

Relational Algebra Basics

· Why "algebra"?

- Mathematically, algebraic structures basically defined by a <u>base set S of values</u> and <u>operations</u> which map one or more elements of S to S and obey certain laws (e.g. groups, lattices, ...)
- The base set of Relational Algebra is the set of all relations (tables) with attributes from a given set A of attributes.
- Operations on tables projection, cartesian product, join, as introduced intuitively above
- Note: Result of an operation is time dependent

HS / DBS05-08-RDML1 7

6.2 Relational Algebra operations

Terminological update

Let A be a set universal of attributes

- − A Relation Schema is a named n-tuple of attributes RS = R $(a_1,...,a_n)$, $\{a1,...,an\} \subseteq A$
- R_A is the set $\{a_1,...,a_n\}$ of attributes (columns) of RS called the type $\underline{signature}$ of R
- The operation Σ applied to a relation R results in the type signature of R: Σ (R) = R_A
- A <u>Relational Database Schema</u> is a set of relation schemas
- A <u>Database Relation</u> R (conforming to Relation Schema RS) is a subset of D(a₁) X ...X D(a_n), the cross product of the domains of the <u>attributes of</u> R

Relational Algebra Basic Operations
Extended cross product X
Let R and S be relations, $\Sigma(R) = \{a_1,,a_n\} \subseteq A$, $\Sigma(S) = \{b_1,,b_m\} \subseteq A$, $\Sigma(R) \cap \Sigma(S) = \emptyset$ then
− Schema Σ (R X S): {R.a ₁ ,R.a _n , S.b ₁ ,,S.b _m } = {R.a a ∈ A} \cup {S.b b ∈ A Omit relation qualifiers "R." and "S." - no naming conflict.
$\begin{array}{l} - \mbox{ Extended cross product R X S } : \ \mbox{ R X S = } \\ \{(a_1,a_n,b_1,,b_m) \mid (a_1,,a_n) \in R, (b_1,,b_m) \in S\}\end{array}$
$\begin{array}{l} \mbox{Renaming, if } \Sigma(R) \cap \Sigma(S) \mathrel{!=} \varnothing : \\ \rho_{\mbox{cttrname}} \leftarrow \mbox{cnewAttrname} & (\mbox{creIname}) \\ \mbox{Hs/DBS05-08-RDML1 11} \end{array}$

Propositional semantics	
Semantics of predicates:	
Let	
a, b be attributes of table R, $r \in R$, P the predicate a θ v , Q is the predicate a θ b	
r(a) : value for attribute a of tuple r	
Then	
$P(r) := r(a) \theta v$	
$Q(r) := r(a) \theta r(b)$	
$S \equiv P \land Q : S(r,t) := P(r) \land Q(r) \text{ according to } \land \text{ semantic}$	s
¬, ∨ and preference as usual in propositional logic	
Frequently, θ is equality predicate (=)	
HS / DBS05-08-RDML1 17	

Selection of rows

Selection σ

 $\sigma_{P}(R) = \{r \mid r \in R \text{ and } P(r) = TRUE \}$ where P is a row predicate

Note:

- Selection operator selects the row with all attributes: $\Sigma(R) = \Sigma (\sigma_{P}(R))$
- size of result depends on selectivity of P selectivity := | σ_P (R) | / | R |

important for optimization

HS / DBS05-08-RDML1 18

	_
6.3 Relational Algebra: Syntax and Semantics	
Syntax of (simple) Relational Algebra defined inductively :	
(1) Each table identifier is a RA expression	
(2) ρ _A (B), ρ _{s←y} (A) are RA expressions where A,B table identifiers, s, v attribute identifiers	
(3) If E and F are RA expressions then	
π_{D} (E), σ_{P} (E), E X F, E \cup F, E \setminus F are RA expressions (if union-compatible etc.)	
where D $\subseteq \Sigma(E)$	
(4) These are all RA expressions	
HS / DBS05-08-RDML1 24	

