
1

16 Logging and Recovery 16 Logging and Recovery
in Database systemsin Database systems

16.1 Introduction: Fail safe systems
16.1.1 Failure Types and failure model
16.1.2 DBS related failures

16.2 DBS Logging and Recovery principles
16.2.1 The Redo / Undo priciple
16.2.2 Writing in the DB
16.2.3 Buffer management
16.2.4 Write ahead log
16.2.5 Log entry types
16.2.6 Checkpoints

16.3 Recovery
16.3.1 ReDo / UnDo
16.4.2 Recovery algorithm

Lit.: Eickler/ Kemper chap 10, Elmasri /Navathe chap. 17, Garcia-Molina, Ullman, Widom: chap. 21

HS / DBS05-20-LogRecovery 2

16.1 Introduction: 16.1 Introduction: FailFail safesafe systemssystems
• How to make a DBS fail safe ?
• What is "a fail safe system"?

– system fault results in a safe state
– liveness is compromised

fault

fault

safe state

operation
correct

• There is no fail safe system...
... in this very general sense
• Which types of failures will not end up in catastrophe?

HS / DBS05-20-LogRecovery 3

IntroductionIntroduction

• Failure Model

– What kinds of faults occur?
– Which fault are (not) to be handled by the system?
– Frequency of failure types (e.g. Mean time to failure

MTTF)

– Assumptions about what is NOT affected by a failure
– Mean time to repair (MTTR)

HS / DBS05-20-LogRecovery 4

16.1.2 DBS related failures 16.1.2 DBS related failures
• Transaction abort

Rollback by application program
– Abort by TA manager (e.g. deadlock, unauthorized

access, ...)
• frequently: e.g. 1 / minute
• recovery time: < 1 second

System failure
– malfunction of system

• infrequent: 1 / weak (depends on system)
– power fail

• infrequent: 1 / 10 years
(depends on country, backup power supply, UPS)

Assumptions:
- content of main storage lost or unreliable
- no loss of permanent storage (disk)

HS / DBS05-20-LogRecovery 5

DBS related failure modelDBS related failure model

More failure types (not discussed in detail)

• Media failure (e.g. disk crash)
Archive

• Catastrophic ("9-11-") failure
– loss of system

Geographically remote standby system

Disks : ~ 500000 h (1996), see diss. on raids http://www.cs.hut.fi/~hhk/phd/phd.html

HS / DBS05-20-LogRecovery 6

Fault toleranceFault tolerance

Fault tolerant system
– fail safe system, survives faults of the failure model

• How to achieve a fault tolerant system?
– Redundancy

• Which data should be stored redundantly ?
• When / how to save / synchronize them

– Recovery methods
• Utilize redundancy to reconstruct a consistent state

"warm start"

– Important principle:
Make frequent operations fast

2

HS / DBS05-20-LogRecovery 7

TerminologyTerminology

• Log
– redundantly stored data
– Short term redundancy
– Data, operations or both

• Archive storage
– Long term storage of data
– Sometimes forced by legal regulations

• Recovery
– Algorithms for restoring a consistent DB state

after system failure using log or archival data

HS / DBS05-20-LogRecovery 8

16.2 DBS Logging and Recovery Principles16.2 DBS Logging and Recovery Principles

Transaction failures
– Occur most frequently
– Very fast recovery required
– Transactional properties must be guaranteed

Assumption of failure model:
data safe when written into database

When should data be written into DB / when logged?
How should data be logged?

EOTBOT Data written into DB

Log

HS / DBS05-20-LogRecovery 9

16.2.1 The 16.2.1 The UNDO / REDO UNDO / REDO PrinciplePrinciple

• Do-Undo-Redo

DB state old

DB state new Log record

DO

DB state new

Log record

REDO

DB state old

Use Redo
data from
Log file

"Roll forward"

DB state new Log record

UNDO

DB state old

Compensation log

Use Undo
data from
Log file "Roll backward"

HS / DBS05-20-LogRecovery 10

DBS ArchitectureDBS Architecture

• When are data safe?

