
1

13 Physical schema design
13.1 Introduction
13.2 Technology

13.2.1 Disk technology
13.2.2 RAID

13.3 Index structures in DBS
13.3.1 Indexing concept
13.3.2 Primary and Secondary indexes
13.3.3 Types of indexes and index definition in SQL
13.3.4 Implementing indexes: search trees
13.3.5 Criteria for indexing

13.4 More index structures
13.4.1 Clustered indexes
13.4.2 Implementation of rows and tables
13.4.3 B+ trees with data leafs
13.4.4 Bitmap indexes
13.4.5 Hash index and inversion
13.4.6 Case study ("Video store")

13.5 Multi dimensional indexes
Lit.: Kemper/Eickler: chap 7, O'Neill: chap. 8, Garcia-Molina et al: chap. 13

HS / DBS05-17-Phys 2

Database Design:
- developing a relational

database schema

- Object relational concepts

Using the Database
from application progs
DWH
Physical Schema

Part 2: Implementation
of DBS

Pa
rt

 1
:D

e s
ig

n i
n g

 a
n d

 u
s i

n g
 d

at
ab

a s
e

Context

Data handling in rela-:
tional databases
-Algebra, SQL/DML

Design:
- formal theory

2

HS / DBS05-17-Phys 3

13.1 Physical Design: Introduction
Physical schema design goal: PERFORMANCE
• Quality measures

– Throughput: how many transactions / sec?
– Response-time: time needed for answering an

individual query
• Important factors for quality of physical schema

– Application
• size of database
• typical operations
• frequency of operations
• isolation level

– System
• storage layout of data
• access path, index Structures

HS / DBS05-17-Phys 4

Physical Design: performance parameters
• System related performance parameters

– Logging / recovery
– Blocksize of (DBS-) storage (2 , …, 8KB,…)
– Size of DB buffers

i.e. main memory areas (global, user specific)
– Parallel processing
– Distribution
– Query optimizing strategies
– …. and many more

• Schema related physical parameters
– e.g. Size of tables (initially),
– Most important: Indexes

3

HS / DBS05-17-Phys 5

Physical Design: Storage Devices

• Memory Hierarchy:

Cache

Main memory

Disk

Tertiary storage

Primary storage

Secondary storage

Archive storage

Database

BIG access
time gap

Locality of references apply cache principle

HS / DBS05-17-Phys 6

13.2 Physical Design: Storage Devices

• Access time vs capacity:

Tertiary storage
13
12
11
10
9
8
7
6
5

2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

Disk storage

Zip disk ()
(died already)

Main memory

Cache

Source: Garcia-Molina, Ullman, Widom “Database systems”, 2002

Ca
pa

ci
ty

in

 1
0Y

By
te

s

Access time
in 10X sec

4

HS / DBS05-17-Phys 7Evangelos Eleftheriou: Millipede - a Nanotechnology
Approach to Data Storage

HS / DBS05-17-Phys 8

5

HS / DBS05-17-Phys 9

13.2.1 Disk Technology

• Mechanics

Platter = 2 surfaces

Disk heads Cylinder

track
gap

sector

Block
512 B - 32 KB

HS / DBS05-17-Phys 10

Physical Design: I/O cost

• Disks are slow
• Data transfer disk - main memory

– Blocks
– Bytes transferred at constant speed
– Transfer rate (tr): between 120 KB/s and 5 MB/s

Seek time:
Time for positioning the arm over a cylinder
Move disk heads to the right cylinder:
Start (constant), Move (variable), Stop (constant)
0 if arm in position, otherwise long (between 8 to 10 ms)
Track-to-track seek time: 0.5ms –2ms

6

HS / DBS05-17-Phys 11

Physical Design: I/O cost
Rotate time (disk latency):

– Time until sector to be read positioned under the head
– Access to all data within a cylinder within rotate time
– 12 to 6 ms per rotation / 5000 – 12000 rotations per

min
– Average: 6 to 3 ms rotational latency.

store related information in spatial proximity

Transfer time tr (read time):
Depends on # bytes to be transferred

Seek time + Rotational time + T/tr

Total time to transfer T bytes:

HS / DBS05-17-Phys 12

Physical Design: I/O cost

• Typical access time:

Seek time dominates !

