6 The Relational Data Model: Algebraic operations on tabular data

6.1 Basic idea of relational languages
6.2 Relational Algebra operations
6.3 Relational Algebra: Syntax and Semantics
6.4. More Operators
6.5 Special Topics of RA
6.5.1 Relational algebra operators in SQL
6.5.2 Relational completeness
6.5.3 What is missing in RA?
6.5.4 RA operator trees

Kemper / Eickler: 3.4, Elmasri /Navathe: chap. 74-7.6,
Garcia-Molina, Ullman, Widom: chap. 5

Context

6.1 Basic idea of relational languages

- Data Model:

Important concepts
Language for definition and handling (manipulation) of data

- Languages for handling data:
- Relational Algebra (RA) as a semantically well defined applicative language
- Relational tuple calculus (domain calculus): predicate logic interpretation of data and queries
- SQL / DML (or simply SQL)
- Kernel of SQL built upon RA as well as calculus, extended by operations like arithmetic expressions not available in RA or calculus

Relational Languages

Goal of language design

Given a relational database like the Video shop DB
Design a language, which allows to express queries like:

- Customers who rented videos for more than $100 \$$ last month
- List of all movies no copy of which have been on loan since 2 month
- List the total sales volume of each movie within the last year
- Is there anybody whose rented movies all have category "horror"?

Language should be declarative ("descriptive")
Historically: "Make query formulation 'as easy as in natural language' "

Relational Algebra

- Idea of Relational Algebra:
- Given relations

$$
\mathrm{R}(\mathrm{a} 1, \ldots, \mathrm{an}), \mathrm{S}(\mathrm{~b} 1, \ldots, \mathrm{bm})
$$

- Define operators which transform one or more tables into a result table.

How could we find the number of tapes of "Matrix?"

Basic Operations informally (repeated from chapter 4)

Relational Algebra Basics

- Why "algebra"?
- Mathematically, algebraic structures basically defined by a base set S of values and operations which map one or more elements of S to S and obey certain laws (e.g. groups, lattices, ...)
- The base set of Relational Algebra is the set of all relations (tables) with attributes from a given set A of attributes.
- Operations on tables projection, cartesian product, join, as introduced intuitively above
- Note: Result of an operation is time dependent

Set operations

Tape (id	movieId)
1	'B'
5	'A'
6	'B'

Movie (movieId	title)
'A'	"Frenzy"
'B'	"Matrix"

R, S relations,
R and S are called union-compatible
if the domains of $\Sigma(\mathrm{R})$ and $\Sigma(\mathrm{S})$ are pair wise the same or: two tables are union-compatible if they have
the same number of columns and have the same domains in corresponding colums
R and S union-compatible, then set union and set difference $R \cup S$ and $R \backslash S$ are defined as usual on mathematical sets

Other set operations may be easily defined using \cup and \backslash
HS / DBS05-08-RDML1 9

6.2 Relational Algebra operations

Terminological update

Let A be a set universal of attributes

- A Relation Schema is a named n-tuple of attributes

$$
\mathrm{RS}=\mathrm{R}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right),\{\mathrm{a} 1, \ldots \mathrm{an}\} \subseteq \mathrm{A}
$$

$-R_{A}$ is the set $\left\{a_{1}, \ldots, a_{n}\right\}$ of attributes (columns) of RS called the type signature of R

- The operation Σ applied to a relation R results in the type signature of $\mathrm{R}: \Sigma(\mathrm{R})=\mathrm{R}_{\mathrm{A}}$
- A Relational Database Schema is a set of relation schemas
- A Database Relation R (conforming to Relation Schema RS) is a subset of $D\left(a_{1}\right) \times \ldots X D\left(a_{n}\right)$, the cross product of the domains of the attribuvutess.an ${ }_{8} R$

Relational Algebra Basic Operations

- Cartesian (Cross) Product
- Cross product of two sets R and S:
a set of pairs with type signature $\Sigma(\mathrm{R}) \subseteq \mathrm{A}$ and $\Sigma(\mathrm{S}) \subseteq \mathrm{A}$
- Result relation T should be a relation over $\Sigma(\mathrm{R}) \cup \Sigma(\mathrm{S})=\mathrm{A}^{\prime} \subseteq \mathrm{A}($ assumed $\Sigma(\mathrm{R}) \cap \Sigma(\mathrm{S})=\varnothing)$