Semantics of Relational Algebra

val is a function which assigns to each relational algebra expression a result table:

val ('R') = R "The value of a relation name is the relation (table)" val (' τ (E)') = τ (val (E)) where τ is some unary rel. Operation like π "The value of an unary relational operator applied to an relational algebra expression E is the result of applying the operator to the value of E " val ('E ω F') = val (E) ω val (F) where ω is some binary operator like X

"The value of an unary relational operator applied to a relational algebra expression E is the result of applying the operator to the value of E" HS / DBS05-08-RDML1 25

_	Example		
-	Movie(mId,title,	, director, year)	Tape(id, acDate,
7	25 Amistad,	Spielberg 1997	format, movield
	35 A.I.	Spielberg 2001	11 9-3-98 VHS 25
\rightarrow	47 Matrix	Azzopardi 1993	23 4-6-01 DVD 47
	55 Private Ryan	Spielberg 1998	17 1-3-99 DVD 25
		25 AmistadSpielber	g 1997 11 9-3-98 VHS 25
	≷ ⊠ 5 = wia mTd = Tana maviaTd	25 AmistadSpielber	g 1997 17 1-3-99 DVD 25
///	ovie.mita = Tape.movieta	47 Matrix Azzopar	di 1993 23 4-6-01 DVD 47
			HS / DBS05-08-RDML1 29

Relational Algebra: Base operators

Base

Set of operators which allow to express all other operators e.g { $\land, \lor_{\ell} \rightarrow$ } in propositional logic

Relational operators

 $\pi,\,\sigma,\,$ X , \ and $\cup\,$ form a basis of relational algebra operators Means: every RA expression may be expressed only with these operators

 $R \bowtie S = \sigma_P (R X S)$

Example:

HS / DBS05-08-RDMI 1 36

Relational Algebra: an operator based on table predicates			
Relational Division T . /. F			
 Simulates universal quantifier for finite sets 			
 In order to divide T by F, the attributes of F must be a subset of the attributes of T: Σ(F) ⊂ Σ(T) 			
- Signature of T ./. F is $D = \Sigma(T) \setminus \Sigma(F)$			
$\begin{array}{l} T \ .\mathit{I}. \ F = \{ \ t' \mid t' \in \pi_{D} \ (T) \ \land \\ (\ \forall \ s \in F) \ (\exists \ t \in T) \ \pi'_{\Sigma(F)} \ (t) = s \land \ \pi'_{D} \ (t) = t' \ \} \\ \pi' \ \text{denotes the projection of a row as opposed to } \pi, \ \text{which is defined on tables} \end{array}$			
$ \begin{aligned} \pi_{D} & (T) = \{(7), (55), (1), (25)\} \\ F &= \{VHS, DVD, HQ\} \\ & \text{let } t' \text{ be} (55), \text{ for } s = (DVD) \text{ there is} \\ & \text{ no tuple} & (DVD, 55) \text{ in } T. t' = (7) \text{ is the only one which qualifies} \\ & \text{HS / DBS05-08-RDML1 39} \end{aligned} $			

Relational Algebra RA expression examples				
Examples find algebraic expressions				
C(mem_No,name,,) T(id, m_Id, f)	R(tape_Id,from, mem_No,)			
	M(id,title,)			
0. Movies (m_ld) and its formats	$\pi_{m_{id, format}}$ (T)			
1. Tapes loaned by 'Abel'	$\pi_{\text{ tape_Id}} \left(R \bowtie \sigma_{\text{ name='Abel'}} \left(C \right) \right)$			
2. List of films that are currently available (i.e. not rented by anyone) $\pi_{\text{title}}(M) \setminus \pi_{\text{title}}(R \bowtie T \bowtie M))$ $tape_d=did m_d=M.id$				
 First name, last name of customers who rented "To be or not to be" 				
4. List of customers and the films they ha	ve currently rented			
5. Has 'Bebel' loaned a tape? Canno	ot be formluated, why?			
6. Find the films which a available in all fo	ormats.HS/DBS05-08-RDML141			