Disk access time = SeekTime 6 ms
+ RotateTime 3 ms
+ TransferTime 1 ms

Compare: RAM 3-10 nsec

Random Disk / RAM:
~10 * 10-3 / 10 * 10-9 = 106

Sequential disk read ("scan") may be much faster

7

HS / DBS05-17-Phys 13

Technological Impact Disks

year
Capacity

GB $/GB
Scan

Sequential
Scan

Random
1988 0.25 20,000 2 minutes 20 minutes
1998 18 50 20 minutes 5 hrs
2003 200 5 2 hrs 1.2 days

• Disk characteristics (J. Gray)

• Consequence: Random access (and indexing!)
only pays off, if a small percentage of the data is
accessed frequently
rule of thumb: less than 15 % on a large table

• Cost of indexing?

HS / DBS05-17-Phys 14

Technological Impact Disks

• Disk characteristics (2) (J. Gray)
• The Myth: seek time dominates
• The Reality: (1) Queuing dominates

(2) Transfer dominates BLOB
(3) Disk seeks often short

• Implication: many cheap servers
better than one fast expensive server
– shorter queues
– parallel transfer
– lower cost/access and cost/byte

• Gives rise to table and index partitioning Seek

Rotate

Transfer

Wait

8

HS / DBS05-17-Phys 15

Technology impact: I/O cost

• Accelerate secondary storage access

Strategies
Place blocks that are accessed together on same cylinder
(avoids seek time)
Divide data between smaller disks
(independent heads increase # block accesses)
Replicate data: simultaneous access to several blocks
Disk-scheduling algorithm: selects order of block access
Prefetch blocks in main memory

Disk architectures can enhance disk access
considerably

HS / DBS05-17-Phys 16

13.2.2 RAID storage
• RAID Technology

(Redundant Array of Inexpensive Disks)

– Goals
• Performance enhancement by reducing transfer time and

queue length
• Fault tolerance by "Parity disks"

Large disk:
Long queue,
Long transfer

1 2 3 4 5

6 7 8 …

Block striping,
no fault tolerance

(cited from http://www.raid.com)

Principle technique:
striping

Raid 0

9

HS / DBS05-17-Phys 17

Technology: RAID

RAID 0+1 High Data Transfer Performance

RAID 1 Mirroring and Duplexing: mirror without
stripping

A E B F C G D HA E B F C G D H= = = =

HS / DBS05-17-Phys 18

Technology: RAID

Each bit of data word is written to a data disk drive
(4 in this example: 0 to 3). Each data word has its
Hamming Code ECC word recorded on the ECC disks.
On Read, the ECC code verifies correct data or corrects
single disk errors.

RAID 2 Byte (Bit) level striping + error correcting disks

10

HS / DBS05-17-Phys 19

Physical Design: RAID

• RAID 3 Bit (Byte) level striping with parity

AP [1] = A[0] ⊗ A[1] ⊗ A[2] ⊗ A[3]

Data online reconstructable, when ONE disk fails

HS / DBS05-17-Phys 20

Physical Design: RAID
RAID 4 Independent Data disks with block striping and shared

Parity disk

RAID 5 Independent Data disks with distributed parity blocks

11

HS / DBS05-17-Phys 21

Technological Impact Disks

– RAID controller provides OS / DBS with standard disk
interface

– Considerable performance gains for read operations
– Writes need recomputation of parity

Main reason for parity disk bottleneck in RAID-4
architecture

– Further info: http://www.raid.com

HS / DBS05-17-Phys 22

13.3.1 Indexing in DBS
Index

– Optional data structure for fast access to data items
….in the DB

– Index Ia assigns to each value v of a the set of data
objects

– Locates the rows of a table having v as value of
attribute a in an efficient way

– May be extended to attribute / value sequences:
Iab…c::Vala,b,…,c -> POWERSET(D)

– Disk based data structure

Important

Ia:: Vala -> POWERSET(D)
Vala = set of values of attribute a
D = {d1, ... dn)} set of data objects

12

HS / DBS05-17-Phys 23

13.3.2 Primary and Secondary indexes
Primary (unique) index

– For each v ∈ Vala, there is at most one row r with r.a=v
i.e. | I(v) | § 1

– Typically used for indexing PRIMARY KEY or one UNIQUE column
– Important: Maps key values to physical locations

– Indexes on other attribute (sequences) are called secondary
keys, even if unique

47

107

212

531

...
More than one
key in a disk
block (page)

HS / DBS05-17-Phys 24

Secondary index
– In most cases not unique
– Example: Movie database

Movie (mId, title, category, ..., director,...)

action
...
comic
...

soap

23
37
18

...

