pe and in b) Pe+1 must be replaced
bY Pe.

- 22 -



& r

figure B8

3) One vertex of polygon Q which is also the rotation
center, say (., is in contact with vertex P. of
Polygon P. . 1is in contact with p¢. During
RE—-transformation vertex (. reaches the end of p«
and makes also a double obstacle contact with Ps+s,
see figure 9. Choose Q. as new rotation center if
S(Qn ., ,Psre1) > 5(0,0n,Pe+2) . Choose . otherwise.

X
P R:=Q, -S.(amab,/’m)

figure 9

- 23 -



observation 14: During the RE-transformation it is not

possible that polygon Q is in T-optimal position in P
and makes more than four obstacle contacts, because,
as we have seen in observation 13 every four obstacle
contact situation does just exist four one orientation
of Q, not for an interval of orientation like three
obstacle contacts.

definition 11: A rotation interval RI is the

interval of orientation in which one triple of
obstacle contacts does not change when we apply an RE-
transformation on Q.
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4. On the number of various rotation intervals

definition 12: Let 14 Dbe the line through p:. and Ilet
O» and Ow+1 be two consecutive vertices of Q. Qn and
On+31 being 1n contact with ps. W.l.0.9 assume that ©
is the orientation of Q at which both Q. and Qw+: can
be in contact with 1. . Furthermore let o be the angle
between the vectors (QwPi) and (QnQw-1). Imi is the
interval of orientation [®,8+<] in which vertex Q. can
be in contact with li and polygon Q lies inside of hi.

am P l. PL. L /-‘
2 N NP
. am- p h *

figure 10

definition 13: et Ca: be an obstacle contact of
vertex Q. of polygon  with edge ps of polygon P, and
let p; be any other edge of P.

Ras s 13 the set of vertices which contains all those
vertices . of Q for that the intersection of the
interval of orientation Ins with the interval lai: is

not empty:

Rais = {0 £ Q1 Ins » Ias <> 0}.

definition 14: If a vertex (. of polygon Q makes an

obstacle contact with an edge p» and simultaneously
vertex Qs is in contact with pm these contacts are
said to form a pair of obstacle contacts.
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lemma 15: Let C.: be an obstacle contact and 1let ps
be any other edge of P. Additionally let Rass Dbe
the set of vertices defined as in definition 13.

a) Rais 18 & set of consecutive vertices of polygon (.

b) The intersection of the sets Rwis and Reis, with
- any other vertex of Q, 1is either empty or
contains one vertex.

proof :

ad a) Trivially true.

ad b) If wvertex Q- is a vertex of Rais and the
interval I.; is completely contained in Iai.
I.s c¢an obviously not intersect any other
interval Ini:, for O £ O\N{Qmn.,Q=} (figure l1lla).

Tasi , Lo Iﬁc-ﬂ' Las Lo/
e e i e e o
-0
= e —
I I,; I, Ig;
a b C
figure 11

On the other hand at most two intervals , say
Ias and les can overlap la.: (one at the upper
bound of l.., and the second on the lower
bound). And since In: can just intersect
either Ias or Ias (see figure 11b) also in
this case the lemma is true.

The third case where la: & I¢:s i3 a special
cagse of the previous one (figure l1llc).
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lemma 16: For each pair of edges of P at most O0(k)
pairs of obstacle contacts can be formed. And
therefore the maximum number of various double
obstacle contact situations during rotation is O(kn*).

proof: Since each of the vertices of polygon Q can
be 1in contact with an edge of P. And since each
vertex implies an appropriate set of vertices Rui
for any edge p. of P, an intuitive number of O(k*)
pairs of obstacle contact could be assumed.