Buffer

Private data area

TA programs

Common cache

unsafe:
main memory
buffer,
controlled by DBS

safe: data stored on
disk,
controlled by DBS.
Note: Holds only in
the "DB failure model"

Under control of
OS or middleware

HS / DBS05-20-LogRecovery 11

• Why REDO ?
– Changed data into database after each commit

no redo
– In general too slow to force data to disk at commit

time

BOT EOT

All TA changes have been
written to disk at this point

Redo / UndoRedo / Undo

HS / DBS05-20-LogRecovery 12

Redo / UndoRedo / Undo

• Why UNDO ?
– no dirty data written into DB before commit:

no undo

• Logging and Recovery dependent on other
system components
– Buffer management
– Locking (granularity)
– Implementation of writes into DB

BOT EOT

TA changes must not be
written to disk before this point

3

HS / DBS05-20-LogRecovery 13

16.2.2 Writing into the DB16.2.2 Writing into the DB

Update-in-place
A data page is written back to its physical
address

File i

Segment i Segment j

Address transformation:
blockAdr_File = b0 + d*pageAdr_Seg

b0

Simple implementation with
Direct page adressing

HS / DBS05-20-LogRecovery 14

Writing dataWriting data

• Indirect write to DB

– Implementation by look-aside buffer
– Simple implementation by indirect page adressing

• Block address of a segment page is looked up in
page table

Advantage: simple undo

Segments

Page tables

Files

Freelist 0 1 1 0 0 1

Issue: how can
multiple writes
be made atomic

HS / DBS05-20-LogRecovery 15

16.2.3 Buffer Management16.2.3 Buffer Management

• Influence of buffering
– Database buffer (cache) has very high influence on

performance

Buffer

Private data area

TA programs

Common cache

HS / DBS05-20-LogRecovery 16

DBS Buffer DBS Buffer

• Buffer management
– Interface:

fetch(P) load Page P into buffer (if not there)
pin(P) don't allow to write or deallocate P
unpin(P)
flush(P) write page if dirty
deallocate(P) release block in buffer

– No transaction oriented operations
• Influence on logging and recovery

– When are dirty data written back?
– Update-in-place or update elsewhere?

• Interference with transaction management
– When are committed data in the DB, when still in buffer?
– May uncommitted data be written into the DB?

HS / DBS05-20-LogRecovery 17

Logging and RecoveryLogging and Recovery BufferingBuffering
• Influence on recovery

– Force: Flush buffer before EOT (commit
processing)

– NoForce: Buffer manager decides on writes, not
TA-mgr

– NoSteal : Do not write dirty pages before EOT
– Steal: Write dirty pages at any time

No Undo but
Redo recovery

Undo recovery and
Redo recovery

No recovery (!)
impossible with
update-in-place
/immediate

Undo recovery
no Redo

NoStealSteal

Force

NoForce

HS / DBS05-20-LogRecovery 18

16.2.4 Write ahead log16.2.4 Write ahead log

Rules for writing log records
• Write-ahead-log principle (WAL)

– before writing dirty data into the DB write the
corresponding (before image) log entries
WAL guarantees undo recovery in case of steal buffer
management

• Commit-rule ("Force-Log-at-Commit")
– Write log entries for all data changed by a transaction

into stable storage before transaction commits
This guarantees sufficient redo information

4

HS / DBS05-20-LogRecovery 19

16.3 Implementing Backup and Recovery16.3 Implementing Backup and Recovery

• Commit Processing

– Flushing the log buffer is expensive
• Short log record, more than one fits into one page
• 'write-block' overhead for each commit

commit- log
record in buffer

Write log buffer Release locks

The same page
written multiple times

Page n Page n Page n Page n+1

HS / DBS05-20-LogRecovery 20

16.3.1 Performance considerations16.3.1 Performance considerations

– Group commit: better throughput, but longer response time

– Problem: interference with buffer manager
During wait, no buffer page changed by the transaction,
must be flushed for some reason (steal mode!)

this would contradict WAL principle
– Solution: let each page descriptor of the buffer manager

point to log page with log entry for last update of the page.
Page flush first checks log page: if in buffer and dirty flush
it.

commit- log
record in buffer

Write log buffer Release lockswait for other
TA to commit,

Page dirtyBit CacheAdr Fixed LogPageAdr

Buffer page descriptor

HS / DBS05-20-LogRecovery 21

Safe writeSafe write
Write must be safe – under all circumstances:

