12 Embedding SQL in Programming
languages

12.1 Introduction: using SQL from programs

12.2 Embedded SQL

12.2.1 Static and dynamic embedding

12.2.2 Cursors

12.2.3. ESQL/C

12.2. 4 Positioned Update

12.3 Transactions in application programs
12.3.1 Definition

12.3.2 Isolation levels

12.4 SQL and Java

12.4.1 JDBC

12.4.2 SQLJ Kemper/Eickler: chap. 4.19-4.23;
Melton: chap. 12,13,17-19, Widom, Uliman, Garcia-Molina: chapt.8

Christian Ullenboom Java ist auch eine Insel, Kap. 20, Galileo Comp.

Using SQL from Programs Introduction

Overview of language / DB integration concepts
— "Fourth Generation Languages”
— Module Language --> PSM (~ PL/SQL, PLpgSQL)
« Standardized in SQL-99
Interface of standard programming languages
« Call level interface, proprietary library routines, API
Standardized: SQL CLI Open Database connection (ODBC),
* Embedded C/Java/ ..
Standardized language extensions
« Standardized API
Java DBC "Fourth generation Language"
Stored Procedures
* C/Java/Perl/Python,
— Component architectures: hiding the details of DB interaction,
Enterprise Java Beans (EJB)

HS / DBS05-15-ProgLang 4

Using SQL from Programs Introduction

+ SQL is a data sublanguage

* Needs a host language
— Control structures
— User interface: output formatting, forms
— Transactions: more than one DB interaction as a unit
of work
* Issues
— Language mismatch ("impedance mismatch")
« Set oriented operations versus manipulation of individuals
« How to interconnect program variables and e.g attributes
in SQL statements?
« Should an SQL-statement as part of a program be compiled,
when?
» Question: could you imagine a language bringing both

worlds together? HS / DBS05-15-ProgLang 2

SQL from Programs "4. Generation Languages"

 Proprietary "Fourth generation language (4GL)"
« Underlying assumption:
— most application programs are algorithmically simple
— sophisticated output formatting needed

— it should be difficult for users to switch from one DBS to
another

« Technical concept

——» DBS

Proprietary protocol
« Client evolved from simple Terminal to 4GL-Interpreter

* Open systems movement and HTTP / HTML / Java makes
4GL less important

HS / DBS05-15-ProgLang 5

Three-tier architecture (example)

GUI client Web Web

browser browser

AN X

Middleware layer » Middle tfier

DB Application DB Application
File System \
/ \

/ A v
| DB-server | [DB-Server

HS / DBS05-15-ProgLang 3

DB clienu

Using SQL from Programs Modules

» Standardization efforts (SQL 89 / SQL-99)
Modules and Embedded SQL
— SQL Modules

» Separate parameterized Modules of SQL
statements

» Compiled for a particular language (e.g. COBOL,
C,ADA..)

« Linked to application program (statically?)
+ Disadvantage

— SQL code hidden in application and vice versa
— Not widely used

» Superseded by flexible stored procedure concept

HS / DBS05-15-ProgLang 6

Using SQL from Programs Call interface

» Call level interface

— Language and DBS specific library of procedures to
access the DB

— Example: MySQL C API
« Communication buffer for transfering commands and results
» API data types like

MYSQL handle for db connections

MYSQL RES structure which represents result set

API functions

mysql_real query ()

mysql_real query (MYSQL *mysql, const char *

query, unsigned int length)

query of length of character string in buffer

and many more....

— Standard : Open Database Connection (ODBC)

— Predecessor of Java Database Connection (JDBC),
see below

HS / DBS05-15-ProgLang 7

12.2 Embedded SQL

+ Embedded SQL - the most important(?) approach
— Concepts

« Program consists of "native" and SQL-like
statements

Precompiler compiles it to native code, includes calls to DBS
resources

Employs call level interface in most implementations
Most popular: Embedded C (Oracle: PRO*C)

Precompiler Native | Compiler| it
ESQL Language co“da

code

Excecu-
table

« SQLJ = Embedded Java Library

HS / DBS05-15-ProgLang 10

SQL Call level interface (SQL/CLI)