R (a1	a2)	X	S (b1	a2)
1	'A'		3	'A'
5	'z'		1	'B'

Not a relation schema in 1NF. Therefore NOT an operation of $\underset{\substack{\text { Relational Algebra } \\ \text { DBSos-08-RDML } 10}}{ }$

Relational Algebra Basic Operations

Extended cross product X

Let R and S be relations, $\Sigma(R)=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A$,
$\Sigma(S)=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}\right\} \subseteq \mathrm{A}, \Sigma(\mathrm{R}) \cap \Sigma(\mathrm{S})=\varnothing$
then

- Schema $\Sigma(\mathrm{RXS})$: $\left\{\right.$ R. a_{1}, \ldots R. $\left.a_{n}, S . b_{1}, \ldots, S . b_{m}\right\}=\{$ R. $a \mid a \in A\} \cup\{S . b \mid b \in A\}$
Omit relation qualifiers " R." and " S ." - no naming conflict.
- Extended cross product $\mathrm{R} \times \mathrm{S}: \mathrm{R} \times \mathrm{S}=$ $\left\{\left(a_{1}, \ldots a_{n}, b_{1}, \ldots, b_{m}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in R,\left(b_{1}, \ldots, b_{m}\right) \in S\right\}$

Renaming, if $\Sigma(\mathrm{R}) \cap \Sigma(\mathrm{S})!=\varnothing$:
ρ <attrname> \leftarrow <newAttrname> \quad (<relname>)

Projection π

Let $\Sigma(R)=B^{\prime}, \quad B \subseteq B^{\prime}$
Projection $\pi_{B}(R)$ of R on B :
Set of rows from R with the columns not in B eliminated

- No duplicates in $\pi_{B}(\mathrm{R})$ (in theory!)

$$
\begin{aligned}
\pi_{B}(R)= & \{r \text { restricted to } B \mid r \in R\} \\
= & \left\{r^{\prime} \mid \text { there is a tuple } r \in R\right. \text { such that } \\
& \left.r^{\prime} \text { is the restriction of } r \text { to the attributes in } B\right\}
\end{aligned}
$$

Relational Algebra Basic Operations

Parent (id, mother, father)

25	Mary, Paul		
47	Mary, John		
55	Mary, Paul	\quad	mother
:---			

- Property of projection: B contains a key of $R \Rightarrow \pi_{B}(R)$ contains as many tuples as R : $\left|\pi_{B}(R)\right|=|R|$
- Useful for estimating the size of query results
- Important for optimization

Selection σ

"Find movies directed by Billy Wilder made 1960 or later"

Selection of tuples from a table R according to a predicate defined on R

Predicate P :: R -> \{TRUE, FLASE $\}$
defined on tuples of R.
For each $r \in R: P(r)=$ TRUE | FALSE

Row predicates

Boolean row predicates
Row predicates combine primitive (simple) predicates by and, or, not and parenthesis '(', ')'

Inductive definition of syntax for (row) predicates
....as usual:

- Primitive predicates are predicates
- If Q, Q are predicates, then $Q \wedge Q^{\prime}, Q \vee Q^{\prime}$ and $\neg Q$ are predicates
- Operator preference and brackets as usual
- There are no other predicates

Movies directed by Spielberg before 1999 or an entertainment movie : movie.director='Spielberg'^(year <= TO_DATE('1999', 'yyyy')
\checkmark cat $=$ 'entertainment) HS / DBS05-08-RDML1 16

Propositional semantics

Semantics of predicates:
Let
a, b be attributes of table $R, r \in R$,
P the predicate $a \theta v, Q$ is the predicate $a \theta b$
$r(a)$: value for attribute a of tuple r
Then
$P(r):=r(a) \theta v$
$Q(r):=r(a) \theta r(b)$
$S \equiv P \wedge Q: S(r, t):=P(r) \wedge Q(r)$ according to \wedge semantics
$\neg, \quad \vee$ and preference as usual in propositional logic
Frequently, θ is equality predicate (=)

Selection of rows

Selection σ

$\sigma_{P}(R)=\{r \mid r \in R$ and $P(r)=$ TRUE $\}$ where P is a row predicate