The sum of obstacle contacts for a pair of edges,
say ps: and ps; is equal to the sum of vertices 1in
the sets R.:s, with x =1,...,k. The number of
vertices for each R.is can be split into the number
of vertices for which the interval I, is
completely contained in I.. and those for which the
interval I, additionally intersects the intervals
I.a, with z £ {1,....k}\{x,y} of one or more other
sets Rxis. With help of lemma 15 we see immediately
that the sum of vertices of the first kind is less
than k. And since k sets R.:y for a fixed pair of
edges ps and ps exist, each with at most two
vertices of the second kind we can result that
Zumi..wlResst < 3k, where IR.1s! is the number of
vertices of R.: 5. This and the fact that n(n-1)/2
pairs of edges of P exist proves the lemma.

definition 15; Let Q be a polygon in general and T-
optimal position at orientation #, and let Cae, Cwue¢
and C.o Dbe the obstacle contacts of vertices of

polygon Q with edges of polygon P. We define
MaXpmb £ ca as the maximal orientation of the
intersection of the intervals Ime, In+ and Ice. 1.e.
MaXeesrea = MAX{S | 8 £ Jaw N Ine o Icgl).
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lemma 17: Let Q be a polygon in general and T-optimal
position at orientation ®, and let Cawm, Cu+ and Coq be
the obstacle contacts of vertices of polygon  with
edges of polygon P. Let u® be the expansion of Q.
Furthermore let u:s™ be the expansion of Q at
orientation &+A8 < HMaXaens=g 1f Q does not make a
fourth obstacle contact during the RE-transformation
from & to @+a8. And let u=* be the expansion of Q at
orientation ®+a®% if the obstacle contacts of Q change
(i.e. the rotation center changes) during the RE-
transformation from & to &+A8.

We claim that pu:™ is greater than u=*

proof: As we have seen in observation 13 the
rotation center has to be changed when a fourth
obstacle contact occurs since otherwise polygon
would not be in allowed position for any further
rotation. W.l.0.g. we assume that Cun 1s the fourth
obstacle contact, and furthermore we assume that
Mt 18 the rotation center for this situation. If
we now RE-transform polygon Q for an angle a® (the
expansion of Q at this orientation &+a® is u=* ),
and then omit edge p» from P but do not change the
expansion of Q, Q can be T—-transformed and
therefore is not T-optimal. And this proves the
lemma.

observation 18: Assume that we are given two lines 1.
and l= in E® and a convex polygon Q two vertices of
which make an obstacle contact with these two lines,
say Qs with 1. and ¢ with l:. Let us now apply an
E-transformation on Q around any point in the plane
(either with u > 1 or u < 1) and then T—-transform
polygon @ such that Q makes the two initial obstacle

- 28 -



contacts again. It is easy to verify that these two
transformations (first E then T—transformation) can be
substituted by one E-transformation around the point
Li=, 1di.e. the point of intersection of 1, and l=.
Additionally we can observe that during such an E-
transformation each vertex Q. (1 < i < k) moves on an
imaginary line (Li=.Q:i). Therefore every vertex Q. can
make an obstacle contact with any other line only if
this line intersects the halfline from Li= through Q.
at that side of Q: where Qi moves to.

figure 12

lemma 19: Let Q be a convex polygon in T-optimal
position in polygon P, and let it make the three
obstacle contacts Ceae, Co+ and C.g at orientation &'
and let M be the corresponding rotation center.
Furthermore let p» be a fourth 1line of P with
f <h<g and let Qu be a fourth vertex of Q with
b< d < ¢ such that ®maXunaee, Wwhich is the maximum
orientation of the intersection of the intervals Ian
and Jlae. We assume that ®#maXara.~ is greater than ',
Additionally we assume that the imaginary halfline i
does not intersect line 1n, i.e. the line through pn.