» Standardized Interface to C / C++ defined by
X/OPEN and SQL Accesss group

* Main advantages
— DBS-independent

— Application development independent from DBS
(as opposed to Embedded SQL precompiler
approach, see below)

— Easy to connect to multiple DB

* Microsoft implementation
ODBC (= Open Database Connectivity) de facto
standard, available not only for MS products

HS / DBS05-15-ProgLang 8

Embedded SQL (ESQL) Syntax and more

« Well defined type mapping (for different languages)

* Exception handling (WHENEVER condition action)
SQLSTATE, SQLCODE (deprecated)

« Syntax for embedded SQL statements

. . . like SQLJ
« Binding to host language variables /

#sql {SELECT m# FROM M

WHERE titel = :titleString};}...
#sql {FETCH ...INTO :varl}

HS / DBS05-15-ProgLang 11

Abocate s Hrement
BOLARGcHanSa()
Main cycle of I 1
transaction o o—
execution with e saL.
ior ety
SQL/CLI :
Emstute & Slatermet
SOLE mmcutn{)

Calls are
embedded
) L P r—
in the application escr wnues GEnTE DRCTE, Ao P,
prog ram HOR PamilasnComn) SOLASwCoural) (R hunctons radguinsd)

SO DwscrtaiCok)

B Colnemted
See also aiatian
JDBC , ESQL + BaUsa

aﬂm-,m-u-u
source: i
IBM DB2 manual L e

L e R N |
SOLErThand SOLFreoHarSed)

Bt

ESQL

» C/Java embedding

- ESQL/C
EXEC SQL UPDATE staff SET job = 'Clerk'
WHERE job = 'Mgr';
if (SQLCODE < 0 printf("Update Error: ...);
- SQLJ
try { #sqgl { UPDATE staff SET job = 'Clerk’

WHERE job = 'Mgr' }; }
catch (SQLException e)
{ println("Update Error: SQLCODE = " + ...);

HS / DBS05-15-ProgLang 12

ESQL code generation

-

Code generated

basically at Sprce Fias eanes

compile time. fJ I - H

DBS and DB : T]
T e
known before I L} _vL l
runtime in order T

to generate l] |
executables

from: o g‘
DB2 manual | Oatabass Managar Packags {Packaga)

lLang 13

ESQL Cursors

« Explicit cursors: Declared and named by the programmer
— Sometimes implicit cursors for individual SQL statements are
used in 4GL
« Cursor
— assigns a name to an SQL statement.
Cursor / SQL statement do not bind the result attributes to
variables
— allows to traverse the result set (the "active set") row by row
Declare curs for Select c#, lname, m.title
from C, R, M where

" Active set
7369 SMITH Tobeor..

Cursor curs Current row

7876 ADAMS Forest Gump
7902 FORD Star Wars |

HS / DBS05-15-ProgLang 16

12.2.1 ESQL Static / dynamic embedding

Static versus dynamic SQL:

— Static: all SQL commands are known in advance,
SQL-compilation and language binding at
precompile time

— Dynamic
(i) SQL-String executed by DBS:
Operator tree, optimization, code binding....
(i) SQL-String prepared (compiled) at runtime.
Performance gain in loops etc.

HS / DBS05-15-ProgLang 14

ESQL Cursors

» Controlling a cursor: the necessary steps

DECLARE L—. OPEN

Load the Test for Release the
current row existing active set

Create a Identify the
named active set

SQL area into rows
variables

I

Executes the query

HS / DBS05-15-ProgLang 17

12.2.2 ESQL Cursors

Cursor concept
— How to process a result set one tuple after the other?
— CURSOR: name of an SQL statement and a handle for
processing the result set record by record
— Cursor is defined, opened at runtime (= SQL-statement is
excecuted) and used for FETCHing single result records

ESQL Cursors

DECLARE cC .. c
Cursor concept

used in most

DBS language embeddings

of SQL (ESQL-C,
PL/SQL, JDBC and more)

OPEN c

FETCH c E

Buffers for application program cursors
DBS may determine result set in a lazy
or eager way HS / DBS05-15-ProgLang 15

* Opening ‘OPEN cursor_name; I

In a compiled language environment (e.g. embedded C):
« bind input variables
« execute query
« put (first) results into communication (context) area
* no exception if result is empty
has to be checked when fetching the results
« positions the cursor before the first row of the
result set (" —1")