Note:

- Selection operator selects the row with all attributes:

$$
\Sigma(\mathrm{R})=\Sigma\left(\sigma_{\mathrm{P}}(\mathrm{R})\right)
$$

- size of result depends on selectivity of P selectivity :=| $\sigma_{P}(R)|/|R|$ important for optimization

Relational Algebra Basic Operations

Example

"Movies directed by Spielberg produced 1997 or later! "
Movie(mId,title,..., director, year)
σ_{p} (Movie)
where P = "director = 'Spielberg' and year >= 1997"

Relational Algebra: combining operators

$\pi_{\text {title }}\left(\sigma_{p}(\right.$ Movie $\left.)\right)$
where $P=$ "director $=$ 'Spielberg' and year $>=1997 "$
Find the actors performing in movie directed by Spielberg

$\pi_{\text {stage_name }}\left(\sigma_{P}\left(\sigma_{Q}(\right.\right.$ Movie $) x$ starring $)$ where $P=$ "Movie.id $=$ Starring.movieId " Q = "director $=$ 'Spielberg'

Renaming

$\rho_{\text {<newname> }}$ (<relname>)
Relation <relname> is renamed to <newname> in the context of expression
$\rho_{\text {<attrname> }} \leftarrow$ <newAttrname> (<relname>)
Attribute <attrname> of relation <relname> is renamed to <newAttrname> in the context of expression
$\pi_{\text {Sub. name }} \quad\left(\sigma_{Q_{2}}\left(\sigma_{p}\left(\right.\right.\right.$ Employee $X\left(\rho_{\text {Sub }}(\right.$ Employee $\left.\left.\left.\left.)\right)\right)\right)\right)$ where $P=$ "Employee.name $=$ 'Miller'

Q = "Sub.boss $=$ Employee.id "

Evalution example: one table - two roles

Employee		
id	name	boss
001	Abel	NULL
002	Bebel	005
004	Cebel	005
005	Miller	001
006	Debel	001
		$\ldots .$.

Sub		
id	name	boss
0		
001	Abel	NULL
	$\rho_{\text {Sub (Employee) }}$	
002	Bebel	005
004	Cebel	005
005	Miller	001
006	Debel	001

Employee			Sub			π name
id	name	boss	id	name	boss	
001 001	$\begin{aligned} & \hline \hline \text { Abel } \\ & \text { Abel } \end{aligned}$	NULL NULL	001 002	$\begin{aligned} & \text { Abel } \\ & \text { Bebel } \end{aligned}$	$\begin{gathered} \hline \text { NULL } \\ 004 \end{gathered}$	
$\begin{aligned} & 002 \\ & 002 \end{aligned}$	Bebel Bebel	$\begin{aligned} & 005 \\ & 005 \end{aligned}$	001 002	Abel Bebel	$\begin{gathered} \text { NULL } \\ 005 \end{gathered}$	
005	Miller	001	001	Abel	Null	σ_{P}
005	Miller	0001	002	Bebel	005	
005	Miller	001	004	Cebel	005	
$\begin{aligned} & 005 \\ & 005 \end{aligned}$	Miller	001	006	${ }^{\text {Noliner }}$	$\begin{aligned} & 001 \\ & 001 \end{aligned}$	
	Debel	001	005	Miller	001	
006	Debel	001	006	Debel	001	

6.3 Relational Algebra: Syntax and Semantics

Syntax of (simple) Relational Algebra defined inductively :
(1) Each table identifier is a RA expression
(2) $\rho_{A}(B), \rho_{s \leftarrow y}(A)$ are RA expressions where A, B table identifiers, s, v attribute identifiers
(3) If E and F are RA expressions then $\pi_{D}(E), \sigma_{p}(E), E X F, E \cup F, E \backslash F$ are RA expressions (if union-compatible etc.)
where $\mathrm{D} \subseteq \Sigma(\mathrm{E})$
(4) These are all RA expressions

