
1

14 Transactions: models

14.1 Concepts: ACID properties
14.2 Modeling transactions: histories and

schedules
14.2.1 Correctness criteria
14.2.2 Serial execution
14.2.3 History

14.3 Serializability
14.3.1 Conflict graph

14.3.2 Serializability theorem

Kemper / Eickler chap 11.1-11.5, Elmasri/Navathe chap. 19

HS / DBS05-18-TA 2

14.1 Concept: ACID properties

• A transaction is
– A unit of work...
– … which consists of a sequence of one or more

operations...
– is executed with the following guarantees::

• Atomic: the sequence of operations is executed
completely or it has no effect (on the database)

• Consistent: if the database was in a consistent
state before transaction execution it will be after

• Isolated: concurrently executed transactions
(TA's) do not interfere

• Durable: (persistent): all effects of a TA are
permanent

HS / DBS05-18-TA 3

Transactions: DBS perspective

• System point of view

DB_op1
…
DB_opn

DB_op1
…
DB_opn

DB_op1
…
DB_opn

…

Some 'legal' sequence of
operations on DB

What does 'legal' mean?

DB_opn
DB_op1
…
DB_opn
DB_op1
DB_op1

…

DBS
scheduler

HS / DBS05-18-TA 4

14.2 Modeling Transactions

– Main concern: concurrency.
Model should enable the study of isolation properties

– Model should be most general - since nothing is
known about the particular transaction programs

– Model should be independent of
- particular actions in the TA programs
- particular DB language
- of the granularity of objects to be read / written

Note however: the scheduler could do the better, the more information
it has – e.g. " t1 is a 'Read-only' – TA"

HS / DBS05-18-TA 5

Modeling TAs
• Modeling TAs: The Read/Write model

Atomic DB-operations of TA i are

• READi[x] - TA i reads Object x ri[x]
• WRITEi[y] - TA i writes Object x wi[x],

the DB state is changed
• Commiti - TA i wants to terminate successfully
• Rollbacki - TA i wants to abort without leaving

any effects in the DB
– Operations of different TAs interleaved

* as an abstraction

The Model
– A transaction is a sequence of reads and writes, e.g.:

TA j = rj[x], rj[y], wj[y], rj[z], wj[x], wj[s] , wj[z] , cj

– cj means "successful commit ", aj "abort TAj",
may be sometimes omitted

– The sequence reflects the sequence (time and logic)
of DB operations of a single transactional program,
the subscript i of opi identifies the transaction this
operation belongs to.

– no TA reads or writes the same item twice
no TA reads an item it has written

TA j = rj[x], wj[x], rj[z], rj[x], wj[x] , cj

redundant final effect

2

HS / DBS05-18-TA 7

Transactions and transaction sets

Data dependencies: written data item dependent
on all previous read items

TA j = rj[x], rj[y], wj[y], rj[z], wj[x], wj[s] , wj[z] , cj

Interleaved transactions
TA1: r2[x], w2[y], w2[x] , r2[s] c2

TA2: r1[x], r1[y], w1[x], c1

One of many interleaved transaction executions

r1[x], r2[x], w2[y], r1[y], w1[x], w2[x] , r2[s] , c1, c2

"Blind writer"

HS / DBS05-18-TA 8

Correctness criteria

• Main concern: given a set of TAs
What is a correct execution sequence of their atomic
operations?

• Potential problems during interleaved execution
– Lost update
– Dirty read: read uncommitted data
– Non-repeatable read: different result when reading

the same object more than once in a transaction
– Phantoms: a kind of non-repeatable read caused by

insertions or deletions

HS / DBS05-18-TA 9

Example: Correctness violation

T1:r[x] , T2:r[x] ,T1: x=x+1, T1:w[x], T2:x=x-1, T2:w[x], T2:c, T1:c

Lost update
T

Read not repeatable

T1:r[x], T2:r[x] ,T2: x=x+1 , T2:w[x], T1:r[x], T2:c, T1:c

T

HS / DBS05-18-TA 10

Transactions Phantom

TA1
Exec sql select balance into :bbal from
branch_totals

where branch_id = :bid
Exec sql select sum(balance) into :total
from accounts

where branch_id = :bid
If (bbal <> total) {print "something
´seriously wrong")