19
21
...

11
28
59

....

mId
Logical view:
• Each value v of the

attribute a references
a list of tuples t
with t.a = v

cat

Goal of DBS implementor:
Find efficient data
structure for indexing
arbitrary data

Goal of DB designer:
Define index for database
Schema in order to
increase performance.
Use one of the imple-
mentations supplied by DBS

13

HS / DBS05-17-Phys 25

13.3.3 Types of indexes and index definition
CREATE INDEX

Most simple case
CREATE INDEX movie_idx1 ON Movie (cat);

CREATE INDEX customer_idx1 ON Customer (name, first_name);

CREATE INDEX customer_idx2 ON Customer(first_name,name);

Decision which indexes to create is an important task in
physical schema design

• Composite index is defined on multiple columns
• Different (search tree) indexes on the same

columns with different orders sometimes make
sense - e.g. abc and bca. Why?

HS / DBS05-17-Phys 26

Defining indexes
Why not index each attribute?

– Advantage: fast predicate evaluation
Select x from R where y = val

– Disadvantages: they are not for free
• Redundancy

- Space needed, can double the space needed for the DB
- Extrem case: all attributes are indexed: do we need rows at all?
- database = set of indexes, no tuples !?

• Operational cost in case of updates
– insertion / deletion / of a row: each attribute

effected by the operation has to be updated
(delete, insert: all attributes)

– each index write implies disk I/O – expensive!

14

13 Physical schema design
13.1 Introduction
13.2 Technology

13.2.1 Disk technology
13.2.2 RAID

13.3 Index structures in DBS
13.3.1 Indexing concept
13.3.2 Primary and Secondary indexes
13.3.3 Types of indexes and index definition in SQL
13.3.4 Implementing indexes: search trees
13.3.5 Criteria for indexing

13.4 More index structures
13.4.1 Clustered indexes
13.4.2 Implementation of rows and tables
13.4.3 B+ trees with data leafs
13.4.4 Bitmap indexes
13.4.5 Hash index and inversion
13.4.6 Case study ("Video store")

13.5 Multi dimensional indexes
Lit.: Kemper/Eickler: chap 7, O'Neill: chap. 8, Garcia-Molina et al: chap. 13

HS / DBS05-17-Phys 28

Types of indexes
• Hash Index

– Same as well known hash functions
h :: Val -> {0,…….n} ("map values to disk block numbers")

• Useful only for unique values (hash collisions!)
• No key sequential access to rows
• Reorganisation needed when size of table increases

considerably

• Bitmap Index
– Stores for each value v of field a and each row i

a bit b(v,i) -- true, if i has value v in field a
• Cluster Index

– Store "logically related data" in physical neighborhood
• Search Trees

??

15

HS / DBS05-17-Phys 29

13.3.4 Implementing indexes: search trees

Hierachical index trees (search trees)
– ISAM (Index sequential Access method)

• Index blocks for physical areas (cylinder, track, sector)
keep (lowVal – highVal) pairs for
each cylinder ("cylinder index"), track ("track index") etc.

• "sequential" since rows may be read in key sequence
• Outdated, has to be reorganized explicitly

K2K1 … Kn Index pages

Data pages

D2D1 … Di-1 Di Di+2Di+1 … Dn-1 Dn

...
...

P1 P2 Pn

Keys Ki, Data tuple Di, Pi pointer to data Dj: Ki-1< Dj.key ≤Ki

HS / DBS05-17-Phys 30

Index implentation: B-Tree

B+-Trees: the standard for most DBS *)
• like B-Trees, but inner nodes contain only keys and pointers
• Sequential key sequence access is possible
• "self-reorganizing" because of implementation of update

operations.