Semantics of Relational Algebra

val is a function which assigns to each relational algebra expression a result table:

$$
\text { val (} \mathrm{R}^{\prime} \text { ') } \quad=\quad R
$$

"The value of a relation name is the relation (table)"

$$
\operatorname{val}(' \tau(E) ') \quad=\quad \tau(\operatorname{val}(E))
$$

where τ is some unary rel. Operation like π
"The value of an unary relational operator applied to an relational algebra expression E is the result of applying the operator to the value of E "

$$
\operatorname{val}\left({ }^{\prime} E \omega \mathrm{~F}^{\prime}\right) \quad=\quad \operatorname{val}(E) \omega \operatorname{val}(F)
$$

where ω is some binary operator like X
"The value of an unary relational operator applied to a relational algebra expression E is the result of applying the operator to the value of $E^{\prime \prime}$ HS / DBS05-08-RDML1 25

6.4 Relational Algebra : More Operators

Some sequences of operations occur frequently like cartesian product followed by a select
\Rightarrow Define compound operators
Join (θ-join)
R , S relations,

where P is a (boolean) predicate composed of primitive predicates of the form
a θ b $, \mathrm{a} \in \Sigma(\mathrm{R}), \mathrm{b} \in \mathrm{R} \Sigma(\mathrm{S}), \theta \in\{=, \neq,<,<=, \gg=\}$ (Join predicate)

HS / DBS05-08-RDML1 26

Relational Algebra Join

$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} . \mathrm{a}<\mathrm{S} . \end{aligned}$	$\underset{\text { R.b=S.d }}{\mathrm{S}}$	1 A 2 1 3 A A 2 1 3 A	The result usually does not have a name
$\mathrm{R}(\mathrm{a} \mathrm{b} \mathrm{c})$	S (a c d)		
1 A 2	13 A		
2 A 2	22 B		
3 C 1	12 C		

Note: exactly the same as taking the set of all pairs of $\mathrm{RXS} \quad \begin{array}{llllll}1 & \mathrm{~A} & 2 & 1 & 3 & \mathrm{~A} \\ \mathrm{l} & \mathrm{R} \text { and } \mathrm{S} \text { rows and checking }\end{array}$ the predicate subsequently

Relational Algebra : more operators

Equijoin: equality comparison

Important type of join: all primitive predicates in P compare equality of column values of two rows at a time: $\mathrm{P} \equiv \wedge$ R. $x_{i}=S . y_{i},\left\{x_{i}\right\} \subseteq \Sigma(R),\left\{y_{i}\right\} \subseteq \Sigma(S)$, Implements the "values as pointers" concept of RDB for foreign keys, but is more general.

Example using foreign key: Find movie title on tape 27 $\pi_{\text {title }}$ (Movie $\quad \backslash \sigma_{i d=27}$ (Tape)) id=Tape.mid

Example

Movie(mId,title, ...,director, year)		
25	Amistad, ...	Spielberg
35	A.I.	Spielberg
47	Matrix	Azzopardi
55	Private Ryan	Spielberg

[^0]
Relational Algebra: more operators

- Renaming required, if identical column names
- No canonical projection of columns if columns are redundant

Example above: mId and movieId Query with subsequent projection:
"Find title, tapeld and format for all movies"
$\pi_{\text {title, id, format }}$ (Movie \bowtie Tape)
Movie.id = Tape.movieId

Result: | Amistad | 11 | VHS |
| :--- | :--- | :--- |
| Amistad | 17 | DVD |
| Matrix | 23 | DVD |

Relational Algebra: Natural join

Natural Join R \bowtie S:
equijoin over all literally identical column names of R and S and projection of redundant columns. Join predicate omitted.
$R(a c c)$
$R(a c c c$
$R \bowtie S=\pi_{\Sigma(R) \cup \Sigma(S)}\left(\sigma_{P}(R X S)\right)$
where $P \equiv \wedge R . x=S . x, \quad x \in \Sigma(R) \cap \Sigma(S)$

Realtional algebra: outer join

Motivation: only tuples of S participate in a join $R \bowtie S$, which have a "counterpart" in R.