First steps in an interpreted language (e.g. 4GL PL/SQL) :
« allocate context area
*+ parse query

HS / DBS05-15-ProgLang 18

ESQL Cursors
« Fetch

‘ FETCH curs INTO :x, :nameVar, :titleVar; I
Cursor scrolling (Declare ¢ SCROLL cursor.. in SQL 92):

FETCH [NEXT | PRIOR | FIRST | LAST |
[ABSOLUTE | RELATIVE expression] |
FROM cursor INTO target-variables

‘FETCH curs PRIOR INTO :x, :nameVar, :titleVar; I

‘FETCH curs RELATIVE -1 INTO :x, :nameVar, :titleVar; I

Single row SELECT does not need a FETCH but result is
bound to variables: SELECT a,b FROM... INTO :x,.y WHERE

HS / DBS05-15-ProgLang 19

ESQL Exception handling

« Exception handling

void sql_error (msg)
char *msg;
{

char buf[500];

int buflen, msglen;

EXEC SQL WHENEVER
SQLERROR CONTINUE;

EXEC SQL ROLLBACK WORK
RELEASE;

buflen = sizeof (buf);
sqlglm(buf, &buflen, &msglen);
printf ("$s\n", msg);

printf ("$*.s\n", msglen, buf);
exit(l); HS / DBS05-15-ProgLang 22

12.2.3 ESQL

#include <stdio.h> main ()
{ emp_number = 7499;

/* handle errors */
EXEC SQL WHENEVER SQLERROR
do sql_error("Oracle error");

/* declare host variables
*/

char userid[12] =
"ABEL/xyz"; /* connect to Oracle */
EXEC SQL CONNECT :userid;
printf ("Connected.Snl) ;

char emp_name[10];
int emp_number;

int dept_number; Establish DB
" /* declare a cursor */connection

EXEC SQL DECLARE emp_cursor
CURSOR FOR
SELECT ename

char temp[32];
void sql_error();

/* include the SQL

FROM emp
WHERE deptno =
:dept_number;
HS / DBS05-15-ProgLang 20

Communications Are
*/ #include <sqglca.h>

ESQL Exception handling

EXEC SQL WHENEVER SQLERROR GOTO sql_error ;

sql_error:
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;

Without the WHENEVER SQLERROR CONTINUE statement,

a ROLLBACK error would invoke the routine again, starting an
infinite loop.

HS / DBS05-15-ProglLang 23

ESQL Example: Embedded C

printf ("Department number? ");
gets (temp) ;

dept_number = atoi (temp);

/* open the cursor and identify the active
set */

EXEC SQL OPEN emp_cursor; ..

/* fetch and process data in a loop
exit when no more data */
EXEC SQL WHENEVER NOT FOUND DO break;
while (1)

{EXEC SQL FETCH emp_cursor INTO
emp_name;
} Close cursor before another SQ|

tatement is executed
EXEC SQL CLOSE emp_cursor; /s

EXEC SQL COMMIT WORK RELEASE
exit(0); }

HS / DBS05-15-ProglLang 21

12.2.4 Positioned Update

* Update / Delete statements in general use search
predicates to determine the rows to be updated
Update M
set price Day = price_Day+l where price Day <= 1

» Often useful: step through a set of rows and update
some of them = positioned update
DECLARE myCurs FOR SELECT ppd, title FROM M
FOR UPDATE ON ppd
UPDATE M SET ppd = ppd + 1
WHERE CURRENT OF myCurs /* delete in a
I /*similar way
Caveat: Use the capabilities of SQL!
It would be stupid to check a predicate on a row
within the FETCH loop and then update the row.

* Acursor may declared FOR READ ONLY (which basically results in
some performance gains) o-ane

ESQL Cursor sensitivity

Which state has the database during processing?

EXEC SQL DECLARE myCurs FOR SELECT price Day, title
FROM M FOR UPDATE ON price_Day
WHERE price Day < 2
EXEC SQL OPEN. ..

EXEC SQL FETCH myCurs INTO
UPDATE M SET price Day = price_Day + 2
WHERE CURRENT OF myCurs /* similar for
/* delete

Is the row under the cursor still in the result set?
Yes and No !