• Duplex disk write

• Suppose, the n-th write of a log page fails (block becomes
unreadable) after it had already been written successfully
n-1 times. Now valid log record become unreadable.
Solution: use two disk blocks k, k+1, write in ping-pong
mode: k, k+1,k,k+1,....k until page is full

Page m Page m Page m Page m+1

Demonstrates, how
difficult it is to
guarantee failsafe
operation

HS / DBS05-20-LogRecovery 22

16.3.2 Log 16.3.2 Log entryentry typestypes
1.Logical log
Log operations, not data (insert ... into .., update...)

Advantage:
Minimal redundancy small log file
Fast logging, but…

Disadvantages:
… slow recovery
Inverse operations for undo – log (delete..,

update..?)
Requires action consistent state of a DB:

Action – e.g insert – has to be executed
completely or not at all in order to be able to apply
the inverse operation
Not acceptable in high load situations

delete from X
where key = 111

insert , Z (...) update X set...
where key =112
update X set...
where key =114

update X set...
where key =201

HS / DBS05-20-LogRecovery 23

Log Log typestypes

2. Physical log
– Log each page that has been changed

Undo log data : old state of page (Before image)
Redo log data: new state (After image)

Advantage:
Redo / undo processing very simple

Disadvantage:
not compatible with finer lock granularity than page

page 1388
(before update)

page 1388
(after update)

page 4703
(before update)

HS / DBS05-20-LogRecovery 24

Log typesLog types

Entry log:
only those parts of pages logged which have been
changed e.g. a tuple

• Physiological
most popular method:
– physical on page level,
– logical within page.

• Transition log
may be applied for entry and page logging

5

HS / DBS05-20-LogRecovery 25

LogicalLogical / / PhysiologicalPhysiological loglog
insert into A (r)

...

A

insert A, r

...
B

C

A

insert A, page 473,r
insert B, page 34,s

insert C, page 77,t

Logical Log Physiological Log

B

C

Indexes

HS / DBS05-20-LogRecovery 26

Example: State vs. transition loggging

A2 = A3 ⊕ P2
A1 = A2 ⊕ P1

Replace
A3 by A2,
A2 by A1

Undo from A3

A2 = A1 ⊕ P1
A3 = A2 ⊕ P2

Replace A1 by A2,
A2 by A3

Redo from
state A1

Log XOR –Diff.
1) P1 = A1 ⊕ A2
2) P2 = A2 ⊕ A3

Before / After-
Images
1) A1, A2
2) A2, A3

Normal
processing
update A

A1 -> A2
A2-> A3

State logging
Difference logging
(transition)

HS / DBS05-20-LogRecovery 27

16.3.4 Checkpoints16.3.4 Checkpoints
• Limiting the Undo / Redo work

– Assumption: no force at commit, steal (as in most systems)

– Undo: Traverse all log entries
– Introduce checkpoints which log the system status

(at least partially , e.g. which TA are alive)

System start ... thousands of transactions ... which ones committed / open?

cp 1 cp 2

Different from SAVEPOINTs : a savepoints is set by the transaction program, to
limit the work of this particular transaction to be redone in case of rollback:

SAVEPOINT halfWorkDone;
If ... ROLLBACK to halfWorkDone;

HS / DBS05-20-LogRecovery 28

Logging and RecoveryLogging and Recovery

• A global crash recovery scheme

1. Find youngest checkpoint
2. Analyze: what happened after checkpoint?

Winners: TA active when CP was written, which
committed before crash

Loosers: active at CP, no commit record found in log
or rollback record found analyze

t

checkpoint
Low water mark

4. Undo loosers which were still active during crash

3. Redo all (not only winners!)
Selective redo
for winners
only possible,
but more
complex

HS / DBS05-20-LogRecovery 29

CheckpointsCheckpoints

• Different types of checkpoints
Checkpoints signal a specific system state,
– Most simple example:

all updates forced to disk, no open transaction
– Has to be prepared before writing the checkpoint entry
– Expensive: "calming down" of the system as

assumed above is very time-consuming:
• All transactions willing to begin have to be suspended
• All running transactions have to commit or rollback
• The buffer has to be flushed (i.e. write out dirty pages)
• The checkpoint entry has to be written
• Benefit: no Redo / Undo before last checkpoint
• Time needed: minutes !