Customer (mem no, name,f_name, zip, city) Phones (phoneNo, mem no)
"Print telephon list of customers"
π name, phoneNo (Customer \bowtie Phones)

Customers without phoneNo will not appear

Relational Algebra: outer join

Right outer join R× S
Includes (NULL,...NULL, s) - if there is no join partner for $s \in S$

b c	a c d	
$\begin{array}{lll} \hline 1 & A & 2 \\ 2 & A & 2 \\ 3 & C & 1 \end{array}$	R.a $<$ S.c \wedge R.b=S.d $\left.\begin{array}{llll}1 & 3 & A \\ 2 & 2 & B \\ 1 & 2 & C\end{array}\right]$	$\left\lvert\, \begin{array}{lllllll}1 & A & 2 & 1 & 3 & A \\ 2 & A & 2 & 1 & 3 & A \\ - & - & - & 2 & 2 & B \\ - & - & - & 1 & 2 & C\end{array}\right.$

Full outer join: union of left and right outer join

Relational Algebra More operators

Semjoin

$R \bowtie S=\Pi_{\Sigma(R)}(R \bowtie S)$
Left Semijoin is the subset of R, each r of which has a corresponding tuple s from S in the join.
Typically extension of equijoin or natural join

Right Semijoin defined symmetrically :
$R \rtimes S=\Pi_{\Sigma(S)}(R \bowtie S)$

Relational Algebra: Base operators

Base

Set of operators which allow to express all other operators e.g $\{\wedge, \vee, \neg\}$ in propositional logic

Relational operators

$\pi, \sigma, \mathrm{X}, \backslash$ and \cup form a basis of relational algebra operators Means: every RA expression may be expressed only with these operators

Example: $\quad R \rtimes S=\sigma_{P}\left(\begin{array}{ll}R & X\end{array}\right)$
Example: $\quad \underset{P}{R \bowtie S}=\sigma_{P}\left(\begin{array}{ll}R & S\end{array}\right)$

Relational Algebra: table predicates

Row predicates:

p defined over rows (or pairs of rows)

Table predicates

Example: find all movies which are available in all formats
Cannot be answered by comparing individual rows

Predicates with universal quantifier are table predicates
e.g. $P(x) \equiv \forall x \exists y(Q(x, y, m)$
"for all formats (in the database) x there exists a tape y with movie m " Express table predicates with base operators?

Relational Algebra: Division

$\mathrm{T}=\pi_{\text {format, movieID }}$ Tape (id, format, movieId) $\mathrm{F}=\pi_{\text {format }}$ Format(format,extra_Ch))

1	VHS	7				
2	DVD	7				
4	VHS	55				
5	VHS	1	$	\quad$ Result:	VHS	0.0
:---	:---					
DVD	1.0					
HQ	1.5	$	$	1		
:---						
2	7					

Find movies which are available in all formats

Relational Division
Informally T./. F is the set of all tuples r of T projected on attributes not belonging to F such that $\{(r)\} \times F \subseteq T$

Relational Algebra: an operator based on table predicates
Relational Division T . /. F

- Simulates universal quantifier for finite sets
- In order to divide T by F, the attributes of F must be a subset of the attributes of $T: \Sigma(F) \subset \Sigma(T)$
- Signature of T./. F is $D=\Sigma(T) \backslash \Sigma(F)$
$\mathrm{T} . / . \mathrm{F}=\left\{\mathrm{t}^{\prime} \mid \mathrm{t}^{\prime} \in \pi_{\mathrm{D}}(\mathrm{T}) \wedge\right.$

$$
\left.(\forall s \in F)(\exists t \in T) \pi_{\Sigma(F)}(t)=s \wedge \pi_{D}^{\prime}(t)=t^{\prime}\right\}
$$

π^{\prime} denotes the projection of a row as opposed to π, which is defined on tables.
$\pi_{\mathrm{D}}(\mathrm{T})=\{(7),(55),(1),(25)\}$
$F=\{V H S, D V D, H Q\}$
let t^{\prime} be (55), for $\mathrm{s}=(\mathrm{DVD})$ there is no tuple (DVD, 55) in T. $\mathrm{t}^{\prime}=(7)$ is the only one which qualifies

HS / DBS05-08-RDML1 39

Relational Algebra Division

T ./. F may be defined in terms of other relational operators
$T . / . F=\pi_{D}(T) \backslash\left(\pi_{D}\left(\pi_{D}(T) X F\right) \backslash T\right)$

