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Database Design: 
- developing a relational

database schema

- Object relational  concepts

Using the Database
from application progs
DWH
Physical Schema

Part 2: Implementation
of DBS

Pa
rt

 1
:D

e s
ig

n i
n g

 a
n d

 u
s i

n g
 d

at
ab

a s
e

Context 

Data handling in rela-: 
tional databases
-Algebra, SQL/DML

Design: 
- formal theory
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13.1 Physical Design: Introduction
Physical schema design goal: PERFORMANCE
• Quality measures

– Throughput: how many transactions / sec?
– Response-time: time needed for answering an 

individual query   
• Important factors for quality of physical schema

– Application 
• size of database
• typical operations 
• frequency of operations
• isolation level

– System 
• storage layout of data 
• access path, index Structures
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Physical Design: performance parameters
• System related performance parameters

– Logging / recovery
– Blocksize of (DBS-) storage (2 , …, 8KB,…)
– Size of DB buffers   

i.e. main memory areas (global, user specific) 
– Parallel processing
– Distribution 
– Query optimizing strategies
– …. and many more

• Schema related physical parameters
– e.g. Size of tables (initially), 
– Most important: Indexes
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Physical Design: Storage Devices

• Memory Hierarchy:

Cache

Main memory

Disk

Tertiary storage

Primary storage

Secondary storage

Archive storage

Database

BIG access
time gap

Locality of references apply cache principle
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13.2 Physical Design: Storage Devices

• Access time vs capacity:

Tertiary storage
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Approach to Data Storage
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13.2.1  Disk Technology

• Mechanics

Platter = 2 surfaces

Disk heads Cylinder

track
gap

sector

Block
512 B - 32 KB
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Physical Design: I/O cost

• Disks are slow
• Data transfer disk - main memory 

– Blocks
– Bytes transferred at constant speed
– Transfer rate (tr): between 120 KB/s and  5 MB/s

Seek time:
Time for  positioning the arm over a cylinder
Move disk heads to the right cylinder:
Start (constant), Move (variable), Stop (constant)
0 if arm in position, otherwise long (between  8 to 10 ms)
Track-to-track seek time: 0.5ms –2ms



6

HS / DBS05-17-Phys 11

Physical Design: I/O cost
Rotate time (disk latency):

– Time until sector to be read positioned under the head
– Access to all data within a cylinder within rotate time 
– 12 to  6 ms per rotation  / 5000 – 12000  rotations per 

min
– Average:  6 to 3 ms rotational latency.

store related information in spatial proximity

Transfer time tr (read time):
Depends on # bytes to be transferred

Seek time + Rotational time + T/tr

Total time to transfer T bytes:
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Physical Design: I/O cost

• Typical access time:

Seek time dominates !

Disk access time =     SeekTime 6 ms
+ RotateTime 3 ms
+ TransferTime 1 ms

Compare: RAM 3-10 nsec

Random Disk / RAM:
~10 * 10-3 / 10 * 10-9 = 106

Sequential disk read ("scan") may be much faster
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Technological Impact Disks

year
Capacity

GB $/GB
Scan

Sequential
Scan

Random
1988 0.25 20,000 2 minutes 20 minutes
1998 18 50 20 minutes 5 hrs
2003 200 5 2 hrs 1.2 days

• Disk characteristics (J. Gray)

• Consequence: Random access (and indexing!) 
only pays off, if a small percentage of the data is
accessed frequently
rule of thumb: less than 15 % on a large table

• Cost of indexing? 

HS / DBS05-17-Phys 14

Technological Impact Disks

• Disk characteristics (2)  (J. Gray) 
• The Myth: seek time dominates
• The Reality: (1) Queuing dominates

(2) Transfer dominates BLOB
(3) Disk seeks often short

• Implication:  many cheap servers  
better than one fast expensive server
– shorter queues
– parallel transfer
– lower cost/access and cost/byte

• Gives rise to table and index partitioning Seek

Rotate

Transfer

Wait
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Technology impact: I/O cost

• Accelerate secondary storage access

Strategies
Place blocks that are accessed together on same cylinder
(avoids seek time)
Divide data between smaller disks 
(independent heads increase # block accesses)
Replicate data: simultaneous access to several blocks
Disk-scheduling algorithm: selects order of block access 
Prefetch blocks in main memory