We claim that polygon Q and polygon P cannot make the
double obstacle contact DCawan fOr any orientation &
with ®' < 8 { 8maXarse Such that Q 1is in allowed
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position. (For any orientation & > HmaXar~e the lemma
18 obviously true).

proof: Let us first assume that polygon Q does not
make a fourth obstacle contact with P during the
RE—-transformation around M for any orientation ©
smaller than ®maXum.e. With this assumption polygon
Q. trivially, cannot make the obstacle contacts Cae
and Cuan concurrently even 1f it is TE-transformed
at any orientation & with &' < & { OmaXarae. We
have seen in observation 18 that a TE-
transformation can be substituted by an E-
transformation around the intersection of two
lines. One of these lines is obviously le, the line
through h.. The second line could, for example be
l¢, the 1line with which . makes its obstacle
contacts. In this case the lemma is true because
the 1line segment (Le+.Qw) does not intersect line
.. And the lemma is also true if we use any other
line of E*® through any vertex of polygon { when the
line intersects the line segment (Le+,Leg).

figure 13
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But we cannot E-transform polygon ( around any
point of le outside of (Le+.Lwg) because Q cannot
be 1in allowed position after the transformation.
Especially we cannot E-transform polygon § around
the intersection Le., when l. is a 1line through
3+ which intersects edge p. (see figure 13).

But also if we assume that the obstacle contacts
change one or several times during the RE-
transformation from &' to ®maXsr=e this lemma is
true. Because at every orientation &, with
a8' (8  haXan=« pPolygon Q (the one which changed
its obstacle contacts) is a TE-transformation of
that polygon which makes the original obstacle
contacts at ®# (in 1lemma 17 we have seen the
expansion of latter polygon is smaller than that of
the original). And as we have seen above such a TE-
transformation image cannot make the obstacle
contacts Cae and Car concurrently.

corollary 20: Let polygon Q be 1in any four
obstacle contact situation, and let Cae, GCo¢,
Cew, Can be the four obstacle contacts, w.l.o.g.
a< b< c<d. With RI we denote the rotation
interval the upper bound of which is determined

by this four obstacle contact situation. Assume
that C:gs 1s the obstacle contact which vanishes
when polygon Q is rotated any further. Then, as
a implication of lemma 19, we can say that Ccgq
cannot form a pair of obstacle contacts in any
other rotation interval with Cawe, 8uch that Ciwe
or Cag vanishes at the end of the rotation
interval.

In the case when a double obstacle contact
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forms two obstacle contacts this double
obstacle contact must be split dinto two
single ones.

This implies that every time a rotation interval changes
one of the O0O(kn®) pairs of obstacle contact which
vanishes cannot reoccur and therefore we can claim:

theorem 1: The maximal number of rotation intervals is
O(kn®) .

We will now show that a number of rotation intervals
proportional to kn® is also a lower bound. To this end we
will first describe the movement of a vertex of Q0 which
we call "swinging".

definition 16: Assume that we are given polygon Q@ at

orientation 8 in T-optimal position making the
obstacle contacts Caw, Coe, and C:.u. We first define
the set RCe as the set of all consecutive rotation
intervals - the first is [&,8+48]) — which have the
property that either the rotation center for every
rotation 1interval lies inside of P, or the rotation
center for every interval lies outside of P.

We say that vertex Q. swings on the edges pis tOo Pi-+m.
if for some consecutive sets RC - starting with RCe -
the rotation center skips from the inside of P to the
outside and then back again to the inside etc., such
that vertex Qs moves from ps to pi+m fOr the rotation
intervals in one set RC by never escaping from the
boundary of P. I.e. Q. makes all the double obstacle
contacts DCa 1+1 to DCa 14m—1 1f M is inside of P. In
the consecutive set of rotation intervals for which M
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is outside of P, Q moves back from Pi+m to pi.

lemma 21: The lower bound of the number of rotation
intervals is &(kn®).

R & &g

figure 14

proof: Let Q Dbe a regular convex k—gon and P a
polygon having the following properties:

(i) Qe swings on the edges Pe 10 Pwsw While

(ii) the vertices (3 and Q- — w.l.o.g. b < ¢ -

alternately restrict the last rotation
interval of the sets RC by making double
obstacle contacts, and no other vertex,

except Q. makes an additional obstacle
contact with polygon P in all rotation
intervals.