Building the complement $\mathrm{D}=\Sigma(\mathrm{T}) \backslash \Sigma(\mathrm{F})$ Proof: Assignment
Property of relational division:
Let $\mathrm{D}=\Sigma(\mathrm{T}) \backslash \Sigma(\mathrm{F})$,
if D contains the key of T and $|\mathrm{F}|>1$ then $\mathrm{T} . / . \mathrm{F}=\varnothing$

Relational Algebra RA expression examples

$$
\begin{aligned}
& \text { Examples find algebraic expressions } \\
& \text { C(mem_No, name,.., } \quad \text { (id, m_Id, f) } \quad \text { (tape_Id,from, mem_No,..) } \\
& \text { M(id,title, ...) } \\
& 0 \text {. Movies (} m \text { _ld) and its formats } \\
& \pi_{\text {m_id, format }}(T) \\
& \text { 1. Tapes loaned by 'Abel' } \\
& \pi_{\text {tape_ld }}\left(R \bowtie \sigma_{\text {name='Abel }}(C)\right) \\
& \text { 2. List of films that are currently available (i.e. not rented by anyone) }
\end{aligned}
$$

> 3. First name, last name of customers who rented "To be or not to be"
> 4. List of customers and the films they have currently rented ...
> 5. Has 'Bebel' loaned a tape? Cannot be formluated, why?
> 6. Find the films which a available in all formats HS / DBSPS-08-RDML1 41

6.5 Special Topics of RA

6.5.1 RA operators in SQL/DML

- Transformation rule: for every relational algebra expression with join, project, cartesian product and select operations there is an equivalent expression of the form:
$\pi \ldots\left(\sigma_{p}\left(R_{1} \times R_{2} \times \ldots \times R_{n}\right)\right)$
Simple SQL (Sequel) block: SELECT DISTINCT a,b,.....

\longleftarrow| projection |
| :--- |
| \longleftarrow |
| cartesian product |
| predicate |

DISTINCT : Elimination of duplicates

Relational Algebra and SQL
"Find title, tapeld and format for all movies"
SELECT DISTINCT m.title, t.id,
t.format

FROM Movie m, Tape t
WHERE m.mId(+) = t.movieId
Old Notation for left outer join,
ORDER BY title;
New notation
SELECT DISTINCT m.title, t.id, tt.format FROM Movie m LEFT OUTER JOIN Tape t

ON m.mID = t.movieID
ORDER BY title;

Movies	TapeNO FORMA	
$----------------------11 ~$	11	VHS
Amistad	17 DVD	
A.I.	23 DVD	
Matrix		
Private Ryan		

6.5.2 Relational completeness

- Completeness
- A DB language L is called relational complete, if every RA expression can be expressed in L
- Are there any operations on relations, which cannot be expressed by a finite RA expression (select, project, product or join; SPJ) ?
- Yes: transitive closure of a relation cannot be expressed in this way

Pred	Descend
Paul	Mary
Mary	Peter
John	Bill
Peter	George

No RA expression to find all decendents of 'Paul'.

Recursion is missing!
HS / DBS05-08-RDML1 44

6.5.3 What is missing in RA

- Arithmetic operators,
- many practically important operators like grouping of results
"find movies together and their number of copies"

Title	copyCount
Amistad	2
To be or . .	3
Private Ryan	1
Marnie	1
The Kid	2

- More Predicates on tables (not rows)

Anyway relational algebra important conceptual basis for query languages and query evaluation

HS / DBS05-08-RDML1 45

6.5.4 Relational Algebra operator trees

Algebraic Optimization

- Evaluation of RA expressions in canonical form
$\pi \ldots\left(\sigma_{\mathrm{P}}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \ldots \times \mathrm{R}_{\mathrm{n}}\right)\right)$
is very inefficient
- How to speed up evaluation of RA (and SQL) expressions?
- Example: Two tables R and S with n and m tuples Worst case complexity of :

$$
\sigma_{p}(R \bowtie S)
$$

is $O\left(m^{*} n\right)$

- Interchange of select and join may result in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time $\quad \sigma_{P} \quad(R) \bowtie S$ depending on the join algorithm