K..K1 … K..

K..K.. … K.. K..K.. … K.......

K..K.. … K....... K..K.. … K..

data pointer

) Sometimes called B -trees (Bayer- | Boeing-tree ?)

Important

Hierarchy
independent from
device charcteristics
like ISAM

16

HS / DBS05-17-Phys 31

Index implementation

B+-tree
• all leaves on the same level
• every node is a disk page
• inner nodes contain n-1

(separator) keys and n pointers
to nodes

• the search tree
invariant holds for
all (prt, key, ptr) –
tripels in inner node
and root

• all nodes below the
root are at least
50% filled

• leaf nodes contain
(keyval, rowid) pairs

Leafs are chained,
Why?

HS / DBS05-17-Phys 32

B+ -Trees

• Example:
– Degree 2 B+ Index Tree on Movie

222112 290 345

112

10095

...2.00Lucas
199
9SciFi

Star Wars
I345

...2.00Lucas
199
7ScFi

Star Wars
IV290

...2.20
Van
Sant

199
8

suspens
ePsycho222

... 1.50
Spielber
g

198
2comedyET112

...1.50
Spielber
g

197
5horrorJaws100

.....................

...2.00
Hitchcoc
k

196
0

suspens
ePsycho095

17

HS / DBS05-17-Phys 33

Data storage

• Heap storage
Storage area into which records stored in
"time sequence" not key sequence

…

key sequence

first record inserted, key n

n

ISAM: Sequential storage of data
B+ tree with row pointers: random placement of data

HS / DBS05-17-Phys 34

13.3.5 Criteria for physical schema design
Design parameters for physical schema

– Data volume:
• how many records and pages in a relation?
• how many leaves in the tree, how many inner node

Depends on
• The way, rows are stored in pages
• how pointers to rows ("tuple ids") are implemented
• how index pages are organized

– Typical load: which query / update types (the hardest
part!)

– Kind of Index
• B+ tree variants as a standard
• Clustering: storing related data in physical neighborhood

– Physical I/Os, if number of page access is the most important
cost measure

18

HS / DBS05-17-Phys 35

Physical schema design
Random versus sequential access: case study

– Typical task: read n random rows of table
– Index based access: for each record: read block

which contains one or more tuples
– Table scan: read all blocks sequentially and extract

the records ("on the fly")

Set interface

Record / stream interface
readIdxEntry, readRecord, …tableScan, IndexScan

data, Idx

Query
processing
architecture

HS / DBS05-17-Phys 36

Sequential versus direct access
Example:

table: 10000 pages (blocks) of 1 KB
task: read 200 records, each in a different block

– Read 200 records = read 200 pages = 200 * 12 msec
∼ 2 sec

– Table scan = sequential read of 10000*1KB = 10 MB
∼ 10 MB / 5 MB/sec = 2 sec

Block access time: 12 msec, Data transfer rate = 5
MB/sec

– read 600 records factor 3 in favour of scan
Sequential access more cost effective (in this case….)!

Question: how many blocks have to be read when reading n tuples?

19

HS / DBS05-17-Phys 37

13.4.1 Clustered indexes

Clustering – another way to increase performance
Cluster principle

– put related data into a group (a cluster)
• Clustering : a statistical technique

to group data with similar
features together.

• No statistics available during
DB design.
Goal: efficient access to
related ("clustered") data.

• Reasonable application pattern: Rows of a table
may be primarily accessed in value (key)
sequence of one attribute

v

HS / DBS05-17-Phys 38

Storage of Data Clustering

• Clustered Index
– The sequence of row-Ids in a leaf page is normally

different from the physical sequence of rows
⇒ Sequential index scan means random access to
rows

• Heap Storage, Index without clustering

...
Leaf nodes
(index)

Root

Rows

rowId pointers

20

HS / DBS05-17-Phys 39

Storage of Data Clustering

• Clustered index

– Controls physical placement of rows
– Obvious: only one cluster per table
– tuples which have value v in cluster attribute a are

stored in as few pages as possible

...

...