» A cursor declared INSENSITIVE does not make visible any
changes (update, delete) until the cursor is closed and
reopened.

HS / DBS05-15-ProgLang 25

Transaction semantics

Transactional semantics means:

DBS guarantees certain executional properties

= "All or nothing" semantics ATOMICITY

— All effects are made permanent at COMMIT, not before .
TA has no effect after ROLLBACK
» "Now and forever"
— DBS guarantees the effects after COMMIT has
» "Solve concurrency conflicts”
— Conflict resolution of concurrent operations on DB
« "Keep consistent DB consistent”

been processed successfully
— Preservation of integrity
HS / DBS05-15-ProgLang 28

12.3 Transactions in application programs

12.3.1 Definition
— Sequence of operations on DB which form a "unit of work"

— Example: Bank account transfer ("debit / credit') :

read (accl); read (acc2);
accl=accl-amount ; acc2 = acc2+ amount;

write (accl); write (acc2);
— System must guarantee "correct execution”
— "Dependable system"

dependable: verlasslich, betriebssicher, zuverlassig
HS / DBS05-15-ProgLang 26

Transactions

» How does DB System guarantee the properties?
= Implementation of DBS
» Application programming with transaction

— Syntactically mark unit of work:
START TRANSACTION COMMIT;

or:
START TRANSACTION
IF (everyThingOK) COMMIT
ELSE ROLLBACK; ENDIF — no effect
— exception handling if application commits but
DBS cannot guarantee
— Isolation levels

HS / DBS05-15-ProglLang 29

Transaction braces

TA Syntax :
Every operation on DB between the beginning of the
sequence of operations and a

COMMIT WORK or

ROLLBACK WORK

No explicit "transaction begin" command needed
..OPEN MyCurs;........ ; COMMIT; OPEN ...

! ! N
Beginning of first TA

(first SQL command in program) end of first TA, beginning of next TA

But SQL-3: START TRANSACTION, Postgres: BEGIN

HS / DBS05-15-ProglLang 27

12.3.2 Isolation

» Important task of transaction manager:
isolate concurrent users from each other

SELECT balance INTO :myVar
FROM account

WHERE acc# = :myAcc;

If myVar + dispo - amount >=0 || FROM account
UPDATE account SET GROUP BY owner;

SELECT SUM(balance) ,owner

balance = myVar - amount COMMIT;
WHERE acc# = :myAcc; DBS_OUT)PUT.PutLine(...);
Call ATM pay out;
ENDIF;
COMMIT ; \

concurrent execution in independent DB sessions

Conflict? Not a big deal in this case,
but may be SUM is incorrect. ~ HS/P8So15Progtang 30

Isolation

Worst case: lost update

T1: progVar« read(x); progVar++; write (x < progVar)

1 3 4)
Py Concurrent Execution

5 6
T2: progVar « read(x); progVar++; write (x < progVar)

Read of T1 and T2: x=7; Increment by T1: x== 8, increment by t2: x==8

Lost update: two independent updaters update the
same object. Conflict may result in a wrong value!
Updates is lost!

Not allowed in any serious multiuser DBS

HS / DBS05-15-ProgLang 31

Setting isolation levels

SET TRANSACTION <mode> [,<mode>], "
<mode> = <access mode> |
[ISOLATION LEVEL] <isolation> |
DIAGNOSTIC SIZE <simple_value>

<access mode > = READ ONLY | READ WRITE
<isolation> = READ UNCOMMITTED |

| READ COMMITTED

| REPEATABLE READ

| SERIALIZABLE
Diagnostic: area for details about exceptions, only for ESQL
Different default modes: READ UNCOMMITTED = READ ONLY

else READ WRITE

HS / DBS05-15-ProgLang 34

Isolation levels : control behaviour of transaction

— No problem at all if only READs
— How much isolation does a TA need?

« Application dependent: is it acceptable that
the balance per customer does not reflect
the correct balances of her account?

— read / write ratio?

— What is the conflict probability ?