Disk architectures can enhance disk access 
considerably
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13.2.2 RAID storage
• RAID Technology

(Redundant Array of Inexpensive Disks) 

– Goals
• Performance enhancement by reducing transfer time and 

queue length
• Fault tolerance by "Parity disks"

Large disk:
Long queue, 
Long transfer

1 2 3 4 5

6 7 8 …

Block striping, 
no fault tolerance

(cited from http://www.raid.com)

Principle technique: 
striping

Raid 0
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Technology: RAID

RAID 0+1 High Data Transfer Performance 

RAID 1   Mirroring and Duplexing: mirror without 
stripping

A E B F C G D HA E B F C G D H= = = =

HS / DBS05-17-Phys 18

Technology: RAID

Each bit of data word is written to a data disk drive
(4 in this example: 0 to 3). Each data word has its
Hamming Code ECC word recorded on the ECC disks. 
On Read, the ECC code verifies correct data or corrects
single disk errors. 

RAID 2   Byte (Bit) level striping + error correcting disks
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Physical Design: RAID

• RAID 3   Bit (Byte) level  striping with parity

AP [1] = A[0] ⊗ A[1] ⊗ A[2] ⊗ A[3] 

Data online reconstructable, when ONE disk fails

HS / DBS05-17-Phys 20

Physical Design: RAID
RAID 4 Independent Data disks with block striping and shared 

Parity disk

RAID 5 Independent Data disks with distributed parity blocks



11

HS / DBS05-17-Phys 21

Technological Impact Disks

– RAID controller provides OS / DBS with standard disk 
interface

– Considerable performance gains for read operations
– Writes need recomputation of parity

Main reason for parity disk bottleneck in RAID-4 
architecture 

– Further info: http://www.raid.com
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13.3.1 Indexing in DBS
Index 

– Optional data structure for fast access to data items 
….in the DB 

– Index Ia assigns to each value v of a the set of data 
objects  

– Locates the rows of a table having v as value of 
attribute a in an efficient way 

– May be extended to attribute / value sequences: 
Iab…c::Vala,b,…,c -> POWERSET(D)

– Disk based data structure

Important 

Ia:: Vala -> POWERSET(D)
Vala = set of values of attribute a
D = {d1, ... dn)} set of data objects
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13.3.2 Primary and Secondary indexes
Primary (unique) index

– For each v ∈ Vala, there is at most one row r with r.a=v
i.e.   | I(v) | § 1

– Typically used for indexing PRIMARY KEY or one  UNIQUE column 
– Important: Maps key values to physical locations

– Indexes on other attribute (sequences) are called secondary 
keys, even if unique

47

107

212

531

...
More than one
key in a disk
block (page)
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Secondary index
– In most cases not unique
– Example: Movie database

Movie (mId, title, category, ..., director,...)

action
...
comic
...

soap

23 
37
18

...

19 
21
...

11
28
59

....

mId
Logical view:
• Each value v of the

attribute a references
a list of tuples t 
with t.a = v

cat

Goal of DBS implementor:
Find efficient data 
structure for indexing 
arbitrary data

Goal of DB designer:
Define index for database
Schema in order to 
increase performance.
Use one of the imple-
mentations supplied by DBS
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13.3.3 Types of indexes and index definition
CREATE INDEX

Most simple case
CREATE INDEX movie_idx1 ON Movie (cat ); 

CREATE INDEX customer_idx1 ON Customer (name, first_name);

CREATE INDEX customer_idx2 ON Customer(first_name,name);

Decision which indexes to create is an important task in 
physical schema design

• Composite index is defined on multiple columns
• Different (search tree) indexes on the same

columns with different orders sometimes make
sense - e.g.  abc and bca.   Why?

HS / DBS05-17-Phys 26

Defining indexes
Why not index each attribute?

– Advantage: fast predicate evaluation  
Select x from R where y = val

– Disadvantages: they are not for free
• Redundancy

- Space needed, can double the space needed for the DB
- Extrem case: all attributes are indexed: do we need rows at all?
- database = set of indexes, no tuples !?

