
1

8. 8. SQL SQL –– DataData Handling Handling
8.1 Update, Deletion, Insertion and bulk load*
8.2 The query language SQL
8.2.1 Search predicates
8.2.2 Arithmetic expressions and functions in predicates
8.2.3 Different kinds of join
8.2.4 Output improvement

8.3 Advanced SQL
8.3.1 Subselects and Correlated subqueries
8.3.2 Quantified expressions, SOME, ANY
8.3.3 Grouping and Aggregation
8.3.4 Transitive closure
8.3.5 Final remarks: NULLS, temporary relations and more

Lit.: Melton / Simon, Understanding SQL 1999, chap. 8,9; Kemper / Eickler chap 4,
SQL chapter in any book on DBS

HS / DBS05-11-DML/SQL-2-2

8.3 8.3 AdvancedAdvanced SQLSQL

8.3.1 Subselects and correlated subqueries
Using result relations instead of relation constants

– Independent subquery
– Can it be expressed differently ?

SELECT title, director
FROM Movie
WHERE director IN ('Spielberg','Lubitsch',

'Kubrick');

SELECT title, director
FROM Movie
WHERE director IN

(SELECT name
FROM Customer c);

Independent outer
and inner SQL
block

2

HS / DBS05-11-DML/SQL-2-3

AdvancedAdvanced SQL: SQL: SubselectsSubselects

Correlated Subqueries

– Could be expressed simpler, how?
– Always possible to avoid subqueries?

SELECT title
FROM Movie m
WHERE to_char(year,'YYYY') IN
(SELECT to_char(r.from_date, 'YYYY')

FROM Rental r, Tape t
WHERE r.tape_Id = t.t_id
AND t.m_Id = m.m_Id);

Find movies which have been rented in the
same year they have been produced:

HS / DBS05-11-DML/SQL-2-4

AdvancedAdvanced SQL: SQL: SubselectsSubselects
…. Some can be expressed as an ordinary join

Using an explicit quantifier EXISTS:

SELECT DISTINCT title
FROM Movie m NATURAL JOIN Tape t JOIN Rental r ON
(r.tape_Id = t.t_id)

WHERE to_char(m.year,'YYYY') =
to_char(r.from_date,'YYYY');

{m.title | M(m) ∧ ∃ t ∃ r (Tape(t) ∧ Rental(r) ∧ m.m_id = t.m_Id
∧ r.t_Id = t.id ∧ m.year = r.from_date } -> see e.g book by Kemper

SELECT title FROM Movie m
WHERE EXISTS
(SELECT *
FROM Tape t JOIN Rental r ON(r.tape_Id = t.t_id)
WHERE t.m_Id = m.m_Id

AND to_char(m.year,'YYYY') =
to_char(r.from_date,'YYYY'));

3

HS / DBS05-11-DML/SQL-2-5

8.3.2 8.3.2 AdvancedAdvanced SQL: SQL: QuantifiersQuantifiers
EXISTS

– Translates directly from calculus

– Not needed: algebraic expression translates into
ordinary join: π title (M σ format='VHS' T)

SELECT title
FROM Movie m
WHERE EXISTS

(SELECT *
FROM Tape t
WHERE t.format = 'VHS'
AND t.m_Id = m.m_Id);

SELECT title
FROM Movie m, Tape t
WHERE t.m_Id = m.m_Id AND t.format = 'VHS'

HS / DBS05-11-DML/SQL-2-6

AdvancedAdvanced SQL: EXISTSSQL: EXISTS
But NOT EXISTS enhances the language
Find Customers (names) who have not loaned the tape with No 11.

SELECT name
FROM customer c
WHERE

NOT EXISTS
(SELECT * FROM Rental r
WHERE c.mem_No = r.mem_No

AND r.tape_Id = 11);

SELECT name
FROM customer c, Rental r
WHERE

NOT(c.mem_No = r.mem_No
AND r.tape_Id = 11);

… more rows than Customers in DB) Wrong result!

Could NOT IN
be used?

4

HS / DBS05-11-DML/SQL-2-7

AdvancedAdvanced SQLSQL Universal Universal QuantifierQuantifier
Example
Find movies available in exactly one format
Reformulate precisely: Find movie titles such that: there

exists tape with this movie with a particular format and all other
tapes either contain a different movie or they have the same
format.