Some rewrite rules for RA

Properties of selection and projection

$$
\begin{aligned}
& \sigma_{P}\left(\sigma_{Q}(R)\right)=\sigma_{Q}\left(\sigma_{P}(R)\right) \\
& \sigma_{P}\left(\sigma_{P}(R)\right)=\sigma_{P}(R) \\
& \sigma_{Q \wedge P}(R) \quad=\sigma_{Q}\left(\sigma_{P}(R)\right)=\sigma_{Q}(R) \cap \sigma_{P}(R) \\
& \sigma_{Q \vee P}(R) \quad=\sigma_{Q}(R) \cup \sigma_{P}(R) \\
& \sigma_{\neg P}(R) \quad=R \backslash \sigma_{P}(R) \\
& \text { if } X \subseteq Y \subseteq \Sigma(R) \quad \text { then } \pi_{x}\left(\pi_{Y}(R)\right)=\pi_{X}(R) \\
& \text { if } X, Y \subseteq \Sigma(R) \quad \text { then } \pi_{X}\left(\pi_{Y}(R)\right)=\pi_{X \cap Y}(R)=\pi_{Y}\left(\pi_{X}(R)\right) \\
& \operatorname{attr}(P) \subseteq X \subseteq \Sigma(R) \text { then } \pi_{x}\left(\sigma_{P}(R)\right)=\sigma_{P}\left(\pi_{x}(R)\right)
\end{aligned}
$$

where $\operatorname{attr}(P)$ denotes the set of attributes used in P

Relational Algebra Using RA for opitmization

- An relational algebra operator tree is the data structure representing a RA expression
Compare with operator trees for arithmetic expressions
- Algebraic optimization: systematic interchange of operation according to the laws of RA
- Does not change time complexity in general, but "makes n small".
- Implementation of Algebraic Optimization by transformation of the operator tree
- Evaluation by recursive evaluation of the tree
- Systematic treatment of different optimization techniques
\rightarrow Part II (Implementation)

RA Operator tree transformation: example
Operator tree: example "Last name of customers who rented "To be or not to be")

Fourth Normal Form

A relation R is in Fourth Normal Form
if for every MVD A ->> B

- $B \subseteq A$ or
- $B=\Sigma(R) \backslash A$ or
- A contains a key

May be easily calculated by splitting up a relation R with a MVD A->> B into R1 and R2 such that $\Sigma(\mathrm{R} 1)=\mathrm{A} \cup \mathrm{B}, \Sigma(\mathrm{R} 2)=\Sigma(\mathrm{R}) \backslash \Sigma(\mathrm{R} 1) \cup \mathrm{A}$

Müller	TUB
Meier	FUB
Schulze	HU

Müller	trekking
Meier	trekking
Meier	skiing
Schulze	skating

Better to have multi valued attributes? HS / DBS05-08-RDML1 51

6.5.5 Multivalued dependencies and 4NF

Multiple values: example (left over from ch. 5: Normal Forms)

Person (name, affiliation, hobbies)

Müller	TUB	trekking
Schulze	HU	skating

Redundancy introduced by multiple values
'hobbies' is multivalued dependent on name

Definition for single attribute multi valued (MV)
dependencies:
Let $R=(a, y, b)$,
b is multivalued dependent on $a(a-\gg b)$ if for each value v of a $\{v\} X\left(\pi_{y}\left(\sigma_{a=v} R\right)\right) X \quad\left(\pi_{b}\left(\sigma_{a=v} R\right)\right) \subseteq R$

Example: \{'Meier'\} X \{'FU'\} X \{'skiing', 'trekking'\} \subseteq Person \{'Müller'\} X \{'TU'\} X \{'trekking'\} \subseteq Person
$\{$ Schulze' $\} \times\{$ 'HU'\} X \{'skating'\} $\subseteq \underset{\text { Person }}{\text { PS } / \text { DBS }}$
HS / DBS05-08-RDML1 50

Summary

- Relational algebra: algebra on tables
- Operators: project, select, cartesian product, union, set difference, (rename)
- Several compound operators : join, outer join, semi-join, division
- Serves as a basis for relational DB languages
- No recursion \Rightarrow not computationally complete
- Base of SQL
- Used for optimization by operator tree transformation

[^0]: 25 Amistad . . .Spielberg 1997 11 9-3-98 VHS 25
 25 Amistad. . . Spielberg 1997 17 1-3-99 DVD 25
 47 Matrix ... Azzopardi 199323 4-6-01 DVD 47