• Operational cost in case of updates
– insertion / deletion / of a row: each attribute      

effected by the operation has to be updated
(delete, insert: all attributes)

– each index write implies disk I/O – expensive!
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Types of indexes
• Hash Index

– Same as well known hash functions 
h :: Val  -> {0,…….n}   ("map values to disk block numbers" )

• Useful only for unique values   (hash collisions!)
• No key sequential access to rows
• Reorganisation needed when size of table increases 

considerably

• Bitmap Index
– Stores for each value v of field a and each row i

a bit b(v,i)    -- true, if i has value v in field a
• Cluster Index

– Store "logically related data" in physical neighborhood 
• Search Trees

??
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13.3.4 Implementing indexes: search trees

Hierachical index trees (search trees)
– ISAM (Index sequential Access method) 

• Index blocks for physical areas (cylinder, track, sector)
keep (lowVal – highVal) pairs for
each cylinder ("cylinder index"), track ("track index") etc.

• "sequential" since rows may be read in key sequence
• Outdated, has to be reorganized explicitly

K2K1 … Kn Index pages

Data pages

D2D1 … Di-1 Di Di+2Di+1 … Dn-1 Dn

...
...

P1 P2 Pn

Keys Ki, Data tuple Di, Pi pointer to data Dj: Ki-1< Dj.key ≤Ki
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Index implentation: B-Tree

B+-Trees: the standard for most DBS   *)
• like B-Trees, but inner nodes contain only keys and pointers
• Sequential key sequence access is possible
• "self-reorganizing" because of implementation of update 

operations. 

K..K1 … K..

K..K.. … K.. K..K.. … K.......

K..K.. … K....... K..K.. … K.. .....

data pointer

*) Sometimes called B* -trees (Bayer- | Boeing-tree ?)

Important

Hierarchy
independent from
device charcteristics
like ISAM 
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Index implementation

B+-tree
• all leaves on the same level
• every node is a disk page
• inner nodes contain n-1

(separator) keys and n pointers
to nodes 

• the search tree 
invariant holds for 
all (prt, key, ptr) –
tripels in inner node
and root

• all nodes below the
root are at least 
50% filled

• leaf nodes contain
(keyval, rowid) pairs

Leafs are chained, 
Why? 
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B+ -Trees 

• Example:
– Degree 2  B+ Index Tree on Movie

222112 290 345

112

10095

...2.00Lucas 
199
9SciFi

Star Wars
I345

...2.00Lucas
199
7ScFi

Star Wars
IV290

...2.20
Van 
Sant

199
8

suspens
ePsycho222

... 1.50 
Spielber
g

198
2comedyET112

...1.50
Spielber
g 

197
5horrorJaws100

.....................

...2.00
Hitchcoc
k

196
0

suspens
ePsycho095
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Data storage 

• Heap storage
Storage area into which records stored in 
"time sequence" not key sequence 

…

key sequence

first record inserted, key n

n

ISAM: Sequential storage of data
B+ tree with row pointers: random placement of data

HS / DBS05-17-Phys 34

13.3.5  Criteria for physical schema design
Design parameters for physical schema

– Data volume:
• how many records and pages in a relation?
• how many leaves in the tree, how many inner node

Depends on 
• The way, rows are stored in pages
• how pointers to rows ("tuple ids") are implemented
• how index pages are organized

– Typical load: which query / update types (the hardest 
part!)

– Kind of Index
• B+ tree variants as a standard 
• Clustering: storing related data in physical neighborhood 

– Physical I/Os, if  number of page access  is the most important 
cost measure
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Physical schema design
Random versus sequential access: case study

– Typical task: read n random rows of table
– Index based access: for each record: read block 

which contains one or more tuples
– Table scan: read all blocks sequentially and extract

the records ("on the fly")

Set interface

Record / stream interface
readIdxEntry, readRecord, …tableScan, IndexScan

data, Idx

Query 
processing 
architecture
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Sequential versus direct access
Example:

table: 10000 pages (blocks) of 1 KB
task: read 200 records, each in a different block

– Read 200 records = read 200 pages = 200 * 12 msec
∼ 2 sec

– Table scan = sequential read of 10000*1KB = 10 MB
∼ 10 MB / 5 MB/sec = 2 sec

Block access time: 12 msec, Data transfer rate = 5 
MB/sec

– read 600 records factor 3 in favour of scan
Sequential access more cost effective (in this case….)! 