No practical value in a high performance system

HS / DBS05-20-LogRecovery 30

Important factors for Important factors for logginglogging and and recoveryrecovery
indirect write

physical write:
update in place (WAL !)

buffer management: force, noforce, steal, no steal

Log entries: locical, physical, physiological

Checkpoints: transaction oriented, TA consistent,
action consistent, fuzzy

Recovery: Undo, Redo /
TA-rollback, crash recovery

6

HS / DBS05-20-LogRecovery 31

CheckpointsCheckpoints
Direct checkpoints

– Write all dirty buffer pages to stable storage
1. Transaction oriented checkpoints (TOC)

– Force dirty buffer pages of committing transaction
– Commit log entry is basically checkpoint

Expensive:
- hot spot pages used by different transactions must be written for
each transation
- Good for fast recovery – no redo – bad for normal processing

CPn CP n+1

Red TA has to
be undone

HS / DBS05-20-LogRecovery 32

CheckpointsCheckpoints
2. Transaction consistent checkpoint (TCC)

• Request CP
Wait until all active TAs committed,
Write dirty buffer pages of TAs

• good: Redo and undo recovery limited by last checkpoint
• bad: wait for commit of all TAs usually not acceptable

CP

to be undone

to be redone

Request CP

New TAs suspended

HS / DBS05-20-LogRecovery 33

CheckpointsCheckpoints

3. Action consistent checkpoint (ACC)
• Request CP

Wait until no update operation is running,
Write dirty buffer pages of TAs

• update / insert / delete: data and index has to be updated before CP
Action: SQL-level command; fits physiological logging

ACC : steal policy
Log limit: first entry of oldest TA

CP

to be undone

to be redone

Request CP

New update commands
suspended

ROLLBACK

Dirty data in
stable storage

not the
problem any
more,

but that may
be an awful
lot of work

HS / DBS05-20-LogRecovery 34

16.3.4 Reducing overhead: Fuzzy checkpoints16.3.4 Reducing overhead: Fuzzy checkpoints

Fuzzy checkpoints

– no force of buffer pages - as with direct
checkpoints

– Checkpoints contain transaction and
buffer status (which pages are dirty?)

– Flushing buffer pages is a low priority process
– Good, in particular with large buffers

(2 GB = 500000 4K pages, 50 % dirty
2 ms ordered* write -> ~500 sec ~ 10 min !)

* Random write ordered according to cylinders,
disk arm moves in one direction

HS / DBS05-20-LogRecovery 35

Fuzzy CheckpointsFuzzy Checkpoints

1. Stop accepting updates
2. Scan buffer to built a list of dirty pages

(may already exist as write queue)
3. Make list of active (open) transactions

together with pointer
to last log entry (see below)

4. Write checkpoint record and start accepting
updates

What is in the checkpoint?
Open / committed TA? not sufficient

HS / DBS05-20-LogRecovery 36

CheckpointsCheckpoints
• ... Fuzzy checkpoints

– Last checkpoint does not limit redo log any more
– Use Log sequence number (LSN):

• For each dirty buffer page record in page header
the LSN of first update after page was transferred to buffer
(or was flushed)

• Minimal LSN (minDirtyLSN) limits redo recovery

LSN 10 11 12 13 14 15 16 17 18 19 20 21

CP
Two pages

and their updates
means write
to disk

Log redo limit is 11

7

HS / DBS05-20-LogRecovery 37

CheckpointsCheckpoints
• Fuzzy Checkpoints

– may be written at any time
– No need to flush buffer pages

flushing may occur asynchronous to writing the checkpoint

– Fuzzy checkpoints contain:
• ids of running transactions
• address of last log record for each TA
• "low water mark" minDirtyLSN

where
minDirtyLSN = min (LSN 1(p) : p is dirty and LSN1 is the
LSN of the first update of this page after being read into
the buffer). The minimum is taken over all dirty buffer
pages

• Buffer status: bit vector of dirty pages
(for optimization only)

HS / DBS05-20-LogRecovery 38

16.3.5 The Log file16.3.5 The Log file
Log file

– Temporary log file can be small
• Undo log entries not needed after commit
• Redo log entries not needed after write to stable

storage
– Sequentially organized file, written like a ring buffer
– Entries numbered by log sequence numbers (LSN)
– Entries of a transaction are chained backwards
– Contain pageAdr of page updated and undo / redo data