6.5 Special Topics of RA				
 6.5.1 RA operators in SQL/DML Transformation rule: for every relational algebra expression with join, project, cartesian product and select operations there is an equivalent expression of the form: 				
$\pi \ (\sigma_{P} (R_1 X R_2 X X R_n))$				
Simple SQL (Sequel) block: SELECT DISTINCT a,b, FROM R ₁ ,, R _n projection WHERE < predicate P > cartesian product predicate DISTINCT : Elimination of duplicates				
HS / DBS05-08-RDML1 42				

6.5.4 Relational Algebra operator trees 6.5.3 What is missing in RA Algebraic Optimization - Arithmetic operators, - Evaluation of RA expressions in canonical form - many practically important operators like grouping of results π (σ _P (R₁ X R₂ X ... X R_n)) "find movies together and their number of copies" is very inefficient - How to speed up evaluation of RA (and SQL) Title copyCount expressions? Amistad To be or .. 3 - Example: Two tables R and S with n and m tuples Private Ryan 1 Worst case complexity of : Marnie 1 The Kid 2 σ_P (R⊠ S) - More Predicates on tables (not rows) is O(m*n) - Interchange of select and join may result in O(n+m) Anyway relational algebra important conceptual basis for query languages and guery evaluation σ_P (R) \bowtie S depending on the join algorithm time HS / DBS05-08-RDML1 45

Some rewrite rules for RA	
Properties of selection and projection	
$\sigma_{P}(\sigma_{Q}(R)) = \sigma_{Q}(\sigma_{P}(R))$	
$\sigma_{P}(\sigma_{P}(R)) = \sigma_{P}(R)$	
$\sigma_{Q \land P}(R) = \sigma_Q(\sigma_P(R)) - \sigma_Q(R) \cap \sigma_P(R)$ $\sigma_{Q \land P}(R) = \sigma_Q(R) \cup \sigma_P(R)$	
$\sigma_{P}(R) = R \setminus \sigma_{P}(R)$	
if $X \subset Y \subset \Sigma(R)$ then $\pi_{\vee}(\pi_{\vee}(R)) = \pi_{\vee}(R)$	
if X, Y $\subseteq \Sigma(R)$ then $\pi_X(\pi_Y(R)) = \pi_{X \cap Y}(R) = \pi_Y(\pi_X(R))$	
attr(P) $\subseteq X \subseteq \Sigma(R)$ then $\pi_X(\sigma_P(R)) = \sigma_P(\pi_x(R))$	
where attr(P) denotes the set of attributes used in P	

HS / DBS05-08-RDMI 1 47

HS / DBS05-08-RDML1 46

Fourth Normal Form			Summary	
A relation R is in if for every M ¹ • B \subseteq A or • B = $\Sigma(R) \setminus A$ • A contains a May be easily a MVD A->> $\Sigma(R1) = A \cup$	relation R is in Fourth Normal Form if for every MVD A ->> B • B \subseteq A or • B = $\Sigma(R) \setminus A$ or • A contains a key May be easily calculated by splitting up a relation R with a MVD A->> B into R1 and R2 such that $\Sigma(R1) = A \cup (R - \Sigma(R2)) = \Sigma(R1) \cup (A$		۲ with	 Relational algebra: algebra on tables Operators: project, select, cartesian product, union, set difference, (rename) Several compound operators : join, outer join, semi-join, division Serves as a basis for relational DB languages No recursion ⇒ not computationally complete
Müller TUB Meier FUB Schulze HU Müller trekking Meier trekking Schulze HU			 Base of SQL Used for optimization by operator tree transformation 	
Better to have r	multi value	ed attributes? HS / DBS05-08-RDML1	51	HS / DBS05-08-RDML1 52