Question: how many blocks have to be read when reading n tuples?
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13.4.1 Clustered indexes

Clustering – another way to increase performance
Cluster principle

– put related data into a group (a cluster) 
• Clustering : a statistical technique

to group  data with similar 
features together. 

• No statistics available during
DB design. 
Goal: efficient access to 
related ("clustered") data. 

• Reasonable application pattern:  Rows of a table 
may be primarily accessed in value (key)  
sequence of one attribute 

v
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Storage of Data Clustering

• Clustered Index
– The sequence of row-Ids in a leaf page is normally 

different from the physical sequence of rows
⇒ Sequential index scan means random access to 
rows

• Heap Storage, Index without clustering

...
Leaf nodes
(index)

Root

Rows

rowId pointers
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Storage of Data Clustering

• Clustered index

– Controls physical placement of rows
– Obvious: only one cluster per table
– tuples which have value v in cluster attribute a are

stored in as few pages as possible

...

... ......

Not necessarily  stored in cluster attribute sequence
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Storage of Data Clustering

• Example
Big company with 1 Mill customers in 20 cities, 
Frequent access to all customer records (100 B)  in a 

particular city:
SELECT name, location, street, no FROM customer
where location = :loc

VERY Rough estimate: 
a) 50000 random access ~ 10*10-3*5*104 ~ 10 min
b) 25000 /(rows/4K-block) sequential reads 

~ 25000/40 * 10*10-3 = 6250 msec ~ 6 sec 
Warning: queuing and buffering neglected, gives only a 

rough impression of the sequential / random ratio
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Data Storage Clustering heterogenous records
• Clustering heterogenous objects (rows) 

– Rows of different tables may be accessed frequently 
together

– Estimate the "access correlation" between different
rows or tables. 
What is the probability that row y in table A is accessed, 
after row x in table A' has been accessed? 

• Example: Video-movie DB
Access to a Movie record is often followed by an access to a tape 
containing this movie. 
Tape- and movie records with the same mId - value should be placed  
in one block (page)  

• Heterogeneous cluster: set of blocks which may contain 
rows of more than one table 

• More general notion for "cluster" 
Be careful with different notions  
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Data Storage Clustering heterogenous records

• Example

• Clustered are defined by a common cluster key ck,
not necessarily primary key, but frequently ck is primary

key in  one table, foreign key in another

Cluster Key
(mId)

10 title      genre
Asterix comic

t# format ..
101 VKS
103 BETA
104 DVD

11 title      genre
James Bond action

t# format ..
102 VKS
106 DVD

Tape(id format movieId ...
----- ------ ------

101 VHS 10
102 VHS 11
103 BETA 10
104 DVD 10
105 VHS 12
106 DVD 11

Movie(mid title genre
------ ------ ------

10 Asterix comic
11 James Bond action
....

Standard 
space allocation 
for tables

Clustered allocation
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Data Storage Clustering heterogenous records

• Defining a cluster
– First create a cluster
Create Cluster videoDB.movieTape_clu
(mId NUMBER (6)) ;
Create Index idx on cluster videoDB.movieTape_clu;

– Create a cluster index: clusters are accessed primarily 
through the cluster key 

-> fast access by using an index
• B*-tree index 
• Hash cluster  (Oracle allows hash-index only for clusters )    

– Finally create the tables in the cluster
CREATE TABLE Movie (....) CLUSTER 
movieTape_clu(mId)

CREATE TABLE Tape (....) CLUSTER 
movieTape_clu(movieId) 
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13.4.2 Implementation of rows and tables

222112 290 345

112

10095

Unique (primary) index

Nonunique (secondary) index : 
more than one row for a key value

Remember…
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Index implementation

Index entry

• Index entry header: number of columns, locks
• Key column length
• Key column value
• rowId (tupleId)

– Non-unique index – different implementations: 
• (key length, key val) pair repeated for each rowId with this 

key val (Oracle implementation)
• (key length, key val) [list-of rowid]  entries (DB2 )
• (key length, key val) [list of primary keys]