Not necessarily stored in cluster attribute sequence

HS / DBS05-17-Phys 40

Storage of Data Clustering

• Example
Big company with 1 Mill customers in 20 cities,
Frequent access to all customer records (100 B) in a

particular city:
SELECT name, location, street, no FROM customer
where location = :loc

VERY Rough estimate:
a) 50000 random access ~ 10*10-3*5*104 ~ 10 min
b) 25000 /(rows/4K-block) sequential reads

~ 25000/40 * 10*10-3 = 6250 msec ~ 6 sec
Warning: queuing and buffering neglected, gives only a

rough impression of the sequential / random ratio

21

HS / DBS05-17-Phys 41

Data Storage Clustering heterogenous records
• Clustering heterogenous objects (rows)

– Rows of different tables may be accessed frequently
together

– Estimate the "access correlation" between different
rows or tables.
What is the probability that row y in table A is accessed,
after row x in table A' has been accessed?

• Example: Video-movie DB
Access to a Movie record is often followed by an access to a tape
containing this movie.
Tape- and movie records with the same mId - value should be placed
in one block (page)

• Heterogeneous cluster: set of blocks which may contain
rows of more than one table

• More general notion for "cluster"
Be careful with different notions

HS / DBS05-17-Phys 42

Data Storage Clustering heterogenous records

• Example

• Clustered are defined by a common cluster key ck,
not necessarily primary key, but frequently ck is primary

key in one table, foreign key in another

Cluster Key
(mId)

10 title genre
Asterix comic

t# format ..
101 VKS
103 BETA
104 DVD

11 title genre
James Bond action

t# format ..
102 VKS
106 DVD

Tape(id format movieId ...
----- ------ ------

101 VHS 10
102 VHS 11
103 BETA 10
104 DVD 10
105 VHS 12
106 DVD 11

Movie(mid title genre
------ ------ ------

10 Asterix comic
11 James Bond action
....

Standard
space allocation
for tables

Clustered allocation

22

HS / DBS05-17-Phys 43

Data Storage Clustering heterogenous records

• Defining a cluster
– First create a cluster
Create Cluster videoDB.movieTape_clu
(mId NUMBER (6)) ;
Create Index idx on cluster videoDB.movieTape_clu;

– Create a cluster index: clusters are accessed primarily
through the cluster key

-> fast access by using an index
• B*-tree index
• Hash cluster (Oracle allows hash-index only for clusters)

– Finally create the tables in the cluster
CREATE TABLE Movie (....) CLUSTER
movieTape_clu(mId)

CREATE TABLE Tape (....) CLUSTER
movieTape_clu(movieId)

HS / DBS05-17-Phys 44

13.4.2 Implementation of rows and tables

222112 290 345

112

10095

Unique (primary) index

Nonunique (secondary) index :
more than one row for a key value

Remember…

23

HS / DBS05-17-Phys 45

Index implementation

Index entry

• Index entry header: number of columns, locks
• Key column length
• Key column value
• rowId (tupleId)

– Non-unique index – different implementations:
• (key length, key val) pair repeated for each rowId with this

key val (Oracle implementation)
• (key length, key val) [list-of rowid] entries (DB2)
• (key length, key val) [list of primary keys]

Example shows
concatenated index
(two columns)

HS / DBS05-17-Phys 46

Storage of data Rows and pages

What's in a row ID (tuple ID, TID)?
– Simplified view:

(Pagenumber, offset): physical pointers

header, row directory, variable length rows

free space

Disadvantage: uniform page address space -> large pagenumber

page layout

24

HS / DBS05-17-Phys 47

Storage of data Descreasing pointer size

Database

Physical

Tablespace Data file

O/S blockOracle
block

Segment

Extent

• Oracle's Storage hierarchy

Logical

OOOOOO FFF BBBBBB RRR: RowId:

Segment No, data file No (in table space) Block in file, row in block

legacy structure,
not really necessary

HS / DBS05-17-Phys 48

Storage of Data Anticipating growth

1. Initial loading and indexing
– May reserve freespace (PCTFREE) and used space

(PCTUSED) because...
– if pages were full:

small number
of insertion
would result
in many page
splits

25

HS / DBS05-17-Phys 49

13.4.3 Index tree with data leafs

B+-Tree index with data leaves
("Index organized tables" Oracle)

rows

Leaf of "index organized table" : row in leaf node instead of rowId

Key value

....