SQL does not have universal quantification but "NOT EXISTS"
Identities to use:
∀ x (P(x)) ≡ ¬ ∃ x ¬ P(x) and Q ⇒ A ≡ ¬ Q ∨ A

{m.title | Movie(m) ∧ ∃ t (Tape(t) ∧ t.m_Id = m.m_Id
∧ ∀ x (Tape(x) ∧ t <> x ⇒ t.format = x.format ∨ x.m_Id <> m.m_Id)) }

{m.title | Movie(m) ∧ ∃ t (Tape(t) ∧ t.m_Id = m.mId
∧ ¬ ∃ x (Tape(x) ∧ t <> x ∧ t.format <> x.format ∧

x.m_Id = m.m_Id)) }

HS / DBS05-11-DML/SQL-2-8

AdvancedAdvanced SQLSQL Universal Universal QuantifierQuantifier

SELECT DISTINCT m.title
FROM Movie m, Tape t
WHERE m.m_Id = t.m_Id
AND NOT EXISTS
(SELECT *
FROM Tape x
WHERE x.t_id <> t.t_id
AND t.format <> x.format
AND x.m_Id = m.m_Id);

{m.title | Movie(m) ∧ ∃ t (Tape(t) ∧ t.m_Id = m.mId
∧ ¬ ∃ x (Tape(x) ∧ t <> x ∧ t.format <> x.format ∧

x.m_Id = m.mI_d)) }

5

HS / DBS05-11-DML/SQL-2-9

AdvancedAdvanced SQLSQLUniversal Universal QuantifierQuantifier
Quantification and value comparison

Find movie, the price of which is higher or equal
than that of all other movies. (i.e. the most expensive ones)

Find the most expensive
movies

{m.title | Movie(m) ∧
∀ m1 (M(m1) => m1=m ∨ m.price_Day >= m1. price_Day) }

{m.title | Movie(m) ∧
¬ ∃ m1 (M(m1) ∧ m1<> m ∧ m.price_Day < m1. price_Day) }

SELECT m.title FROM Movie m
WHERE NOT EXISTS
(SELECT m1.m_id FROM Movie m1
WHERE m1.m_id <> m.m_id AND m.price_day < m1.price_day)

HS / DBS05-11-DML/SQL-2-10

AdvancedAdvanced SQL Universal SQL Universal valuevalue QuantificationQuantification

Quantified comparison operator
Find movie, the price of which is higher or equal than

that of all other movies. (i.e. the most expensive ones)

SELECT title

FROM Movie m

WHERE m.price_Day >= ALL

(SELECT price_Day

FROM Movie m1

WHERE m1.m_id <> m.m_id);

{m.t | M(m) ∧
∀ m1 (M(m1) => m1<>m ∨ m.price_Day >= m1. price_Day) }

SELECT title

FROM Movie m

WHERE m.price_Day >= ALL

(SELECT price_Day

FROM Movie m1);

or because of '>=' :

6

HS / DBS05-11-DML/SQL-2-11

Advanced SQL: Row and table predicatesAdvanced SQL: Row and table predicates
"Find most expensive movie"
Could built-in function MAX (<column>) be used?

NEVER mix row and table expression!

SELECT title, MAX(price_day) FROM Movie

row value table value

SELECT title, price_day FROM Movie
WHERE price_day >= MAX(price_day)

SELECT title, price_day FROM Movie
WHERE price_day >=
(SELECT MAX(price_day) FROM Movie);

correct:
MAX(..) is the
only value

HS / DBS05-11-DML/SQL-2-12

AdvancedAdvanced SQLSQL
More quantified comparison predicates

= SOME same as IN
<=SOME ≡ x… ∃ t (x.a <= t.a)

< SOME ≡ x… ∃ t (x.a < t.a)

SELECT title, director

FROM Movie m

WHERE director = SOME

(SELECT name

FROM Customer c);

SELECT title, price_Day

FROM Movie m

WHERE price_Day < ANY

(SELECT price_Day

FROM Movie);

SOME is ANY :)

ANY is sometimes
misleading.
Used in SQL 92 / 99.
EVERY not in Oracle

Can be expressed
simpler by inner
join:
.. WHERE m.director

c.name;

7

HS / DBS05-11-DML/SQL-2-13

AdvancedAdvanced SQLSQL Universal Universal QuantifierQuantifier
Systematic development of universally quantified

expressions

• Write a tuple calculus expression
• replace ∀ x (P(x)) by ¬ ∃ x ¬ P(x))
• Replace => using the rule from propositional logic:

Q ⇒ A ≡ ¬ Q ∨ A
• Translate to SQLish

OR
• Describe a counterexample

e.g. a movie m does not belong to answer set if there exists at
least two copies, both of which.....