Example shows
concatenated index
(two columns)
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Storage of data Rows and pages

What's in a row ID  (tuple ID, TID)? 
– Simplified view:

(Pagenumber, offset): physical pointers

header, row directory, variable length rows

free space

Disadvantage: uniform page address space -> large pagenumber

page layout
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Storage of data  Descreasing pointer size

Database

Physical

Tablespace Data file

O/S blockOracle
block

Segment

Extent

• Oracle's Storage hierarchy

Logical

OOOOOO FFF BBBBBB RRR: RowId: 

Segment No, data file No (in table space) Block in file, row in block

legacy structure,
not really necessary
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Storage of Data Anticipating growth

1. Initial loading and indexing
– May reserve freespace (PCTFREE) and used space

(PCTUSED)  because...
– if pages were full:

small number
of insertion
would result
in many page
splits
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13.4.3 Index tree with data leafs

B+-Tree index with data leaves
("Index organized tables" Oracle)

rows

Leaf of "index organized table" : row in leaf node instead of rowId

Key value

....

rowId ........

Leaf of a standard index: additional I/O to access row

Header

rowId rowId

Key value
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Data Storage Index tree with data leafs
• Case study: inverted document index

– Note: index organization must be specified when 
table is created – as opposed to standard table 
organization

– Standard index on keyword would need more than 
twice as much space … and would be inefficient

aliasing
and-
gate
....
C
compile
..
Z 

...

Keyword list

CREATE TABLE Docindex

(  keyword CHAR(20),
doc_id NUMBER,
frequency NUMBER,
CONSTRAINT Pk_docindex
PRIMARY KEY(keyword, doc_id)

)
ORGANIZATION INDEX TABLESPACE 
Ind_tbs;

Logical view of
inverted document
index
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Data Storage Index tree with data leafs
• Case study (cont.)

SELECT doc_id FROM docindex
WHERE keyword LIKE 'compile%' OR keyword LIKE 
'parse%'

AND k_frequency LT 3 ; 

– Processing
• Suppose 10 million entries, keywords 'compile' and 

'parse' occur in 10000 documents each  
• Standard index organization: 2 x 10000 row 

(random!) page accesses    100 sec
• Read 10 Mill entries sequentially:  16 K pages, 40 B 

per entry
400 / page  2,5* 104 pages to read sequentially
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Index tree with data leafs
Compared to sequential read of leaf pages of the 
B+ tree: 

(2 x 10000)/ rows per page ~ 300 pages (assuming 
4K pages, 75% filled, 40 B rows) 

Secondary index on table may reduce processing time 
for AND queries:
... keyword LIKE 'compile%' AND keyword LIKE 
'parse%' ...
CREATE INDEX doc_id_idx ON docindex (doc_id, 
keyword);
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Data Storage Index tree with data leafs

Characteristics of index organized tables
– Only  primary key index

– Secondary indexes
• No rowIds: Location of records may chance after split
• Use primary key as "pointer"

rowsKey value

....
Key value

....
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Data Storage Index tree with data leafs

– Needs two index traversals (secondary and primary) to locate 
the rows

– Possible optimization in case of few updates: use current 
physical location as "rowId-guess".  

– Space reduction, key value is not repeated in row data, no 
pointer (rowID) in leaf pages

– Very good performance properties if key is long (e.g. several 
attributes) and row is short to medium,
otherwise frequent splits

primKey ........primKey primKey

…

…
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13.4.4 More on indexes

13.4.4 Bitmap Index
– Less space for

rowids, if few
different values
in a large table

<Blue, 10.0.3, 12.8.3, 1000100100010010100>

<Green, 10.0.3, 12.8.3, 0001010000100100000>

<Red, 10.0.3, 12.8.3, 0100000011000001001>

<Yellow, 10.0.3, 12.8.3, 0010001000001000010>

keykey
startstart
ROWIDROWID

endend
ROWIDROWID bitmapbitmap

Index

Block 10

Block 11

Block 12

File 3

Segment relative block, row, file

Table
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Physical Schema More on indexes

