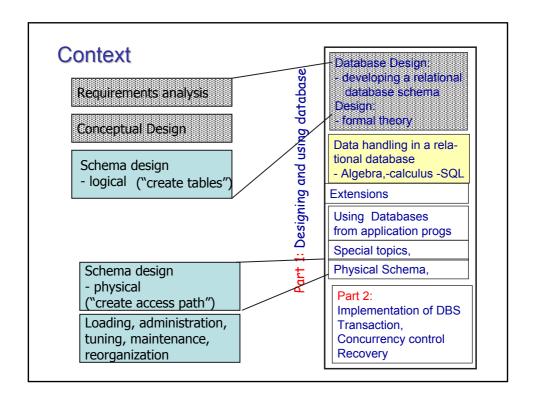
6 The Relational Data Model: Algebraic operations on tabular data

- 6.1 Basic idea of relational languages
- 6.2 Relational Algebra operations
- 6.3 Relational Algebra: Syntax and Semantics
- 6.4. More Operators
- 6.5 Special Topics of RA
 - 6.5.1 Relational algebra operators in SQL
 - 6.5.2 Relational completeness
 - 6.5.3 What is missing in RA?
 - 6.5.4 RA operator trees

Kemper / Eickler: 3.4, Elmasri /Navathe: chap. 74-7.6, Garcia-Molina, Ullman, Widom: chap. 5



6.1 Basic idea of relational languages

Data Model:

Important concepts

Language for definition and handling (manipulation) of data

- Languages for handling data:
 - Relational Algebra (RA) as a semantically well defined applicative language
 - Relational tuple calculus (domain calculus): predicate logic interpretation of data and queries
 - SQL / DML (or simply SQL)
- Kernel of SQL built upon RA as well as calculus, extended by operations like arithmetic expressions not available in RA or calculus

HS / DBS05-08-RDML1 3

Relational Languages

Goal of language design

Given a relational database like the Video shop DB

Design a language, which allows to express queries like:

- Customers who rented videos for more than 100 \$ last month
- List of all movies no copy of which have been on loan since 2 month
- List the total sales volume of each movie within the last year
- Privacy? - Is there anybody whose rented movies all have category "horror"?

Language should be declarative ("descriptive")

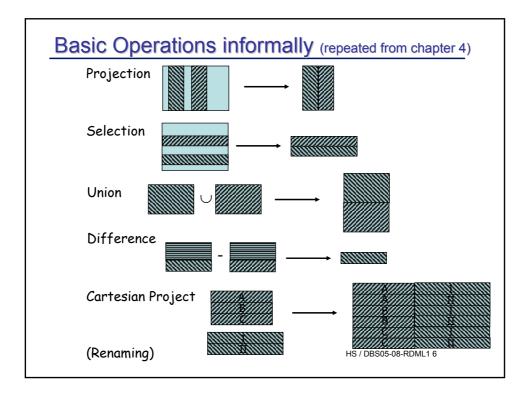
Historically: "Make guery formulation 'as easy as in natural language' "

Relational Algebra

- · Idea of Relational Algebra:
 - Given relationsR(a1,...,an), S(b1,...,bm)
 - Define operators which transform one or more tables into a result table.

Example

How could we find the number of tapes of "Matrix?"



Relational Algebra Basics

- · Why "algebra"?
 - Mathematically, algebraic structures basically defined by a <u>base set S of values</u> and <u>operations</u> which map one or more elements of S to S and obey certain laws (e.g. groups, lattices, ...)
 - The base set of Relational Algebra is the set of all relations (tables) with attributes from a given set A of attributes.
 - Operations on tables projection, cartesian product, join, as introduced intuitively above
 - Note: Result of an operation is time dependent

HS / DBS05-08-RDML1 7

6.2 Relational Algebra operations

Terminological update

Let A be a set universal of attributes

- A Relation Schema is a named n-tuple of attributes RS = R $(a_1,...,a_n)$, $\{a_1,...,a_n\}$ ⊆ A
- R_A is the set {a₁,...,a_n} of attributes (columns) of RS called the type <u>signature</u> of R
- The operation Σ applied to a relation R results in the type signature of R: Σ (R) = R_{Δ}
- A <u>Relational Database Schema</u> is a set of relation schemas
- A <u>Database Relation</u> R (conforming to Relation Schema RS) is a subset of D(a₁) X ...X D(a_n), the cross product of the domains of the attributes of R

Set operations

Tape	(id	movieId)
	1	'B'
	5	'A'
	6	'B'

Movie (movieId title)

'A' "Frenzy"

'B' "Matrix"

?