rowId

Leaf of a standard index: additional I/O to access row

Header

rowId rowId

Key value

HS / DBS05-17-Phys 50

Data Storage Index tree with data leafs
• Case study: inverted document index

– Note: index organization must be specified when
table is created – as opposed to standard table
organization

– Standard index on keyword would need more than
twice as much space … and would be inefficient

aliasing
and-
gate
....
C
compile
..
Z

...

Keyword list

CREATE TABLE Docindex

(keyword CHAR(20),
doc_id NUMBER,
frequency NUMBER,
CONSTRAINT Pk_docindex
PRIMARY KEY(keyword, doc_id)

)
ORGANIZATION INDEX TABLESPACE
Ind_tbs;

Logical view of
inverted document
index

26

HS / DBS05-17-Phys 51

Data Storage Index tree with data leafs
• Case study (cont.)

SELECT doc_id FROM docindex
WHERE keyword LIKE 'compile%' OR keyword LIKE
'parse%'

AND k_frequency LT 3 ;

– Processing
• Suppose 10 million entries, keywords 'compile' and

'parse' occur in 10000 documents each
• Standard index organization: 2 x 10000 row

(random!) page accesses 100 sec
• Read 10 Mill entries sequentially: 16 K pages, 40 B

per entry
400 / page 2,5* 104 pages to read sequentially

HS / DBS05-17-Phys 52

Index tree with data leafs
Compared to sequential read of leaf pages of the
B+ tree:

(2 x 10000)/ rows per page ~ 300 pages (assuming
4K pages, 75% filled, 40 B rows)

Secondary index on table may reduce processing time
for AND queries:
... keyword LIKE 'compile%' AND keyword LIKE
'parse%' ...
CREATE INDEX doc_id_idx ON docindex (doc_id,
keyword);

27

HS / DBS05-17-Phys 53

Data Storage Index tree with data leafs

Characteristics of index organized tables
– Only primary key index

– Secondary indexes
• No rowIds: Location of records may chance after split
• Use primary key as "pointer"

rowsKey value

....
Key value

....

HS / DBS05-17-Phys 54

Data Storage Index tree with data leafs

– Needs two index traversals (secondary and primary) to locate
the rows

– Possible optimization in case of few updates: use current
physical location as "rowId-guess".

– Space reduction, key value is not repeated in row data, no
pointer (rowID) in leaf pages

– Very good performance properties if key is long (e.g. several
attributes) and row is short to medium,
otherwise frequent splits

primKeyprimKey primKey

…

…

28

HS / DBS05-17-Phys 55

13.4.4 More on indexes

13.4.4 Bitmap Index
– Less space for

rowids, if few
different values
in a large table

<Blue, 10.0.3, 12.8.3, 1000100100010010100>

<Green, 10.0.3, 12.8.3, 0001010000100100000>

<Red, 10.0.3, 12.8.3, 0100000011000001001>

<Yellow, 10.0.3, 12.8.3, 0010001000001000010>

keykey
startstart
ROWIDROWID

endend
ROWIDROWID bitmapbitmap

Index

Block 10

Block 11

Block 12

File 3

Segment relative block, row, file

Table

HS / DBS05-17-Phys 56

Physical Schema More on indexes

• Operations on Bitmap indexes
– Efficient implementation of set operations
– Example:
SELECT x,y,z FROM people
WHERE (color = 'Blue' OR color = 'Red')
AND sex = 'm'

<Blue, 10.0.3, 12.8.3, 1000100100010010100>

<Red, 10.0.3, 12.8.3, 0100000011000001001>

<male 10.0.3, 12.8.3, 1010101001001001010>

<RESULT 1000100001000001000>

OR(
)

AND

29

HS / DBS05-17-Phys 57

More on indexes

• Bitmap versus regular indexes
– Advantage

• If few values and many rows e.g. sex, marital status,..
• Compression of bit lists saves space compared to standard idx
• Efficient processing of OR / AND queries

– Disadvantage
• Updates expensive.... Why?