• Operations on  Bitmap indexes
– Efficient implementation  of set operations
– Example: 
SELECT x,y,z FROM people 
WHERE (color = 'Blue' OR color = 'Red' )
AND      sex = 'm'

<Blue, 10.0.3, 12.8.3, 1000100100010010100>

<Red, 10.0.3, 12.8.3, 0100000011000001001>

<male 10.0.3, 12.8.3, 1010101001001001010>

<RESULT              1000100001000001000>

OR(
)

AND
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More on indexes

• Bitmap versus regular indexes
– Advantage

• If few values and many rows e.g. sex, marital status,..
• Compression of bit lists saves space compared to standard idx
• Efficient processing of OR / AND  queries

– Disadvantage
• Updates expensive.... Why? 

– bitmaps must be locked during update (why?)
– all blocks (and all rows) in a segment have to be locked

• In comparison: one row is locked during update in  a standard 
B+-tree

CREATE BITMAP INDEX customer_bidx1 ON Customer 
(sex)

TABLESPACE myTBS PCTFREE 10;
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Physical Schema More on indexes
13.4.5 Hash index  

– Advantage
• Efficient access, if inserts infrequent

– Disadvantages
• No sequential scan
• No dynamic increase of space

but reorganization 
(position is a function of 
initial size of hash table)

• Range queries inefficient
('22 < val <= 1000')

• Non unique index: retrieval 
has to scan the whole rehash
chain – can be very long

⇒ Most DBS don't use hash as an alternative to B* trees

value v

Hash function h
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13.4.6 Physical Schema Case study
• The E-Videoshop
CREATE TABLE Rents (
tapeId INTEGER,
cuNo INTEGER NOT NULL,
since DATE NOT NULL,
back DATE,
PRIMARY KEY (tapeId,since),
….);

CREATE TABLE Tape (

id      INTEGER PRIMARY KEY,

acDate DATE,

format  CHAR(5) NOT NULL,

movieId INTEGER NOT NULL UNIQUE

);

CREATE TABLE Movie ( 
mId INTEGER PRIMARY 

KEY;
title VARCHAR(60) NOT 

NULL,
category CHAR(10),
pricePDay DECIMAL(4,2),  
director VARCHAR(30),
year DATE,   

1 Mio Movies
5000000  Rents

3 Mio Tapes

Find a suitable 
physical schema
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Physical Schema Case study

Data volume
– Rents:  ~ 20 B / row, ~100 MB -> 2,5 * 104 pages à 

4KB
+ PCFREE = 30%  -> 3,3 104 pages

High update frequency, high growth rate
– Tape: ~ 20 B / row, ~ 60 MB 

-> 1,5 * 104 + 30% = 2*104 4 KB pages
Low update frequency, high read load, medium 
growth

– Movie:  ~ 100B / row (average), ~100 MB
-> 2,5 * 104 Pages + 30% = 3,3 * 104 pages
low update frequency, high read load, medium growth

– Extremely simplified:   customer and other relations not 
considered
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Physical Schema Case study

• Typical operations
– Rent a tape: access customer (by name or id), access 

tape (tape-id – is printed on the tape), access Movie 
(mId) to get the price?  Insert into Rents table
High frequency (10 / minute ?) 

– Browse the movie table (category | director | year) 
Very high frequency

– Query  a specific title
Very high frequency

– Return a tape: access Rents table, access Movie 
table to calculate the price, update Rents
High frequency

– Insert new rows into Movie and Tape table 
low frequency (20 / day?) 
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13.5 Multidimensional indexing in a nutshell

• Interpretation of attributes as coordinates of 
n-dimensional space
Example: 

temp Co

y

x

tuple = point in n-dim space

Basic issues:
• preserve topology – neighbors in data space  ->   

neighbors in storage (index)
• density of objects in data space very different 

Why not  1-dimensional indexes?
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Query types
Query types:

exact match query:        Q ≡ D1=a ∧ D2 = v ∧ .. 
(point query)                     -- all dimensions specified      

partial match query: Q ≡ D1=a ∧ D2 = v ∧ ..    
-- k < n dimensions specified   

range query: Q ≡ a1 <= D1 <= a2  ∧ v1 <= D <= v2 ∧ ..    
-- find all records in a particular range