• Express it in SQL

• Express combined
search condition
using NOT EXISTS

...
NOT EXISTS(SELECT *

FROM Tape x
WHERE x.t_id <> t.t_id
AND t.format <> x.format
AND x.m_Id = m.m_Id);

HS / DBS05-11-DML/SQL-2-14

AdvancedAdvanced SQLSQL SubqueriesSubqueries
Are nested subqueries really necessary?

e.g. MSQL does not allow subqueries
– No correlated subqueries, if the one row from correlated tupels is

used for qualification

– Needed if more than one row is used from subordinate query

{r.b | R(r) ∧ ∃ s (S(s) ∧ s.x= r.a ∧ s.y >= 7)}

{r.b | R(r) ∧ ∀ s (S(s) ∧ s.x= r.a ⇒ s.y >= 7)}

1 7

3 7

4 10

5 1

1 10

7 2

3 7

3 1

5 1

3 7

3 7

R S
a b x y

3 8

8

HS / DBS05-11-DML/SQL-2-15

8.3.3 8.3.3 GroupingGrouping and and AggegrationAggegration

Aggregate (or set) functions
fA :: table -> value, where A is some Subset of Σ(table)

Aggregate functions are table functions, i.e.
defined on tables or subsets of tables

COUNT, SUM, AVG, MIN, MAX are standard functions
sometimes statistical functions (e.g. variance) in addition

COLUMN AVG FORMAT 9.99; -- Oracle Formatting

SELECT MIN(price_Day) AS "MIN", MAX(price_Day) AS "MAX",

AVG(price_Day) AS AVG

FROM Movie;

HS / DBS05-11-DML/SQL-2-16

AdvancedAdvanced SQL:SQL: aggregateaggregate functionsfunctions
Target list contains only aggregate functions or none of

them (exception: groups, see below)
Result semantically undefined otherwise:
SELECT AVG(price_Day), Movie.mid

FROM Movie

does not make sense, see above
Aggregate values different from row values ,

therefore subqueries inevitable, if aggregates used

SELECT m.Title

FROM Movie m

WHERE price_Day >

(SELECT AVG(price_Day)

FROM Movie

);

9

HS / DBS05-11-DML/SQL-2-17

AdvancedAdvanced SQLSQL aggregateaggregate functionsfunctions

• Quantifiers and counting (in finite sets)

select x
from R
where 0 <

(select count(*) from S...)

select x
from R
where EXISTS

(select * from S...)

≡

SELECT DISTINCT title, format
FROM Movie m , Tape t
WHERE m.m_Id = t.m_Id
AND 0 =
(SELECT COUNT(*)
FROM Tape x
WHERE x.t_id <> t.t_id
AND t.format <> x.format
AND m.m_Id = x.m_Id);

HS / DBS05-11-DML/SQL-2-18

Note: ANSI Join Note: ANSI Join vsvs explicit join explicit join

NATURAL join
SELECT DISTINCT title, format
FROM Movie m NATURAL JOIN Tape t
WHERE
0 =
(SELECT COUNT(*)
FROM Tape x
WHERE x.t_id <> t.t_id
AND t.format <> x.format
AND m.m_Id = x.m_Id);

Syntax error:
m.m_Id projected
by Natural Join

… AND m_Id = x.m_Id); Result set empty,
wrong result

… AND x.t_id = t.t_id
AND format <> x.format
AND m_Id = x.m_Id);

Wrong result

10

HS / DBS05-11-DML/SQL-2-19

AdvancedAdvanced SQLSQL: : aggregatesaggregates
Find the movies m for which holds: for every format

there is at least one copy of m having this format

SELECT DISTINCT t.m_Id

FROM Tape t

WHERE

(SELECT COUNT(DISTINCT format)

FROM Tape tx

WHERE tx.m_Id = t.m_Id) =

(SELECT COUNT(DISTINCT format)

FROM Format);

• Naiv formulation of query
• May be optimized by rewriting and optimization.

HS / DBS05-11-DML/SQL-2-20

AdvancedAdvanced SQL: SQL: GroupingGrouping

Grouping
GROUP BY <columns> groups all rows with the same

values in <columns> into "virtual subtables"

SELECT COUNT(m_Id),
format

FROM Tape

GROUP BY format;

3 VHS

1 BETA

1 7 VHS

3 7 BETA

4 10 VHS

5 1 VHS

IMPORTANT

Aggregation is performed over each group.
Exactly one result row for each group.