{iii) . and Q- make their double obstacle contacts

with edges ps tO Psr+y, and pPe and Ppga=
respectively.
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(iv) every constant x,y, and z has size cn for any
constant ¢ < 1.

It is easy to verify that each time - makes its
double obstacle contact the rotation center for the
following rotation interval must lie inside of P.
And the swinging of vertex Q. 1is achieved by
alternately making the difference S(Qa,Q-.Ps) —
S(Qm.,0-.pP+) positive and then negative (¢f. figure
14 as an example).

And therefore the following consideration proves
the lemma:
Vertex Q. Swings y+z times over x edges which
implies that we have 2cn sets RC, each of which has
cn rotation intervals. And since polygon Q 1is a
regular k—gon, every of the k vertices of Q implies
these 2c¢c®n® rotation intervals and gives us the
resulting amount of 2c¢®kn® rotation intervals which
is &((kn=).

-
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5. The rotation algorithm

We are now ready to give the complete algorithm to solve
the problem of rotating polygon Q in polygon P.

algorithm 2:

a) Find the initial T-optimal position (for & = 0) of
polygon Q which can be achieved by TE-
transformation. To solve this problem we can use a
method proposed by Edelsbrunner and Welzl [EW]
which reduces the problem to linear programing [ME]
and solves it in O(k+n) time. Therefore we have to
transform our initial problem to get the linear-
program—definition:

Each vertex Qi

(3 =1,....k) of polygon  has coordinates
uQs+v and these vertices must lie in the
intersection H. of the closed halfplanes h:

(1 = 1,...,n) (defined as in definition 4) such
that 4 is maximal. Or more formally: Maximize n
such that

no + v &P

with an arbitrary translation v.

This is a system of wunequations with kn
unequations which can be reduced to n
unequations in the following way:
Every restriction is a line through an edge
of P, and as we have seen in section 4, for
any fixed orientation of Q each of these
lines can only be in contact with one vertex
of Q. And therefore, for each line only that
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unequation which restricts the location of
the point which can be in contact with it,
must be considered, because all other
unequations for this line (i.e. the
unequations for the remaining k — 1 vertices
of () are redundant.

The n unequations can be found in the following
way (W.l.0.9. we assume that pn» can be in
contact with Q., i.e. that 1. is a restriction
for Q.. and the adjacent edge to pi in clockwise
order cannot be in contact with Qi) :

The first unequation is obviously uQi+Vv < P2
and the variables are initialized to i = 1
and j = 2.

Repeat the following instructions until the
vertex of Q for which p- is the restriction
is found.

If Qs can be in contact with p. (i.e.
Q <« hs when Q; is in contact with 1.).
(i) add the unequation uQs + v < ps to
the set of unequations
(ii) proceed to the next edge of P
(i.e. 1 = i+1)
otherwise proceed to the next vertex of Q
(i.e. 3 =3 + 1)

This sequence calculates the correct unequations

because, if p. (i £ {1,...,.n-1}) can be 1in
contact with Qs (j £ {1,...k}) no edge p., with
1 € {(i+1,...,n}, can be 1in contact with any

vertex Qw, with m £ {1,..,3-1}.
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b) Repeat the following instructions until polygon
has been rotated for 2x.

(i) Find the rotation center M for the current
orientation of Q.

] (o g
b Q
AN z
4 ) M 14 10
- g 04
l’

1%

8 P, Ls

figure 15

(ii) Calculate the orientation of Q for which the
next four obstacle contact situation occurs
when Q is rotated around M.

