

Technological Impact Disks							
Disk characteristics (J. Gray)							
		Capacity		Scan	Scan	ſ	
	year	GB	\$/GB	Sequential	Random		
	1988	0.25	20,000	2 minutes	20 minutes		
	1998	18	50	20 minutes	5 hrs		
	2003	200	5	2 hrs	1.2 days		
 Consequence: Random access (and indexing!) only pays off, if a small percentage of the data is accessed frequently rule of thumb: less than 15 % on a large table 							
Cost of	t inde	exing?			HS / [DBS05-17-Phys 13	

13.3.1 Indexing in DBS					
Index	Important				
 Optional data structure for fast access to data items in the DB 					
 Index I_a assigns to each value v of a the set of data objects 					
I _a :: Val _a -> POWERSET(D)]				
Val _a = set of values of attribute a D = {d1, dn)} set of data objects					
 Locates the rows of a table having v as value of attribute a in an efficient way 					
 May be extended to attribute / value sequences: I_{abc}::Val_{a,b,,c} -> POWERSET(D) 					
 Disk based data structure 	HS / DBS05-17-Phys 22				

Types of indexes

- Hash Index
 - Same as well known hash functions
 - h :: Val -> {0,.....n} ("map values to disk block numbers")??
 - Useful only for unique values (hash collisions!)
 - · No key sequential access to rows
 - Reorganisation needed when size of table increases considerably
- Bitmap Index
 - Stores for each value v of field a and each row i a bit b(v,i) -- true, if i has value v in field a
- Cluster Index
 - Store "logically related data" in physical neighborhood
- Search Trees

HS / DBS05-17-Phys 28

Query types

Query types:	
exact match query: (point query)	$Q \equiv D1=a \land D2 = v \land$ all dimensions specified
partial match query:	$Q \equiv D1=a \land D2 = v \land$ k < n dimensions specified
range query: Q ≡	a1 <= D1 <= a2 \land v1 <= D <= v2 \land find all records in a particular range
Nearest neighbor:	Q(p) = { r distance (p,r) = min} find the record(s) with minimal distance from p=(a ₁ ,a _{29 / DBS} (a)).Phys 63

Summary

- Data stored on disk
- · Access time crucial in query processing
 - I/Os is THE cost measure
 - Access Time: Seek time + Rotational time + Transfer time
- · Indexes accelerate access to secondary storage
 - B+ tree is standard in most DBs
 - Clustering: related data in physical neighborhood
- · Great differences in physical organization in DBS
- Indexing not standardized

HS / DBS05-17-Phys 76