In each group the values of grouping attributes are constants
these attributes – and no others! - may occur in target

list together with aggregate functions.

11

HS / DBS05-11-DML/SQL-2-21

SQL / DML: GroupingSQL / DML: Grouping

Movie

title

Psycho
ET

Star Wars I
Psycho

Star Wars IV
Jaws
...

cat.

...

...

...

...

...

...

...

id

095
112
345
222
290
100
...

year
...
...
...
...
...
...
...

director

Hitchcock
Spielberg

Lucas
Van Sant

Lucas
Spielberg

...

price

2.00
1.50
2.00
2.20
2.00
1.50
...

leng.

...

...

...

...

...

...

...

SELECT director, sum(price)
FROM movie
Group by director;

2.0Hitchcock
3.0Spielberg

4.0Lucas

2.2Van Sant

HS / DBS05-11-DML/SQL-2-22

AdvancedAdvanced SQLSQL HavingHaving
Having-predicate

– A having-predicate is a predicate defined on a
'grouped virtual table' created by a 'GROUP BY'
operation

– Enables qualifying of groups

SELECT COUNT(DISTINCT
m_Id), format

FROM Tape
GROUP BY format
HAVING format = 'DVD'

OR format = 'VHS';

1 VHS

2 DVD

Remember: search predicates test rows,
having predicates sets of rows (groups or tables)

Does it make SQL more expressive?

Number of movies of formats 'DVD' and 'VHS'

Note: DISTINCT

12

HS / DBS05-11-DML/SQL-2-23

AdvancedAdvanced SQLSQL: : HavingHaving
Predicates in having clause:

defined only on grouped columns or aggregated by
a set function

Number of copies for those movies with more than one format,
provided movie_id is greater than 1.

"No having without 'GROUP BY' "

More expressive?
Yes: Table functions / predicates not defined on rows,

but on groups

SELECT m_Id, COUNT(DISTINCT format)
FROM Tape
GROUP BY m_Id
HAVING COUNT(DISTINCT format)> 1 AND m_Id > 1;

HS / DBS05-11-DML/SQL-2-24

AdvancedAdvanced SQLSQL HavingHaving
Universal quantification on finite sets using having

More examples:
Find number of tapes and customer number for all customers

with some given name pattern ("%h%")

Grouping after
selection

SELECT m_Id
FROM Tape t
GROUP BY m_Id
HAVING COUNT(DISTINCT format) =
(SELECT COUNT(DISTINCT format)
FROM Tape);

SELECT mem_no, COUNT(tape_id)
FROM Customer c NATURAL JOIN
Rental r
WHERE c.name LIKE '%A%'
GROUP BY mem_no;

13

HS / DBS05-11-DML/SQL-2-25

GROUP BYGROUP BY

• A realistic example1

product (product_id, name, price, cost)
sales (product_id, units, date, ...)

"Find for each product the profit made within the last 4 weeks"

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

1 taken from Postgres manual

HS / DBS05-11-DML/SQL-2-26

8.3.4 Transitive closure8.3.4 Transitive closure
Representing a directed Graph
Example: course prerequisites

Represent graph by a set of nodes and a set of edges

ALP 1

ALP 2

ALP 3

ALP 4

DBProj

DBS

RS

RO

SWT

TI

MafI 1

MafI 2

14

HS / DBS05-11-DML/SQL-2-27

Transitive closureTransitive closure

• Example:
enhanced
SQL:1999

Find courses required for SWT

-- Nodes
CREATE TABLE Course(
lnr int primary key,
name varchar(20));

-- Edges
CREATE TABLE Requires(
pre int references course(lnr),
suc int references course(lnr),
constraint req_pk primary key(pre, suc));

HS / DBS05-11-DML/SQL-2-28

ANSI SQL: Transitive closureANSI SQL: Transitive closure

ANSI SQL (SQL 99) syntax for recursive traversals

WITH RECURSIVE PreCourse(pre, suc)
AS (SELECT pre,suc FROM Requires r WHERE pre

NOT IN (SELECT suc FROM Requires r1)
UNION

SELECT pre,suc
FROM Requires r, PreCourses p
WHERE p.suc = r.pre
)

SELECT p1.suc , c.name
FROM preCourse p1, course c
WHERE p1.suc = c.lnr;