LSN 211 TA 10
pageAdr 4711

LSN 210 TA 3
pageAdr 5513

LSN 209 TA 10
pageAdr 4711

Data structure for
active transactions
contain last LSN
TA 10 = LSN 211Data pages also contain LSN of last update

HS / DBS05-20-LogRecovery 39

Logging and RecoveryLogging and Recovery

• A global crash recovery scheme

1. Find youngest checkpoint
2. Analyse: what happened after checkpoint / low water mark?

Winners: TA active when CP was written, which
committed before crash

Loosers: active at CP, no commit record found in log
or rollback record found analyze

t

checkpoint
Low water mark

4. Undo loosers which were still active during crash

3. Redo all (not only winners!)
Selective redo
for winners
only possible,
but more
complex

HS / DBS05-20-LogRecovery 40

Do / Redo processingDo / Redo processing

Do and Redo LSN 112
w0[R1]

LSN 112
R1-new

LSN 117
w5[R3]

R3-old

LSN 117
R1-new

R3-new

...

...

Page 471Page 471

LSN 118
w5[R1]

commit
TA 5

commit
TA 0

Important property:
One update is never
performed more
than once ("idempotent")

This update
has been
performed but
has not been
written into the db

Redo recovery
Find log record with
minDirtyLSN .
For subsequent log records r
which require redo:
apply update if ond only
if LSN(r) > LSN (page)

LSN 117
R1-new

R3-new
...

Page 471 LSN 118
R1-new

R3-new

LSN 112 <= 117
no redo

LSN 117 <= 117
no redo

LSN 118 > 117
redo

Page read from
Stable storage
during recovery

Page AFTER redo

HS / DBS05-20-LogRecovery 41

Do / Redo processingDo / Redo processing
Transaction rollback

– Each page contains LSN of last update in page

1. log_entry :=Read last_entry of aborted TA (t)
2. Repeat

{ p:= locate page (log_entry.pageAdr); // may still be in buffer
apply (undo);
log_entry := log_entry.previous }

until log_entry = NIL
Undo after crash: update may have been written to stable storage

or was still in lost buffer. Modified undo:
If LSN.page >= LSN.log_entry then apply(undo)

211

Log record page

buffer pages LSN=211
212

213
LSN=115

LSN=213LSN=118

System is alive. Each
logged operation
of this transaction
has to be undone

HS / DBS05-20-LogRecovery 42

Redo / Undo processingRedo / Undo processing

• Undo: A subtle problem with LSNs

LSN 110
wo[R1]

LSN 112
w1[R1]

LSN 113
w2[R2]

LSN 115
Abort TA1

LSN 111
wo[R2]

LSN 114
Commit TA2

LSN 110

R1-old

LSN 111

R1-old

R2-old

LSN 112

R1-new

R2-old

LSN 113

R1-new

R2-new

LSN 113

R1-new

R2-new

LSN ??

R1-old

R2-new

Log file

States of data page

LSN = 111? No: would say w2[R2] did not execute
LSN = 112 No: would say that w1[R1] was executed

undo TA1do

8

HS / DBS05-20-LogRecovery 43

Logging and RecoveryLogging and Recovery Do / Redo processingDo / Redo processing

• Solution: Undo as "normal processing"

LSN 110
wo[R1]

LSN 112
w1[R1]

LSN 113
w2[R2]

LSN 115
Undo w1[R1]

LSN 111
wo[R2]

LSN 114
Commit TA2

LSN 110

R1-old

LSN 111

R1-old

R2-old

LSN 112

R1-new

R2

LSN 113

R1-new

R2-new

LSN 113

R1-new

R2-new

LSN 115

R1-old

R2-new

Log file

State of data page

LSN 116
Abort TA1

LSN 115
correctly
describes
State of
page

Compensation record

undo TA1

HS / DBS05-20-LogRecovery 44

State of the art DBS recovery scheme described here:
Aries

C. Mohan et al.:
ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using
Write-Ahead logging,
ACM TODS 17(1), Mach 1992 (see reader)

implemented in DB2 and other DBS

Reference:

HS / DBS05-20-LogRecovery 45

SummarySummary

• Fault tolerance:
– failure model is essential
– make the common case fast

• Logging and recovery in DBS
– essential for implementation of TA atomicity
– simple principles
– interference with buffer management makes solutions

complex
– naive implementations: too slow