Il.e. for every vertex Qi of Q find that
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edge of P (with binary search) with which
the imaginary line i (defined in
observation 3) intersects (see figure 15)
when Q is RE—-transformed around M
(w.l.0.9. let ps be this edge). Calculate
the orientation at which this obstacle
contact Ci s will occur. Finally, when the
orientations of intersection for all lines
i, with 1 = 1,..,n are calculated take
the minimal orientation. (It is obvious
that for the three vertices of (, which
slide on the boundary of P, the imaginary
line i must be replaced by the
corresponding edge of P).

theorem 2: With help of algorithm 2 a convex polygon 0
can be rotated in the interior of another convex polygon
P such that Q is T-optimal for every angle of rotation.
And furthermore algorithm 2 needs a time proportional to
kn®T(k,n). Where T(k,n) is the time used to find the next
four obstacle contact situation(see algorithm 2b(ii)),
T(k,n) = min{n log k, k log n}.

- 38 -



6. Chazelle's approach

Before we proceed with the discussion of the applications
of our algorithm we will now give a short description of
Chazelle's paper which solves the polygon containment
problem if only translation and rotation and no expansion
of polygon Q is allowed (for the sake of simplicity of
reading this paper we will adherence to the notation used
in our paper). Our main attention is thereby directed to
two algorithmic elements, namely, "duality" and "divide
and conguer".

In that part of the computer algorithms which is called
the computational geometry it is often very difficult to
observe how 1lines 1in the plane behave when we apply
various operations (like translation or rotation) on
them. It is easier to investigate the movement of points
in the plane. And so, Preparata FP and Muller DE in [PM]
and Brown KQ in [BQ] first proposed the powerful means of
duality which is, general spoken, a translation of a line
in E® into a point in the dual space D=.

definition 17: Let 1 be a line in | with
Yi = aaXx + bh. Then let DUAL(1l) be the function which
maps line 1 one—to—one into the point Ax in the dual
plane, such that DUAL(l) = Ay = (a..,b).

observation 22: Consequently a point B = (as.,be) £ E®
is transformed into line la: ¥ = —amX+bs £ D#.

It is easy to verify that parallel lines in E® imply
points in D® which 1lie on the same vertical line.
Furthermore we can imply, that the point of intersection
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of two lines in E® corresponds to a line through the two
corresponding points in D?. And 1if the point of
intersection, say Li= of two lines 1. and l= lies below a
third line lx, the line through the points DUAL(li) and
DUAL(1l=) lies below point DUAL(lx). More formally we can
say:

=Xtz + iz 2 Yoz <(==>

omm Youet. ¢1m:) > apuaL. (.12 Xpuat.<im  + Doumy 1@

for li: ¥y = avaX + bas, lz: v = aa=X + b=,
lx: v = aa=X + b=, and Liz = (X.1=,Y.1=) the point of
intersection of 1, and 1l=.

l)z l)l l)l
\ DUAL(L;)

DUAL (1) - DUAL(L,) | DUAL(L)
puaL(L) e | buALlL)
aq,

figure 16 v
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It immediately follows that three or more lines in E=
intersect in one point if and only if the dual mapped
points are collinear.

We will now describe how the translation-restricted
containment problem can be solved.

problem—definition: Decide if a T-transformation—-image
0 of polygon (° exists, such that Q* is in allowed
position, and if, give all possible T-images.

definition 18: Assume that any vertex Qs
(J £ {1,....k}) is in contact with edge Pa
(i £ {1,....,n}), such that polygon Q 1is completely
contained in halfplane hi. We define t, (8) as the line
through vertex Q. parallel to edge p.. Additionally,
hti (&) is the halfplane which is bounded by t: (&#) and

does not contain edge pi. I(®) is the intersection of
all halfplanes hts (&) for i=1,...,n
(I(®) = hty (B) » hta(®) ~ ... n ht. (®)).

Q; P

t;(6)

T

figure 17

ey
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Therefore, polygon Q can lie completely in hs, 1if vertex
ps lies in hti: (). And furthermore an allowed position of
Q exists just if I(®) is not empty, and in this case I(®)
is obviously a convex polygon. And if such a polygon I(®)
exists every T—image Q* is in allowed position if vertex
Qi lies inside I(8).