Isolation level:

The kind of conflicts a program is willing to accept

|The more isolation the less parallelism |

HS / DBS05-15-ProglLang 32

Transactions in application programs

READ COMMITTED ("cursor stability")
» No uncommitted update can be seen by any application
« But TA might see different states of the same object

TA2 : R (@), X=X+, .. euuvnennnnnnn R(b); x:=x+b;...

TALl : W(b+10) ; W(a-10) ;COMMIT;

Value of program variablel x does not reflect DB state
because READ is not REPEATABLE

— Conflicts typically solved by locks ("2-phase locking")
— If "Read committed" but no "repeatable read" required :
read-only transaction need only short read locks
= higher parallelism

HS / DBS05-15-ProgLang 35

Transactions in application programs

* |solation Levels
Suppose TA1 decreases the prices of some movies in the
movie DB by 5%
TAZ2 scrolls through all movies

* Question: does TA2 "see" the new values before TA1
commits?

READ UNCOMMITTED
« Yes: updates of TA1 are immediately visible
but only if TA2 has isolation level read uncommitted
SET TRANSACTION READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED
— Lowest locking overhead, but unpleasant effects may
happen (Examples?)

= READ COMMITTED in Postgres

HS / DBS05-15-ProgLang 33

Transactions in application programs

* Isolation levels (4)
REPEATABLE READ

« all read / write conflicts prevented, reads repeatable
Lock synchronization: all locks held until end of TA

but
TA2 : R(a), x=x+a...........c.... R(b), x:=x+b, ...
TALl : Insert(z); Commit;
-- TA2: SUM of attribut of relation S,
-- TAl: inserts a row into S
Unpleasant effect: Phantom records
SERIALIZABLE

* repeatable read + phantoms avoided

HS / DBS05-15-ProglLang 36

Transactions

Isolation levels
— first statement within TA
— Be careful with default modes
SET TRANSACTION READ WRITE;
SET TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED ;
TA has default access mode of last SET
i.e. READ ONLY (!)

+ Read uncommitted dangerous: may cause inconsistencies
» Read committed is the default in some systems (e.g. Oracle)

« Serializable important for high frequent short transactions with
many potential conflicts.

+ AUTOCOMMIT-mode: implicit COMMIT after each SQL-statement

HS / DBS05-15-ProgLang 37

SAVEPOINTS

» Rollback can be expensive in long TAs
» Use SAVEPOINTSs to limit work to be redone

) operations on DB | more operations on DB) X
T T '
TA begin SAVEPOINT s UNDO everything commit ‘safe’
after s operations

HS / DBS05-15-ProgLang 40

Transaction Rollback / abort

ROLLBACK
— SQL statement like COMMIT
— "backout" of TA, not any effect on the DB
"all-or-nothing semantics”
— application programmer decides on rollback

Abort
— System Kkills transaction
— system failure = user session is aborted => system
recovery
— transaction rollback caused by internal state
(e.g. deadlock)
— Recovery of TA by system, of application process

control flow by programmer.
Important: handling of DB exceptions

HS / DBS05-15-ProgLang 38

Transaction in applications

* Never have user interaction within a TA
» Resources will be blocked for long time — bad!

EXEC SQL SELECT price, quantity into :price, :qgoh...

while (TRUE) {
printf ("We have %d units... of %d each \n", goh, price)

printf ("How many... ",...) /* check correct input
/* and exit loop

}
if (goh >= numberOrdered) {

EXEC SQL UPDATE products set quantity =
} else ... Bad design: resource blocking
EXEC SQL COMMITT; time depends on user

» How does a better program design look like?

HS / DBS05-15-ProgLang 41

Deadlock abort detection (Embedd. SQL)

#define DEADL ABORT -60 /* ORA specific
#define TRUE 1
EXEC SQL sql WHENEVER sglerror CONTINUE;
int count = 0;
while (TRUE) {
EXEC SQL UPDATE customers
set discnt = 1.1*discnt WHERE city ='Berlin';
if (sqlca.sqlcode == DEAD_ABORT) {
count++;
if (count < 4) {
exec sgl ROLLBACK;
} else break;
else if (sqglca.sglcode <0) break;
}if (sglca.sqglcode < 0) {
print_dberror() ;

exec sqgl rollback; /* application: go back to start of
this
return -1 /* transaction

HS / DBS05-15-ProgLang 39

} return 0;

