
1

12 Embedding SQL in Programming 12 Embedding SQL in Programming
languageslanguages

12.1 Introduction: using SQL from programs
12.2 Embedded SQL
12.2.1 Static and dynamic embedding
12.2.2 Cursors
12.2. 3. ESQL / C
12.2. 4 Positioned Update

12.3 Transactions in application programs
12.3.1 Definition
12.3.2 Isolation levels

12.4 SQL and Java
12.4.1 JDBC
12.4.2 SQLJ Kemper / Eickler: chap. 4.19-4.23;

Melton: chap. 12,13,17-19, Widom, Ullman, Garcia-Molina: chapt.8

Christian Ullenboom Java ist auch eine Insel, Kap. 20, Galileo Comp.

HS / DBS05-15-ProgLang 2

UsingUsing SQL SQL fromfrom ProgramsPrograms IntroductionIntroduction
• SQL is a data sublanguage
• Needs a host language

– Control structures
– User interface: output formatting, forms
– Transactions: more than one DB interaction as a unit

of work
• Issues

– Language mismatch ("impedance mismatch")
• Set oriented operations versus manipulation of individuals
• How to interconnect program variables and e.g attributes

in SQL statements?
• Should an SQL-statement as part of a program be compiled,

when?
• Question: could you imagine a language bringing both

worlds together?

2

HS / DBS05-15-ProgLang 3

ThreeThree--tiertier architecturearchitecture ((exampleexample))

GUI client Web
browser

Web
browser

DB client

Web Server

DB Application DB Application

DB-Server DB-Server DB-Server

Middleware layer Middle tier

File System

HS / DBS05-15-ProgLang 4

UsingUsing SQL SQL fromfrom ProgramsPrograms IntroductionIntroduction
Overview of language / DB integration concepts

– "Fourth Generation Languages"
– Module Language --> PSM (~ PL/SQL, PLpgSQL)

• Standardized in SQL-99
– Interface of standard programming languages

• Call level interface, proprietary library routines, API
Standardized: SQL CLI Open Database connection (ODBC),

• Embedded C / Java / ..
Standardized language extensions

• Standardized API
Java DBC "Fourth generation Language"

– Stored Procedures
• C / Java / Perl / Python,

– Component architectures: hiding the details of DB interaction,
Enterprise Java Beans (EJB)

3

HS / DBS05-15-ProgLang 5

SQL SQL fromfrom ProgramsPrograms ""4. Generation 4. Generation LanguagesLanguages""

• Proprietary "Fourth generation language (4GL)"
• Underlying assumption:

– most application programs are algorithmically simple
– sophisticated output formatting needed
– it should be difficult for users to switch from one DBS to

another
• Technical concept

• Client evolved from simple Terminal to 4GL-Interpreter
• Open systems movement and HTTP / HTML / Java makes

4GL less important

Client DBS

Proprietary protocol

HS / DBS05-15-ProgLang 6

UsingUsing SQL SQL fromfrom ProgramsPrograms ModulesModules

• Standardization efforts (SQL 89 / SQL–99)
Modules and Embedded SQL
– SQL Modules

• Separate parameterized Modules of SQL
statements

• Compiled for a particular language (e.g. COBOL,
C, ADA...)

• Linked to application program (statically?)
• Disadvantage

– SQL code hidden in application and vice versa
– Not widely used

• Superseded by flexible stored procedure concept

4

HS / DBS05-15-ProgLang 7

UsingUsing SQL SQL fromfrom ProgramsPrograms CallCall interfaceinterface
• Call level interface

– Language and DBS specific library of procedures to
access the DB

– Example: MySQL C API
• Communication buffer for transfering commands and results
• API data types like
MYSQL handle for db connections
MYSQL_RES structure which represents result set

• API functions
mysql_real_query()
mysql_real_query (MYSQL *mysql, const char *
query, unsigned int length)
query of length of character string in buffer
and many more....