And so, to determine whether a T—-image Q* in allowed
position exists, we need only calculate I (&).

As the first step we divide the edges of polygon P into
two subsets: Assuming that P: is the vertex with maximal
x—coordinate and P. the vertex with minimal x-coordinate

we get the two sets of edges of P {p:,...,Pr-12} and
{Pr,...,Pn} Wwhich define the two planes

UP(®) = hta(®) ~ ... n hti-a (8)
and

LO(®) = hta (8) ~ ... »n htn (&),

such that I(®) = UP(8) ~ LO(®).

For further considerations Chazelle turns to a dual

description of I1(®) . To this end line ty () :
Yy = au (8)X + by (&) is transformed into vertex
Us (8) = (a. (8),bs (®)). And since the slope a; (&)

(as (M) = (Yor — Yai+1) / (Xmi — Xami+1)) of ti (8) does not
change during an operation on Q, we can use the short
form a, . It is easy to verify that a redundant line t. (®)
— i.e. a 1line which does not contribute an edge to
UP(8#) — has a slope which is greater than the slope of
all lines te(®) with 1 { e < i and a slope smaller than
all lines t¢ (®) with i1 < f { n (we assume that te and t¢
are nonredundant) and that the intersection of line t.(®)
and t«(®) lies below t.(®). As we have seen in our
discussion of duality the latter fact implies that vertex
U; lies above the line through U and U¢, and since
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e < a1 < ax we can immediately imply that UP(#®) is
represented 1in the dual space by the bottom part of the
convex hull of {Us(®),...,UL-1(®)}, which we denote with
CU(®). The first vertex of CU(®) is U: (8#) and the last is
Us -1 (8) .

With CL(®) we denote the dual representation of LO(®),
U () is the first vertex U, (®#) the last.

Chazelle has proved that LU(®) and LO(#) intersect in one
point if and only if CL(®) and CU(®#) intersect in one
point. With this and the observation that CU(®#) moves
upwards (downwards resp.) when LU(#) moves upwards
(downwards resp.) he implies the following lemma:

lemma 23: LO(®) and LU(®) intersect in the interior if
and only if CL(®) and CU(®) do not intersect. So,
there is a T-image 1in allowed position with
orientation & only if CU(M®) and CL(®) do not
intersect.

In [CA] McCallum and Avis present an algorithm which
computes the convex hull of a set of vertices in linear
time, and since we need O(k+n) time to calculate the
lines t. (®) (vertices U. (&) respectively) and additional
O(n) time for the convex hull of I(®) (i.e. LU(®) and
LO(®)) and since we need O(n) time to determine whether
LU(®) and LO(®) intersect or not, the question if a T-
image 1in allowed position exists can be answered 1in
O(k+n) time.

During the R-transformation of polygon Q the distance ha
between the lines ta (i1 € {1.....n}) and their
appropriate edge p:s varies. Before we can describe the
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function with which h: varies we have to define vyi (®):

v: (8) is the function which evaluates the y—coordinate
of Qi when we assume that polygon is R-transformed in
E® such that for every orientation & one vertex of Q
is in contact with the x—axis and all vertices of Q
lie above the x—axis:

Y (8) = Aewr*cos(B4:)

when die+: 1is the euclidian distance between Q¢ and Q.
(Qx is that vertex of Q which is in contact with the
x-axis), and ¥: some constant.

hs can be expressed as y: (8+8.) for some constant 8; . And
therefore we can conclude the function which describes
by (8) of line t. (&):

i (8) = i ys (848:) +Aa

with % = -1 / cos(£:), i the angle between the x-axis
and vector {(Qi+i,Q:) measured between 0 and 2x, and
Ai = Yoi+1 — Xai+1 (Yai — Yoi+1) / (Xmi — Xoi+1).