Steps: 1. construct nonrecursive relation containing
all path

2. Select data

15

HS / DBS05-11-DML/SQL-2-29

AdvancedAdvanced SQLSQL Transitive Transitive closureclosure

• Transitive Closure in Oracle: CONNECT

LNR NAME
1 ALP I
2 ALP 2
3 ALP 3
4 ALP 4
5 RS
6 RO
7 Theory
8 SWP
9 DBS
10 DBProj
11 SWT

Courses

SELECT l.name
FROM Course l, requires r
WHERE r.suc = l.lnr
START WITH pre = 1
CONNECT BY PRIOR suc = pre;

PRE SUC
---------- ------

1 2
2 3
3 4
3 8
5 6
8 9
6 9
7 9
8 11
6 11
7 11

11 10

Requires

NAME

ALP 2
ALP 3
ALP 4
SWP
DBS
SWT
DBProj

1. Only ONE path ("start with..")
2. from leaf to root: exchange

suc and pre

HS / DBS05-11-DML/SQL-2-30

AdvancedAdvanced SQLSQL Transitive Transitive closureclosure
LEVEL attribute for hierachical relationships

All lectures required for lecture XYZ

NAME LEVEL
---------- ----------
ALP 2 1
ALP 3 2
ALP 4 3
SWP 3
DBS 4
SWT 4
RA 5

SELECT l.name, LEVEL
FROM lecture l, requires r
WHERE r.suc = l.lnr
START WITH pre = 1
CONNECT BY PRIOR suc = pre;

16

HS / DBS05-11-DML/SQL-2-31

8.3.4 Final remarks: NULL et al.8.3.4 Final remarks: NULL et al.
Some remarks about NULL

– Null treated in SQL as "unknown"
– Semantics of "unkown" used in predicates

• If predicate evaluates to unknown for row r, r is not returned
• UNKNOWN AND TRUE = UNKOWN
• UNKNOWN OR TRUE = TRUE
• Arithmetical expression evaluate to NULL if some

attribute value is NULL

– In some cases, UNKOWN behaves like FALSE

Note: different real world semantics conceivable
e.g. : "not defined"

Example: Person(…, sex, civil_serviceDate,…) ,
c_sDate not defined for female (in GER)

HS / DBS05-11-DML/SQL-2-32

SQL SQL NULLNULL
Be careful with aggregates:

SELECT * FROM testNull

X Y
------ ---------

1 1
2 1
3
4

But:

SELECT SUM(y)/COUNT(*)
FROM testNull;

SUM(Y)/COUNT(*)

,5

SELECT SUM(y)/COUNT(y)
from testNull;

SUM(Y)/COUNT(Y)

1
Same result for
SELECT AVG(y) from….

17

HS / DBS05-11-DML/SQL-2-33

SQL / DML SQL / DML StructuringStructuring
Structuring SQL programs is not easy

e.g. tmp = SELECT a from B where P;
SELECT x from Y where Y.z in tmp;

not allowed in most systems

What does it mean?
a) Is tmp a name for the SQL expression ?

Unfortunately not allowed in SQL-2
but in SQL-3: SELECT x,y,z FROM (SELECT ...) AS tmpRel
tmpRel does only exist inside the outer SELECT Block.

b) Or a "stateful relation variable"?
Bad: the "state of the variable" is always a snapshot

in a multi user environment.
E.g.: tmp = SELECT stock_rate from stocks where

...;

HS / DBS05-11-DML/SQL-2-34

SQL / DMLSQL / DML StructuringStructuring
Temporary tables

– When inconsistency is not an issue, temporary
tables make sense

– Instead of assignment <relation_var> := select ...
the relation variable has to be declared :
create temporary table myTmp (....)

– and assigned a value by means of an INSERT
statement:

insert into mytmp
(select x,y,z from R where…)

– What's makes the difference ?
Tempory tables are local snapshots, they are
"dropped" at the end of a session.

SQL -3

useful
variant of
insert

18

HS / DBS05-11-DML/SQL-2-35

StructuringStructuring

Subquery factoring / local definition

WITH r as (
select m.title, m.m_id AS x, tt.m_id
from movie m, tape tt
where m.year > to_date(2000,'YYYY'))

select r.title, t.t_id
from r, tape t
where r.x = t.m_id;

Compare let in Haskell

Local definition

Compare WITH RECURSIVE....

HS / DBS05-11-DML/SQL-2-36

SummarySummary

• SQL: THE interlingua of data management
• Differences (standard, systems) considerable
• Eventually convergence towards SQL 99
• Set manipulation as dominating operation
• Set specification in a declarative way
• Grouping: frequent operation
• Many language enhancements in SQL 99

(transitive closure, structuring)
• Interactive language: embedding into host

language to be discussed