– Standard : Open Database Connection (ODBC)
– Predecessor of Java Database Connection (JDBC),

see below

HS / DBS05-15-ProgLang 8

SQL Call level interface (SQL/CLI) SQL Call level interface (SQL/CLI)

• Standardized Interface to C / C++ defined by
X/OPEN and SQL Accesss group

• Main advantages
– DBS-independent
– Application development independent from DBS

(as opposed to Embedded SQL precompiler
approach, see below)

– Easy to connect to multiple DB
• Microsoft implementation

ODBC (= Open Database Connectivity) de facto
standard, available not only for MS products

5

Main cycle of
transaction
execution with
SQL/CLI

Calls are
embedded
in the application
program

See also
JDBC , ESQL

source:
IBM DB2 manual

HS / DBS05-15-ProgLang 10

12.2 12.2 EmbeddedEmbedded SQLSQL

• Embedded SQL – the most important(?) approach
– Concepts

• Program consists of "native" and SQL-like
statements

• Precompiler compiles it to native code, includes calls to DBS
resources

• Employs call level interface in most implementations
• Most popular: Embedded C (Oracle: PRO*C)

• SQLJ = Embedded Java

ESQL
Native

Language
code

Precompiler Object
code

Compiler

Library

Excecu-
table

Linker

6

HS / DBS05-15-ProgLang 11

EmbeddedEmbedded SQL (ESQL)SQL (ESQL) Syntax and Syntax and moremore
• Well defined type mapping (for different languages)

• Exception handling (WHENEVER condition action)
SQLSTATE, SQLCODE (deprecated)

• Syntax for embedded SQL statements

• Binding to host language variables
#sql {SELECT m# FROM M

WHERE titel = :titleString};}...
#sql {FETCH ...INTO :var1}

hypothetical syntax,
like SQLJ

HS / DBS05-15-ProgLang 12

ESQLESQL
• C / Java embedding

– ESQL/C

– SQLJ

EXEC SQL UPDATE staff SET job = 'Clerk'
WHERE job = 'Mgr';

if (SQLCODE < 0 printf("Update Error: ...);

try { #sql { UPDATE staff SET job = 'Clerk'
WHERE job = 'Mgr' }; }

catch (SQLException e)
{ println("Update Error: SQLCODE = " + ...);

7

HS / DBS05-15-ProgLang 13

ESQL code generationESQL code generation

Code generated
basically at
compile time.

DBS and DB
must be
known before
runtime in order
to generate
executables

from:
DB2 manual

HS / DBS05-15-ProgLang 14

12.2.1 ESQL 12.2.1 ESQL StaticStatic / / dynamicdynamic embeddingembedding

Static versus dynamic SQL:

– Static: all SQL commands are known in advance,
SQL-compilation and language binding at
precompile time

– Dynamic
(i) SQL-String executed by DBS:

Operator tree, optimization, code binding....
(ii) SQL-String prepared (compiled) at runtime.

Performance gain in loops etc.

8

HS / DBS05-15-ProgLang 15

12.2.2 ESQL12.2.2 ESQL CursorsCursors

Cursor concept
– How to process a result set one tuple after the other?
– CURSOR: name of an SQL statement and a handle for

processing the result set record by record
– Cursor is defined, opened at runtime (= SQL-statement is

excecuted) and used for FETCHing single result records

OPEN c

FETCH c
DBS

Buffers for application program cursors
DBS may determine result set in a lazy

or eager way

cDECLARE c .. Cursor concept
used in most
language embeddings
of SQL (ESQL-C,
PL/SQL, JDBC and more)

HS / DBS05-15-ProgLang 16

ESQLESQL CursorsCursors
• Explicit cursors: Declared and named by the programmer

– Sometimes implicit cursors for individual SQL statements are
used in 4GL

• Cursor
– assigns a name to an SQL statement.