We are now ready to give the datastructure which
describes the convex hull (as we did in the translation—
restricted case we will only describe the datastructure

for CU since that for CL is symmetric). L is a sequence
of t cells which describe CU(®), 1i.e. L = CELL(CU.)
<-> ... <=> CELL(CU.), where CU; is the ith vertex of CU

(CUp = Uy and CUx. = Ui-1). Each CELL has enough space to
contain the three parameters of ys. Since, during the
rotation of @ the parameters of the vertices Us ,
i€ {1,...,n} change we also introduce the linear list 1
each element of which can contain one of the following
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instructions:

{e¢',i,A,B,C] ...... at orientation &' vertex Us
get the new parameters A,B and
C.

{@",1i,j,insert] ... at orientation #" vertex U, is
inserted next to Us in

counterclockwise order into L.
[@"'.,i,delete] .... at orientation 8"' vertex U, is
deleted from L.

Our goal 1is it now to compute I such that for every
change of CU during the R-transformation of polygon Q
from& = 0 to # = 2x one entry exists. Chazelle does the
computation of 1 with help of a '"divide and congquer"
algorithm:

"Divide and conguer" in this case means that we first
divide the set of vertices Ui into two subsets of the
same s8ize (plus or minus one vertex) and calculate the
two sequences L, and L=, and I. and I= for the two

subsets . The second step is to connect the two convex
L
L, 2
A,
A4
figure 18

hulls Li and L= (for orientation & = 0) with an edge of
supprort such that the resulting sequence L i1s a convex
hull again (see figure 18). Then merge the sets I. and
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I such that the instructions in I are ordered with
increasing orientation. Let A, and A= be the two edges of
L:, and l= respectively, adjacent to the edge of support.
It can easily be verified that the edge (A:.,Az) can
change for increasing ®: this may appear for example, in
the moment when the predecessor of A: in L., A: itself
and the succeasor of Ay in L, become collinear. We need
not merge instructions of I. and I= into I if they do not
relate to wvertices of 4(A:,A=) and do not vary L.
& (As ,Az) is the set of vertices Us, such that
Us € A(A:,R2) if ans < auss < @am=. But an instruction has
to be inserted into I — additional to the instructions of
I. and I-. - if the edge of support changes for some &,
It is left to mention that L. and 1. (L= and I:z) are
calculated recursively in the same way.

We can now estimate the time for the calculation of L and
I, and also the space requirement of I (that of L is
obviously O(n)) which is proportional to the time since
insertion and deletion in I can be done in constant time:

T(N) = 2T(N/2) + R(N) + 2R(N/2) + O(N) and T(1) = O.

R(N) accounts for the instruction in I which can be split
into two subsets: (i) the instruction of the kind
(&',1,A,B,C); these can at most be kN since the function
for h:s: may change k times, and (ii) the insert and delete
instructions which we evaluate with S(N). And therefore
R(N) < kN + S(N).

Let f(®) = dba (®) + Bbs (B) + #be (®) be the function which
is zero if the three vertices Ua,U. and U. are collinear.
In the interval [0,2x] this function f(®) is 3k+1 times a
function of F (F is a set of functions of the kind
f(®) = a*sin(® + b) + ¢) , and since each interval 1is
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less than « wide the function f (®#) takes on any value at
most twice over each interval and therefore the number of
orientation at which f(®) = 0 is less than 6k+2. And
because of the combinatorial number of triplets of
vertices Ua,U, and Uz we could assume an estimate
S(N) = O(kN™).

