
1

16 Logging and Recovery 16 Logging and Recovery
in Database systemsin Database systems

16.1 Introduction: Fail safe systems
16.1.1 Failure Types and failure model
16.1.2 DBS related failures

16.2 DBS Logging and Recovery principles
16.2.1 The Redo / Undo priciple
16.2.2 Writing in the DB
16.2.3 Buffer management
16.2.4 Write ahead log
16.2.5 Log entry types
16.2.6 Checkpoints

16.3 Recovery
16.3.1 ReDo / UnDo
16.4.2 Recovery algorithm

Lit.: Eickler/ Kemper chap 10, Elmasri /Navathe chap. 17, Garcia-Molina, Ullman, Widom: chap. 21

HS / DBS05-20-LogRecovery 2

16.1 Introduction: 16.1 Introduction: FailFail safesafe systemssystems
• How to make a DBS fail safe ?
• What is "a fail safe system"?

– system fault results in a safe state
– liveness is compromised

fault

fault

safe state

operation
correct

• There is no fail safe system...
... in this very general sense
• Which types of failures will not end up in catastrophe?

2

HS / DBS05-20-LogRecovery 3

IntroductionIntroduction

• Failure Model

– What kinds of faults occur?
– Which fault are (not) to be handled by the system?
– Frequency of failure types (e.g. Mean time to failure

MTTF)

– Assumptions about what is NOT affected by a failure
– Mean time to repair (MTTR)

HS / DBS05-20-LogRecovery 4

16.1.2 DBS related failures 16.1.2 DBS related failures
• Transaction abort

– Rollback by application program
– Abort by TA manager (e.g. deadlock, unauthorized

access, ...)
• frequently: e.g. 1 / minute
• recovery time: < 1 second

– System failure
– malfunction of system

• infrequent: 1 / weak (depends on system)
– power fail

• infrequent: 1 / 10 years
(depends on country, backup power supply, UPS)

Assumptions:
- content of main storage lost or unreliable
- no loss of permanent storage (disk)

3

HS / DBS05-20-LogRecovery 5

DBS related failure modelDBS related failure model

More failure types (not discussed in detail)

• Media failure (e.g. disk crash)
Archive

• Catastrophic ("9-11-") failure
– loss of system

Geographically remote standby system

Disks : ~ 500000 h (1996), see diss. on raids http://www.cs.hut.fi/~hhk/phd/phd.html

HS / DBS05-20-LogRecovery 6

Fault toleranceFault tolerance

Fault tolerant system
– fail safe system, survives faults of the failure model

• How to achieve a fault tolerant system?
– Redundancy

• Which data should be stored redundantly ?
• When / how to save / synchronize them

– Recovery methods
• Utilize redundancy to reconstruct a consistent state

"warm start"

– Important principle:
Make frequent operations fast

4

HS / DBS05-20-LogRecovery 7

TerminologyTerminology

• Log
– redundantly stored data
– Short term redundancy
– Data, operations or both

• Archive storage
– Long term storage of data
– Sometimes forced by legal regulations

• Recovery
– Algorithms for restoring a consistent DB state

after system failure using log or archival data

HS / DBS05-20-LogRecovery 8

16.2 DBS Logging and Recovery Principles16.2 DBS Logging and Recovery Principles

Transaction failures
– Occur most frequently
– Very fast recovery required
– Transactional properties must be guaranteed

Assumption of failure model:
data safe when written into database

When should data be written into DB / when logged?
How should data be logged?

EOTBOT Data written into DB

Log

5

HS / DBS05-20-LogRecovery 9

16.2.1 The 16.2.1 The UNDO / REDO UNDO / REDO PrinciplePrinciple

• Do-Undo-Redo

DB state old

DB state new Log record

DO

DB state new

Log record

REDO

DB state old

Use Redo
data from
Log file

"Roll forward"

DB state new Log record

UNDO

DB state old

Compensation log

Use Undo
data from
Log file "Roll backward"

HS / DBS05-20-LogRecovery 10

DBS ArchitectureDBS Architecture

• When are data safe?

Buffer

Private data area

TA programs

Common cache

unsafe:
main memory
buffer,
controlled by DBS

safe: data stored on
disk,
controlled by DBS.
Note: Holds only in
the failure model
assumed

Under control of
OS or middleware

6

HS / DBS05-20-LogRecovery 11

• Why REDO ?
– Changed data into database after each commit

no redo
– In general too slow to force data to disk at commit

time

BOT EOT

All TA changes have been
written to disk at this point

Redo / UndoRedo / Undo

HS / DBS05-20-LogRecovery 12

Redo / UndoRedo / Undo

• Why UNDO ?
– no dirty data written into DB before commit:

no undo

• Logging and Recovery dependent from other
system components
– Buffer management
– Locking (granularity)
– Implementation of writes into DB

BOT EOT

TA changes must not be
written to disk before this point

7

HS / DBS05-20-LogRecovery 13

16.2.2 Writing into the DB16.2.2 Writing into the DB

Update-in-place
A data page is written back to its physical
address

File i

Segment i Segment j

Address transformation:
blockAdr_File = b0 + d*pageAdr_Seg

b0

Simple implementation with
Direct page adressing

HS / DBS05-20-LogRecovery 14

Writing dataWriting data

• Indirect write to DB

– Implementation by look-aside buffer
– Simple implementation by indirect page adressing

• Block address of a segment page is looked up in
page table

Advantage: simple undo

Segments

Page tables

Files

Freelist 0 1 1 0 0 1

Issue: how can
multiple writes
be made atomic

8

HS / DBS05-20-LogRecovery 15

16.2.3 Buffer Management16.2.3 Buffer Management

• Influence of buffering
– Database buffer (cache) has very high influence on

performance

Buffer

Private data area

TA programs

Common cache

HS / DBS05-20-LogRecovery 16

DBS Buffer DBS Buffer

• Buffer management
– Interface:

fetch(P) load Page P into buffer (if not there)
pin(P) don't allow to write or deallocate P
unpin(P)
flush(P) write page if dirty
deallocate(P) release block in buffer

– No transaction oriented operations
• Influence on logging and recovery

– When are dirty data written back?
– Update-in-place or update elsewhere?

• Interference with transaction management
– When are committed data in the DB, when still in buffer?
– May uncommitted data be written into the DB?

9

HS / DBS05-20-LogRecovery 17

Logging and RecoveryLogging and Recovery BufferingBuffering
• Influence on recovery

– Force: Flush buffer before EOT (commit
processing)

– NoForce: Buffer manager decides on writes, not
TA-mgr

– NoSteal : Do not write dirty pages before EOT
– Steal: Write dirty pages at any time

No Undo but
Redo recovery

Undo recovery and
Redo recovery

No recovery (!)
impossible with
update-in-place
/immediate

Undo recovery
no Redo

NoStealSteal

Force

NoForce

HS / DBS05-20-LogRecovery 18

16.2.4 Write ahead log16.2.4 Write ahead log

Rules for writing log records
• Write-ahead-log principle (WAL)

– before writing dirty data into the DB write the
corresponding (before image) log entries
WAL guarantees undo recovery in case of steal buffer
management

• Commit-rule ("Force-Log-at-Commit")
– Write log entries for all data changed by a transaction

into stable storage before transaction commits
This guarantees sufficient redo information