Cursor / SQL statement do not bind the result attributes to
variables

– allows to traverse the result set (the "active set") row by row

Active setActive set

Current rowCurrent rowCursor curs

7369 SMITH To be or ..
7566 JONES Metropolis
7788 SCOTT Forest Gump
7876 ADAMS Forest Gump
7902 FORD Star Wars I

Declare curs for Select c#, lname, m.title
from C, R, M where

9

HS / DBS05-15-ProgLang 17

ESQLESQL CursorsCursors

• Controlling a cursor: the necessary steps

•• Identify the Identify the
active setactive set

OPENOPENOPEN

NoNo

•• Load the Load the
current row current row
into into
variablesvariables

FETCHFETCHFETCH

•• Test for Test for
existing existing
rowsrows

EMPTY?EMPTY?

•• Release the Release the
active setactive set

CLOSECLOSECLOSE
YesYes

•• Create a Create a
named named
SQL areaSQL area

DECLAREDECLAREDECLARE

Executes the query

HS / DBS05-15-ProgLang 18

ESQLESQL CursorsCursors

• Opening OPEN cursor_name;OPEN cursor_name;

In a compiled language environment (e.g. embedded C):
• bind input variables
• execute query
• put (first) results into communication (context) area
• no exception if result is empty

has to be checked when fetching the results
• positions the cursor before the first row of the
result set (" –1 ")

First steps in an interpreted language (e.g. 4GL PL/SQL) :
• allocate context area
• parse query

10

HS / DBS05-15-ProgLang 19

ESQLESQL CursorsCursors

• Fetch
FETCH curs INTO :x, :nameVar, :titleVar;FETCH curs INTO FETCH curs INTO :x:x, , ::nameVarnameVar, :, :titleVartitleVar;;

Cursor scrolling (Declare c SCROLL cursor.. in SQL 92):

FETCH [NEXT | PRIOR | FIRST | LAST |
[ABSOLUTE | RELATIVE expression]]

FROM cursor INTO target-variables

FETCH curs PRIOR INTO :x, :nameVar, :titleVar;FETCH curs FETCH curs PRIOR PRIOR INTO INTO :x:x, , ::nameVarnameVar, :, :titleVartitleVar;;

FETCH curs RELATIVE –1 INTO :x, :nameVar, :titleVar;FETCH curs FETCH curs RELATIVE RELATIVE ––1 1 INTO INTO :x:x, , ::nameVarnameVar, :, :titleVartitleVar;;

=

Single row SELECT does not need a FETCH but result is
bound to variables: SELECT a,b FROM... INTO :x,:y WHERE

HS / DBS05-15-ProgLang 20

12.2.3 ESQL12.2.3 ESQL
#include <#include <stdio.hstdio.h> >

/* declare host variables /* declare host variables

*/ */

char userid[12] = char userid[12] =

""ABELABEL//xyzxyz";";

char emp_name[10];char emp_name[10];

intint emp_numberemp_number;;

intint dept_number; dept_number;

char temp[32];char temp[32];

void void sql_errorsql_error();();

/* include the SQL /* include the SQL

Communications AreCommunications Are

/ #include </ #include <sqlca.hsqlca.h> >

main() main()

{ { emp_numberemp_number = 7499;= 7499;

/* handle errors */ /* handle errors */

EXEC SQL EXEC SQL WHENEVER SQLERRORWHENEVER SQLERROR

do do sql_error("Oraclesql_error("Oracle error");error");

/* connect to Oracle */ /* connect to Oracle */

EXEC SQL EXEC SQL CONNECTCONNECT ::useriduserid; ;

printf("Connected.printf("Connected.\\nn"); ");

/* declare a cursor */ /* declare a cursor */

EXEC SQL EXEC SQL DECLARE DECLARE emp_cursoremp_cursor

CURSOR FOR CURSOR FOR

SELECT SELECT enameename

FROM FROM empemp

WHERE WHERE deptnodeptno = =

:dept_number; :dept_number;

Establish DB
connection

11

HS / DBS05-15-ProgLang 21

ESQLESQL ExampleExample: : EmbeddedEmbedded CC
printf("Departmentprintf("Department number? "); number? ");

gets(temp);gets(temp);

dept_number = dept_number = atoi(tempatoi(temp););

/* open the cursor and identify the active /* open the cursor and identify the active
set */ set */

EXEC SQL OPEN EXEC SQL OPEN emp_cursoremp_cursor; …; …

/* fetch and process data in a loop/* fetch and process data in a loop

exit when no more data */exit when no more data */

EXEC SQL WHENEVER NOT FOUND EXEC SQL WHENEVER NOT FOUND DODO break;break;

while (1) while (1)

{EXEC SQL FETCH {EXEC SQL FETCH emp_cursoremp_cursor INTO INTO
::emp_nameemp_name; ..; ..