But Chazelle proved that R(N) = O(kN®). It is not the
purpose of this paper to duplicate Chazelle's proof, but
we would like to explain the main idea:

Assume that cuss i3 an edge of the convex hull CU at
orientation 8' and cCu.. 1is an edge of CU at
orientation &" > &' (obviously Cuae and cu.. cannot be
edges of CU simultaneously). If edge cu=se is an edge
of CU at orientation &"' > &" again, edge Cu=w cannot
be an edge of CU at any orientation &'V < [&'"' 2x].
And furthermore Chazelle proves that every edge cu can
be a part of CU at most 3 times. And since the
combinatorial number of various edges cu is O(kN®) the
resulting time for the calculation of 1 is
T(n) = 2T(n/2) + O0(kn®) = O(kn™=).

We will now show Chazelle's main algorithm and how it
makes use of the datastructures L and I (L' and 1I'
respectively, for CL). The first step is to decide 1if a
containing placement exists at orientation & = 0. And if
it exists report it in O(n log(k+n)) time. If not,
compute the two pairs of edges of CU and CL which
intersect, and apply I on L, and I' on L'. By varying L
and L' for increasing orientation & the two pairs of
intersecting edges also change. A containing placement is
found in the moment when CU and CL are in contact in one
point.

Chazelle proves that the time of this main algorithms is
also proportional to kn® and concludes:
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theorem: For any pair of simple polygons Q and P (P
convex) with, respectively, n and k vertices, it is
possible, in time O(kn®), to determine whether there
exists a containing placement of {Q reachable by
tranglation and rotation, and if there is one, report

its location.

For the sake of completeness we finally mention that in
the case when neither P nor Q is convex, Chazelle gives
an O(k*n=(k+n) log(k+n)) solution.
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7. Applications

Additional to the original problem we can solve the
problem of finding the maximal expansion of polygon
which fits into polygon P. Expansion u®mex 18 said to be
maximal if the expansion u® for every orientation &
(8' <> ®&; o is the orientation at which the T-optimal
RTE—-image of polygon () takes on expansion U®max). Before
we describe the appropriate algorithm we proof:

lemma 24: Let [&',8"] be a rotation interval, Me-e-
the appropriate rotation center and Cae one of the
obstacle contacts.

We claim that the expansion of polygon Q can take on
an extreme—value during the RTE-transformation from &'
to ®" around Me-e+ only at the orientations &', " and
(if it exists) at orientation ©&"', for &' < &"*' ( &Y
and S(Mere" ,Qm,Ps) = x/2 at orientation &"',

proof: Assume that we divide the rotation interval
into two parts: [&'.,8"'}] and ([&"',8"]. It is
obvious that during the rotation from &#' to ©&"'
(8"' to 8" respectively) the distance Dbetween
More: and Q. — and therefore also the expansion of

polygon { - steady decreases (increases vresp.).
This implies that polygon Q has its minimal
expansion at orientation ®"', and its maximum
either at &' or ®", 1If "' does not exist (this
occurs 1f S(Mere,Qm.Pn) 2> ®/2 at &', or if

S(Mere" ,.Qn,.Pn) < ®/2 at &' and S(Mere ,Qu.Pn) < ®/2
at ©") polvygon § takes on the maximal (minimal

resp.) expansion at one of the orientations &' and
B"_ [}
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From lemma 24 we can conclude, that we must just compare
the expansion of polygon Q at the end of each rotation
interval with the maximal expansion which polygon Q has
taken on until this point. The expansion of polygon  at
the end of each rotation interval, say u®e- i3 calculated
by multiplying the expansion at the beginning of the
rotation interval, say p®e- by the expansion uye-e: by
which polygon  1is expanded during the rotation

(L0 = U@ * le-e).

As a subproblem of this, the question if a convex polygon
fits into another convex polygon (Chazelle's approach)
can be answered(i.e. Umax > 1).

An other application is to find the maximal expansion of
QQ such that Q can be completely rotated in P. We can get
this expansion in a similar way as M%mex .

If the rotation intervals are stored in an array, with
help of binary search the maximal expansion of Q that
fits into P for a given interval of orientation can be
answered 1in O(log kn) time. The size of this array is
O(kn#) .
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