TA2
Exec sql insert into accounts ... values
(.....); Causes phantom,

if executed here

Phantoms

HS / DBS05-18-TA 11

Transactions Correctness

14.2.1 Correctness criteria
– If transactions are scheduled in arbitrary sequential

order e.g.
TA1; TA2 or TA2; TA1 (for two TAs)

no resource conflicts
no concurrency issues

if all resources are released after commit
no concurrency at all
nondeterministic state at the end of execution
if order of execution is arbitrary

HS / DBS05-18-TA 12

Transaction indeterminism

Example

TA1: r1[x], x==x+1, w1[x]
TA2: r2[x], x==x*10, w2[x]
State after executing TA1; TA2 : x_new ==(x_old +1)*10
State after executing TA2; TA1 : x_new ==x_old*10 +1

3

HS / DBS05-18-TA 13

Serial Execution

An execution of transaction in an arbitrary sequential
order is called a serial execution

T1 then T2:
r1[x], r1[y], w1[y], r1[z], w1[x], c1, r2[y], r2[z], w2[y],r2[x],
w2[x], r2[s], c2

T2 then T1 :
r2[y], r2[z], w2[y], r2[x], w2[x], r2[s], c2, r1[x], r1[y],
w1[y], r1[z], w1[x], c1
,

are both serial executions

Note: the order of operations within a transactions is unchanged HS / DBS05-18-TA 14

14.2.3 Transactions History

Wanted:
a more efficient interleaved execution sequence which
guarantees a correct final database state

History (schedule, execution sequence)
Informally an interleaved sequence of atomic actions of
two or more transactions

Find histories which guarantee a correct final state

HS / DBS05-18-TA 15

History

A history S of a (finite) set of transactions T
is a sequence <a> of atomic actions a if the following
conditions hold:

(1) An atomic action of a TA ∈ T occurs exactly
once in S

(2) No other action occurs in S
(3) If a < a' in some TA, then a < a' in S (*)

where "<" is the canonical ordering induced by the
sequence of operations in TA and S rsp.

A schedule is a prefix of S.

(*) Does a more general approach make sense?

HS / DBS05-18-TA 16

History
Example

r1[x], r2[y], r2[z], w2[y], r2[x], r1[y], w2[x], w1[y], r1[z], r2[s], c2, w1[x], c1
is a history (schedule) of TA1, TA2 (see above)

r1[x], r2[y], r1[y], w2[y], w1[y], r1[z], r2[z], r2[x], w2[x], c2, w1[x], c1

is not, why?

– Obvious: every serial execution is a history
– Goal: find correct schedules
– what is "correct"?

TA 1 = r1[x], r1[y], w1[y], r1[z], w1[x], c1
TA 2 = r2[y], r2[z], w2[y], r2[x], w2[x], r2[s], c2

HS / DBS05-18-TA 17

14.3 Serializability

• Correctness criterion for schedules:
Serializability

• What does "equivalent" mean?
Same DB state at the very end? Indeterminism!
Plausible but not effective

Informal: A history (schedule) S of the transaction set T is
called serializable, if its effects are equivalent to a
serial execution of T

Serial schedules: correct by definition

HS / DBS05-18-TA 18

Serializability
– Well known from concurrency theory:

• No conflict if only concurrent READs
• lost update, dirty read etc. can only occur,

if different transactions operate on the same object
and at least one is a write operation

– Analyze conflicting operations of different TAs

H: r1[x], r2[y], w1[x], w1[y], w2[y]

Intuitive equivalence of schedules: same order of conflicts
In the example: first conflict: TA2 < TA1, second TA1 < TA2

Conflict pairs

4

Serializability
14.3.1 Conflict Relation

opi [x] and op'j[y] are in conflict, if
x = y AND
i != j AND
op = w ∨ op' = w

Example:
TA 1 = r1[x], r1[y], w1[y], r1[t], w1[x], c1
TA 2 = r2[y], r2[z], w2[z], r2[x], w2[x], r2[s], c2

C(S) = {(r2[y], w1[y]), (r1[x],w2[x]) (w1[x], w2[x]), (r2[x], w1[x])}

Conflict relation of a schedule S:
C(S) = {(op,op') | op and op' are conflicting
and op < op' in S}

What is S??
can you find
an S with
this C(S)?