} }

EXEC SQL CLOSE EXEC SQL CLOSE emp_cursoremp_cursor; ;

EXEC SQL COMMIT WORK RELEASE; EXEC SQL COMMIT WORK RELEASE;

exit(0); }exit(0); }

Close cursor before another SQL
statement is executed

HS / DBS05-15-ProgLang 22

ESQLESQL ExceptionException handlinghandling

• Exception handling
void void sql_error(msgsql_error(msg))

char *char *msgmsg;;

{{

char buf[500];char buf[500];

intint buflenbuflen, , msglenmsglen;;

EXEC SQL EXEC SQL WHENEVER
SQLERROR CONTINUE;

EXEC SQL ROLLBACK WORK
RELEASE;

buflenbuflen = = sizeofsizeof ((bufbuf););

sqlglm(bufsqlglm(buf, &, &buflenbuflen, &, &msglenmsglen););

printf("%sprintf("%s\\nn", ", msgmsg););

printfprintf("%*.s("%*.s\\n", n", msglenmsglen, , bufbuf););

exit(1); exit(1);

}}

12

HS / DBS05-15-ProgLang 23

ESQLESQL ExceptionException handlinghandling

EXEC SQL WHENEVER SQLERROR GOTO sql_error;
...
sql_error:

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK RELEASE;

... ...
Without the WHENEVER SQLERROR CONTINUE statement,
a ROLLBACK error would invoke the routine again, starting an
infinite loop.

HS / DBS05-15-ProgLang 24

12.2.4 12.2.4 PositionedPositioned Update Update
• Update / Delete statements in general use search

predicates to determine the rows to be updated
Update M Update M
set set price_Dayprice_Day = price_Day+1 where = price_Day+1 where price_Dayprice_Day <= 1<= 1

• Often useful: step through a set of rows and update
some of them positioned update
DECLARE myCurs FOR SELECT ppd, title FROM M

FOR UPDATE ON ppd
UPDATE M SET ppd = ppd + 1

WHERE CURRENT OF myCurs /* delete in a
/*similar way

• A cursor may declared FOR READ ONLY (which basically results in
some performance gains)

Caveat: Use the capabilities of SQL!
It would be stupid to check a predicate on a row
within the FETCH loop and then update the row.

13

HS / DBS05-15-ProgLang 25

ESQLESQL Cursor Cursor sensitivitysensitivity
Which state has the database during processing?

EXEC SQL DECLARE myCurs FOR SELECT price_Day, title
FROM M FOR UPDATE ON price_Day

WHERE price_Day < 2
EXEC SQL OPEN...
...
EXEC SQL FETCH myCurs INTO
UPDATE M SET price_Day = price_Day + 2

WHERE CURRENT OF myCurs /* similar for
/* delete

Is the row under the cursor still in the result set?
Yes and No !

• A cursor declared INSENSITIVE does not make visible any
changes (update, delete) until the cursor is closed and
reopened.

HS / DBS05-15-ProgLang 26

12.3 12.3 TransactionsTransactions in in applicationapplication programsprograms
12.3.1 Definition
– Sequence of operations on DB which form a "unit of work"

– Example: Bank account transfer ("debit / credit') :
read (acc1); read (acc2);
acc1=acc1-amount ; acc2 = acc2+ amount;
write(acc1); write (acc2);

– System must guarantee "correct execution"

– "Dependable system"

dependable: verlässlich, betriebssicher, zuverlässig

14

HS / DBS05-15-ProgLang 27

Transaction bracesTransaction braces

.
TA Syntax :
Every operation on DB between the beginning of the
sequence of operations and a

COMMIT WORK or
ROLLBACK WORK

Beginning of first TA
(first SQL command in program) end of first TA, beginning of next TA

No explicit "transaction begin" command needed
... OPEN MyCurs;........ ; COMMIT; OPEN ...