– bitmaps must be locked during update (why?)
– all blocks (and all rows) in a segment have to be locked

• In comparison: one row is locked during update in a standard
B+-tree

CREATE BITMAP INDEX customer_bidx1 ON Customer
(sex)

TABLESPACE myTBS PCTFREE 10;

HS / DBS05-17-Phys 58

Physical Schema More on indexes
13.4.5 Hash index

– Advantage
• Efficient access, if inserts infrequent

– Disadvantages
• No sequential scan
• No dynamic increase of space

but reorganization
(position is a function of
initial size of hash table)

• Range queries inefficient
('22 < val <= 1000')

• Non unique index: retrieval
has to scan the whole rehash
chain – can be very long

⇒ Most DBS don't use hash as an alternative to B* trees

value v

Hash function h

30

HS / DBS05-17-Phys 59

13.4.6 Physical Schema Case study
• The E-Videoshop
CREATE TABLE Rents (
tapeId INTEGER,
cuNo INTEGER NOT NULL,
since DATE NOT NULL,
back DATE,
PRIMARY KEY (tapeId,since),
….);

CREATE TABLE Tape (

id INTEGER PRIMARY KEY,

acDate DATE,

format CHAR(5) NOT NULL,

movieId INTEGER NOT NULL UNIQUE

);

CREATE TABLE Movie (
mId INTEGER PRIMARY

KEY;
title VARCHAR(60) NOT

NULL,
category CHAR(10),
pricePDay DECIMAL(4,2),
director VARCHAR(30),
year DATE,

1 Mio Movies
5000000 Rents

3 Mio Tapes

Find a suitable
physical schema

HS / DBS05-17-Phys 60

Physical Schema Case study

Data volume
– Rents: ~ 20 B / row, ~100 MB -> 2,5 * 104 pages à

4KB
+ PCFREE = 30% -> 3,3 104 pages

High update frequency, high growth rate
– Tape: ~ 20 B / row, ~ 60 MB

-> 1,5 * 104 + 30% = 2*104 4 KB pages
Low update frequency, high read load, medium
growth

– Movie: ~ 100B / row (average), ~100 MB
-> 2,5 * 104 Pages + 30% = 3,3 * 104 pages
low update frequency, high read load, medium growth

– Extremely simplified: customer and other relations not
considered

31

HS / DBS05-17-Phys 61

Physical Schema Case study

• Typical operations
– Rent a tape: access customer (by name or id), access

tape (tape-id – is printed on the tape), access Movie
(mId) to get the price? Insert into Rents table
High frequency (10 / minute ?)

– Browse the movie table (category | director | year)
Very high frequency

– Query a specific title
Very high frequency

– Return a tape: access Rents table, access Movie
table to calculate the price, update Rents
High frequency

– Insert new rows into Movie and Tape table
low frequency (20 / day?)

HS / DBS05-17-Phys 62

13.5 Multidimensional indexing in a nutshell

• Interpretation of attributes as coordinates of
n-dimensional space
Example:

temp Co

y

x

tuple = point in n-dim space

Basic issues:
• preserve topology – neighbors in data space ->

neighbors in storage (index)
• density of objects in data space very different

Why not 1-dimensional indexes?

32

HS / DBS05-17-Phys 63

Query types
Query types:

exact match query: Q ≡ D1=a ∧ D2 = v ∧ ..
(point query) -- all dimensions specified

partial match query: Q ≡ D1=a ∧ D2 = v ∧ ..
-- k < n dimensions specified

range query: Q ≡ a1 <= D1 <= a2 ∧ v1 <= D <= v2 ∧ ..
-- find all records in a particular range

Nearest neighbor: Q(p) = { r | distance (p,r) = min}
-- find the record(s) with minimal

distance from p=(a1,a2,…,an)

HS / DBS05-17-Phys 64

Independent Hash functions
h(a1, a2,..an) = h1(a1') | h2(a2') | .. hn (an')

n = 2

Efficient for exact match queries,
but…
-not topology preserving
- partial match: inefficient
- range query, nearest neighbor: impossible