HS / DBS05-18-TA 20

Serializability

• Conflict serializable schedules
– Basic idea: correct schedules should have the same

conflict pairs as some serial schedule
– Means: if there are conflicting pairs of operations in

TA1 and TA2 they should be executed in the same
order: TA1 – ops before TA2 – ops or the other
way round

A Schedule S of a transaction set T is
conflict serializable (or serializable),
if it has the same conflict relation as some
serial execution SER of T: C(S) = C(SER)

HS / DBS05-18-TA 21

Serializability
• Example

S: r1[x], r2[x], r1[y], r2[z], w2[y], w2[x], w1[y], r1[z], c2, w1[x], c1

C(S) =
{ (r1[x], w2[x]), (r2[x], w1[x]), (r1[y], w2[y]) (w2[y], w1[y]), (w2[x], w1[x]) }

T1 before
T2 in a serial Schedule

T2 before
T1 in serial Schedule

NOT
conflict
serializable

HS / DBS05-18-TA 22

Serializability

Conflict Graph (Precedence | dependency graph)

• Conflicts graph:
(a) Nodes: Transactions {T1, ….Tn}
(b) Directed Edges E :
(Tj,Tk) ∈ E :⇔
exists a conflicting pair (opj [x] , op'k [x])

T1 T2

Because (r1[x], w2[x]),

Because (r2[x], w1[x]),

Example:

HS / DBS05-18-TA 23

Conflict graph and serializability

• Conflict graph CG(S)
– Represents the conflict relations between

transactions
– Note: Commit does not have an influence on the

graph
Therefore commit – operation c, may be omitted.
Why exactly?

– How does the conflict graph of a serializable schedule
look like?

HS / DBS05-18-TA 24

Serializability
14.2.2 Serializability Theorem:

Example:
S: r1[y], r3[u], r2[y], w1[y], w2[x], w1[x], w2[z], w3[x]

A schedule S is conflict serializable, if and only if
its conflict graph does not contain a cycle

T1

T2
T3

Serializable

Intuitive correctness idea:
Determine from graph the "conflict-equivalent"
serial schedule. (Example: T2 before T1 and
before T3, T1 before T3, therefore T2,T1,T3)

Exchange operations in S without switching
conflict pairs until serial schedule is established

5

HS / DBS05-18-TA 25

Serializability

• Proof of Serializability Theorem:
" ⇐" " no cycle --> serializable"
The nodes of a connected directed graph without

cycles can be sorted topologically: a < b iff there is a
path from a to b in the graph. Results in a serial
schedule TAi,TAk if non-conflicting TAs are
added arbitrarily.

" ⇒ " "Serializable no cycle"
Suppose there is a cycle TA i -> TAj in CG(S) .

Then there are conflicting pairs (p,q) and (q',p'),
p,p' from TAi, q,q' from TAj. No serial schedule will
contain both (p,q) and (q',p').
Induction over length of cycle proves the "only if"

HS / DBS05-18-TA 26

Transactions Serializability

• Conflict serializability is restrictive

• But effect is the same as from the
serial Schedule: T1, T2, T3
since T3 is a "blind writer":
writes x independent of previous state

S1: w1[y], w2[x], r2[y], w2[y], w1[x], w3[x]

C(S1) = {(w1[y],r2[y]), (w1[y],w2[y]), (w2[x], w1[x]), (w2[x],w3[x]),

(w1[x], w3[x])}
T1

T2
T3

HS / DBS05-18-TA 27

Summary of the TA model
• Summary (serializability theory)

– Serial executions of a fixed set of transactions T
trivially have isolation properties

– Schedules of T with the same effects as an (arbitrary)
serial execution are intuitively correct

– If all conflicting pairs of atomic operations are
executed in the same order in some schedule S' as in
the schedule S, the effects of S and S' would be the
same

– Conflict graph is a simple criterion to check conflict
serializability

– Conflict serializability is more restrictive than
necessary (see view serializability -> literature)

– Serializability is a theoretical model which defines
correctness of executions.