But SQL-3: START TRANSACTION, Postgres: BEGIN

HS / DBS05-15-ProgLang 28

Transaction semanticsTransaction semantics

Transactional semantics means:
DBS guarantees certain executional properties
• "All or nothing" semantics

– All effects are made permanent at COMMIT, not before .
TA has no effect after ROLLBACK

• "Now and forever"
– DBS guarantees the effects after COMMIT has

been processed successfully

• "Solve concurrency conflicts"
– Conflict resolution of concurrent operations on DB

• "Keep consistent DB consistent"
– Preservation of integrity

ATOMICITY

DURABILITY

ISOLATION

CONSISTENCY

15

HS / DBS05-15-ProgLang 29

TransactionsTransactions

• How does DB System guarantee the properties?
Implementation of DBS

• Application programming with transaction
– Syntactically mark unit of work:

START TRANSACTION ……. COMMIT;
or:
START TRANSACTION …….

IF (everyThingOK) COMMIT
ELSE ROLLBACK; ENDIF – no effect

– exception handling if application commits but
DBS cannot guarantee

– Isolation levels

HS / DBS05-15-ProgLang 30

12.3.2 Isolation 12.3.2 Isolation
• Important task of transaction manager:

isolate concurrent users from each other

SELECT balance INTO :myVar
FROM account
WHERE acc# = :myAcc;
If myVar + dispo – amount >=0
UPDATE account SET
balance = myVar – amount

WHERE acc# = :myAcc;
Call ATM_pay_out;
ENDIF;
COMMIT;

…
SELECT SUM(balance),owner

FROM account
GROUP BY owner;
COMMIT;
DBS_OUTPUT.PutLine(…);

concurrent execution in independent DB sessions
Conflict? Not a big deal in this case,
but may be SUM is incorrect.

16

HS / DBS05-15-ProgLang 31

IsolationIsolation

Worst case: lost update

Lost update: two independent updaters update the
same object. Conflict may result in a wrong value!
Updates is lost!
Not allowed in any serious multiuser DBS

T1: progVar← read(x); progVar++; write (x ← progVar)

T2: progVar ← read(x); progVar++; write (x ← progVar)

1
2

3 4

5 6

Read of T1 and T2: x=7; Increment by T1: x== 8, increment by t2: x==8

Concurrent Execution

HS / DBS05-15-ProgLang 32

Isolation levels : control Isolation levels : control behaviourbehaviour of transactionof transaction

– No problem at all if only READs
– How much isolation does a TA need?

• Application dependent: is it acceptable that
the balance per customer does not reflect
the correct balances of her account?

– read / write ratio?
– What is the conflict probability ?
Isolation level:
The kind of conflicts a program is willing to accept

The more isolation the less parallelism

17

HS / DBS05-15-ProgLang 33

TransactionsTransactions in in applicationapplication programsprograms

• Isolation Levels
Suppose TA1 decreases the prices of some movies in the

movie DB by 5%
TA2 scrolls through all movies
• Question: does TA2 "see" the new values before TA1

commits?
READ UNCOMMITTED

• Yes: updates of TA1 are immediately visible
but only if TA2 has isolation level read uncommitted

SET TRANSACTION READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED

– Lowest locking overhead, but unpleasant effects may
happen (Examples?)