33

HS / DBS05-17-Phys 65

Grid File

Organize data space
- partion data space into non-overlapping

n-dimensional hyper cubes
- 1-dimensional scaling vectors for each dimension
- grid array

Data space

Scaling vectors
Grid array

Storage buckets

HS / DBS05-17-Phys 66

Grid File: Search and Insertion

• Search
determine each dimension of query in scale arrays

grid array entry (entries)
buckets with records

• Insert
locate bucket of record to be inserted

• if no more space
• either overflow bucket
• or refine partition by splitting blocks

34

HS / DBS05-17-Phys 67

R-Tree: Index structure for spatial objects

• Region trees: extension of B-trees to more than
one dimension

A B C

1 2,3 4,5,6

II
I II

..

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6

4

1,..6: leaf node entries, each "spatial" object is contained
in minimal bounding n-dim rectangle

HS / DBS05-17-Phys 68

R-Tree

Leaf nodes
contained in minimal bounding rectangle for the object
entry: ((x1,y1),(x2,y2), OID) -- 2-dim case

Directory nodes:
• m <= Number of entries <= M

entry ((x1,y1), (x2,y2),child-ptr)
all entries in subtree "child-prt" are contained in
rectangle (x1,y1), (x2,y2)

• All leaves have the same depth

35

See paper by Guttmann (1987) -> "Unterlagen")

HS / DBS05-17-Phys 70

Search: Example

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6

4

(0,0)

(120,110)

I: [(0,0) (100,90)] , [II: (90,70), (120,110)]

B: [(10,25),(40,45)], [A: (15,35), (55,85)], [C: [(10,50), (95,75)] …

3: [12,36)(20,40)], [2: [20,38), (40,45)] 1: [(15,40), (25,75)] …

Find point
p = (20,37)

36

HS / DBS05-17-Phys 71

Example (cont)

I: [(0,0) (100,90)] , [II: (90,70), (120,110)]

B: [(10,25),(40,45)], [A: (15,35), (55,85)], [C: [(10,50), (95,75)] …

3: [12,36)(20,40)], [2: [20,38), (40,45)] 1: [(15,40), (25,75)] …

root
Find point
p = (20,37)

Check each rectangle r in each leaf node which may contain
p if p ∈ r: 1, 2, 3 , 3 contains the point

HS / DBS05-17-Phys 72

R-Tree: Search algorithm
Point query: given p, find the leafs p could be in
Let entry = (dirRect,childPtr)
LeafSet RTreeTrav (pageId nodeID; point p){
LeafSet res = new LeafSet();
page n = READ(nodeID);
if (isLeaf(n)) res.union(n); //all obj.into res

while (n.hasNext()) { -- traverse entries
entry e = n.next(); -- of the node
if (contains(e.dirRect, p)

res.add(RTreeTrav (e.childPtr));
} return res;

}
How can directory entries overlap??

37

HS / DBS05-17-Phys 73

RTree: insertion

A B C

1 2,3 4,5,6

II
I II

...

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6
4

Where to put the red object?

Choose candidate with largest overlap
and extend it.

HS / DBS05-17-Phys 74

RTree: insertion

A B C

1 2,3 4,5,6

II
I II

c

-extension of rectangles may
be propagated towards root
(see 8)

7

dim1

dim2
A

B

1

23
41

I 1

…

C

5

6
4

7
7

- if leaf is full: split similar to B-tree

8

38

HS / DBS05-17-Phys 75

Multidimensional search

• Several refinements of basic RTree mechanism
– essential: controlling overlap
– shapes different from rectangles - e.g. general

polygons – could make sense
• Many more index structures for multidimensional

data
• Scalability problem: methods do not scale with

increasing dimensions
e.g. image retrieval: feature vector with >= 50 features ?

HS / DBS05-17-Phys 76

Summary
• Data stored on disk
• Access time crucial in query processing

– I/Os is THE cost measure
– Access Time: Seek time + Rotational time + Transfer

time
• Indexes accelerate access to secondary storage

– B+ tree is standard in most DBs
– Clustering: related data in physical neighborhood

• Great differences in physical organization in DBS
• Indexing not standardized