Nearest neighbor: Q(p) = { r |  distance (p,r) = min}
-- find the record(s) with minimal

distance from p=(a1,a2,…,an)
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Independent Hash functions
h(a1, a2,..an)  = h1(a1') | h2(a2') | .. hn (an')

n = 2

Efficient for exact match queries,
but…
-not topology preserving
- partial match: inefficient
- range query, nearest neighbor: impossible
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Grid File

Organize data space
- partion data space into non-overlapping 

n-dimensional hyper cubes
- 1-dimensional scaling vectors for each dimension 
- grid array

Data space

Scaling vectors
Grid array

Storage buckets
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Grid File: Search and Insertion

• Search
determine each dimension of query in scale arrays

grid array entry (entries) 
buckets with records

• Insert
locate bucket of record to be inserted

• if no more space
• either overflow bucket
• or refine partition by splitting blocks
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R-Tree: Index structure for spatial objects

• Region trees: extension of B-trees to more than 
one dimension

A B C

1 2,3 4,5,6

II
I   II

..

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6

4

1,..6: leaf node entries, each "spatial" object is contained
in minimal bounding n-dim rectangle
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R-Tree

Leaf nodes
contained in minimal bounding rectangle for the object
entry: ((x1,y1),( x2,y2), OID)     -- 2-dim case

Directory  nodes:
• m <= Number of entries <= M 

entry ((x1,y1), (x2,y2),child-ptr)
all entries in subtree "child-prt" are contained in 
rectangle (x1,y1), (x2,y2)

• All leaves have the same depth
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See paper by Guttmann (1987) -> "Unterlagen")
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Search: Example

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6

4

(0,0)

(120,110)

I: [(0,0) (100,90)   ] , [ II: (90,70), (120,110)    ] 

B: [(10,25),(40,45)  ], [A: (15,35), (55,85)  ], [C: [(10,50), (95,75)  ] …

3: [12,36)(20,40)  ], [2: [20,38), (40,45)  ] 1: [(15,40), (25,75)   ] …

Find point 
p = (20,37)
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Example (cont)

I: [(0,0) (100,90)   ] , [ II: (90,70), (120,110)    ] 

B: [(10,25),(40,45)  ], [A: (15,35), (55,85)  ], [C: [(10,50), (95,75)  ] …

3: [12,36)(20,40)  ], [2: [20,38), (40,45)  ] 1: [(15,40), (25,75)   ] …

root
Find point 
p = (20,37)

Check each rectangle r in each leaf node which may contain
p if p ∈ r:     1, 2, 3   , 3 contains the point
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R-Tree: Search algorithm
Point query: given p, find the leafs p could be in
Let entry = (dirRect,childPtr)
LeafSet RTreeTrav (pageId nodeID; point p){
LeafSet res = new LeafSet();
page n = READ(nodeID);
if (isLeaf(n)) res.union(n); //all obj.into res

while (n.hasNext()) {    -- traverse entries
entry e = n.next();    -- of the node
if (contains(e.dirRect, p) 

res.add(RTreeTrav (e.childPtr));
}  return res;

}
How can directory entries overlap??
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RTree: insertion

A B C

1 2,3 4,5,6

II
I   II

...

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6
4

Where to put the red object? 

Choose candidate with largest overlap
and extend it.  
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RTree: insertion 

A B C

1 2,3 4,5,6

II
I   II

c

-extension of rectangles may 
be propagated towards root
(see 8)

7

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6
4

7
7

- if leaf is full: split similar to B-tree

8
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Multidimensional search

• Several refinements of basic RTree mechanism
– essential: controlling overlap
– shapes different from rectangles  - e.g. general 

polygons – could make sense
• Many more index structures for multidimensional 

data
• Scalability problem:  methods do not scale with 

increasing dimensions 
e.g. image retrieval: feature vector with >= 50 features ?
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Summary
• Data stored on disk
• Access time crucial in query processing

– I/Os is THE cost measure
– Access Time: Seek time + Rotational time + Transfer 

time
• Indexes accelerate access to secondary storage 

– B+ tree is standard in most DBs
– Clustering: related data in physical neighborhood 

• Great differences in physical organization in DBS
• Indexing not standardized