≡ READ COMMITTED in Postgres

HS / DBS05-15-ProgLang 34

Setting isolation levelsSetting isolation levels
SET TRANSACTION <mode> [,<mode>]0 n

<mode> = <access mode> |
[ISOLATION LEVEL] <isolation> |
DIAGNOSTIC SIZE <simple_value>

<access mode > = READ ONLY | READ WRITE
<isolation> = READ UNCOMMITTED |

| READ COMMITTED
| REPEATABLE READ
| SERIALIZABLE

Diagnostic: area for details about exceptions, only for ESQL
Different default modes: READ UNCOMMITTED READ ONLY

else READ WRITE

18

HS / DBS05-15-ProgLang 35

TransactionsTransactions in in applicationapplication programsprograms

READ COMMITTED ("cursor stability")
• No uncommitted update can be seen by any application
• But TA might see different states of the same object

– Conflicts typically solved by locks ("2-phase locking")
– If "Read committed" but no "repeatable read" required :

read-only transaction need only short read locks
higher parallelism

TA2 : R (a), x=x+a;............... R(b); x:=x+b;...
TA1 : W(b+10); W(a-10);COMMIT;

Value of program variablel x does not reflect DB state
because READ is not REPEATABLE

HS / DBS05-15-ProgLang 36

TransactionsTransactions in in applicationapplication programsprograms

• Isolation levels (4)
REPEATABLE READ

• all read / write conflicts prevented, reads repeatable
Lock synchronization: all locks held until end of TA

SERIALIZABLE
• repeatable read + phantoms avoided

TA2 : R(a), x=x+a............... R(b), x:=x+b,...
TA1 : Insert(z); Commit;

-- TA2: SUM of attribut of relation S,
-- TA1: inserts a row into S

Unpleasant effect: Phantom records

but

19

HS / DBS05-15-ProgLang 37

TransactionsTransactions

Isolation levels
– first statement within TA
– Be careful with default modes

SET TRANSACTION READ WRITE;
SET TRANSACTION ISOLATION LEVEL READ

UNCOMMITTED;

TA has default access mode of last SET
i.e. READ ONLY (!)

• Read uncommitted dangerous: may cause inconsistencies

• Read committed is the default in some systems (e.g. Oracle)

• Serializable important for high frequent short transactions with
many potential conflicts.

• AUTOCOMMIT-mode: implicit COMMIT after each SQL-statement

HS / DBS05-15-ProgLang 38

Transaction Rollback / abortTransaction Rollback / abort

ROLLBACK
– SQL statement like COMMIT
– "backout" of TA, not any effect on the DB

"all-or-nothing semantics"
– application programmer decides on rollback

Abort
– System kills transaction
– system failure user session is aborted system

recovery
– transaction rollback caused by internal state

(e.g. deadlock)
– Recovery of TA by system, of application process

control flow by programmer.
Important: handling of DB exceptions

20

HS / DBS05-15-ProgLang 39

Deadlock abort detection (Deadlock abort detection (EmbeddEmbedd. SQL). SQL)
#define DEADL_ABORT -60 /* ORA specific
#define TRUE 1
EXEC SQL sql WHENEVER sqlerror CONTINUE;
int count = 0;
while (TRUE) {

EXEC SQL UPDATE customers
set discnt = 1.1*discnt WHERE city ='Berlin';

if (sqlca.sqlcode == DEAD_ABORT) {
count++;
if (count < 4) {
exec sql ROLLBACK;
} else break;

else if (sqlca.sqlcode <0) break;
}if (sqlca.sqlcode < 0) {

print_dberror();
exec sql rollback; /* application: go back to start of
this
return -1 /* transaction

} return 0;

HS / DBS05-15-ProgLang 40

SAVEPOINTSSAVEPOINTS

• Rollback can be expensive in long TAs
• Use SAVEPOINTs to limit work to be redone

TA begin SAVEPOINT s

operations on DB more operations on DB

UNDO everything
after s

commit 'safe'
operations

21

HS / DBS05-15-ProgLang 41

Transaction in applicationsTransaction in applications

• Never have user interaction within a TA
• Resources will be blocked for long time – bad!

• How does a better program design look like?

EXEC SQL SELECT price, quantity into :price, :qoh...
while (TRUE){
printf("We have %d units... of %d each \n", qoh, price)
printf ("How many... ",...) /* check correct input

/* and exit loop
}
if (qoh >= numberOrdered){

EXEC SQL UPDATE products set quantity =
} else ...
EXEC SQL COMMITT;

Bad design: resource blocking
time depends on user