R, S relations,

R and S are called union-compatible

if the domains of Σ (R) and Σ (S) are pair wise the same or: two tables are union-compatible if they have the same number of columns and have the same domains in corresponding colums

R and S union-compatible, then set union and set difference $R \cup S$ and $R \setminus S$ are defined as usual on mathematical sets

Other set operations may be easily defined using \cup and \setminus

HS / DBS05-08-RDML1 9

Relational Algebra Basic Operations

- · Cartesian (Cross) Product
 - Cross product of two sets R and S:
 a set of pairs with type signature Σ(R) ⊂ A and Σ(S) ⊂ A
 - Result relation T should be a relation over $\Sigma(R) \cup \Sigma(S) = A' \subseteq A$ (assumed $\Sigma(R) \cap \Sigma(S) = \emptyset$)

R (a1	a2)		S (b1	a2)
1	'A'	X	3	'A'
5	'Z'		1	'B'

T ((a1 , a2) (b1 a2))

(1 'A') (3 'A')

(5 'Z') (3 'A')

(1 'A') (1 'B')

(5 'Z') (1 'B')

Not a relation schema in 1NF. Therefore NOT an operation of Relational Algebra HS / DBS05-08-RDML1 10

Relational Algebra Basic Operations

Extended cross product X

Let R and S be relations, $\Sigma(R)$ ={a₁,...,a_n} \subseteq A , $\Sigma(S)$ = {b₁,...,b_m} \subseteq A, $\Sigma(R) \cap \Sigma(S)$ = \varnothing then

- Schema $\Sigma(R \times S)$: $\{R.a_1,...R.a_n, S.b_1, ..., S.b_m\} = \{R.a \mid a \in A\} \cup \{S.b \mid b \in A\}$ Omit relation qualifiers "R." and "S." no naming conflict.
- Extended cross product R X S : R X S = $\{(a_1,...,a_n,b_1,...,b_m) \mid (a_1,...,a_n) \in R, (b_1,...,b_m) \in S\}$

Renaming, if $\Sigma(R) \cap \Sigma(S) != \emptyset$: $\rho_{\text{<attrname>} \leftarrow \text{<newAttrname>}}$ (<relname>)

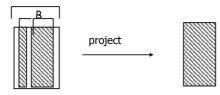
HS / DBS05-08-RDML1 11

Projection π

Let $\Sigma(R) = B'$, $B \subseteq B'$

Projection $\pi_{B}(R)$ of R on B:

Set of rows from R with the columns not in B eliminated



– No duplicates in π_{B} (R) (in theory!)

 $\pi_B(R) = \{r \text{ restricted to B} \mid r \in R\}$ $= \{r' \mid \text{there is a tuple } r \in R \text{ such that}$ $r' \text{ is the restriction of } r \text{ to the attributes in B} \}$

TIO / DEGUS-UO-KDIVIL I 12

Relational Algebra Basic Operations

Parent (id, mother, father)

```
\pi_{\text{mother}} \text{ (Parent)} = \boxed{\text{Mary}}
```

A relation with only one column and one row (no duplicates)

· Property of projection:

B contains a key of R \Rightarrow $\pi_{\rm B}$ (R) contains as many tuples as R: $|\pi_{\rm B}$ (R) $|=|{\rm R}|$

- Useful for estimating the size of query results
- · Important for optimization

HS / DBS05-08-RDML1 13

Selection σ

"Find movies directed by Billy Wilder made 1960 or later"

Selection of tuples from a table R according to a predicate defined on R

Predicate P :: R -> {TRUE, FLASE} defined on tuples of R.

For each $r \in R$: P(r) = TRUE | FALSE

Primitive predicates

Primitive (simple) predicates:

```
Let a, b be attributes, w value from dom (a) a \theta b and a \theta w are primitive predicates where \theta \in \{=, !=, <, <=, >, >=\}
```

Primitive predicates compare either an attribute and a value or two attributes

```
e.g. Movie.director = 'Wilder, Billy'
Of Rental.until > Rental.from + 1 month
```

HS / DBS05-08-RDML1 15

Row predicates

Boolean row predicates

Row predicates combine primitive (simple) predicates by and, or, not and parenthesis '(', ')'

Inductive definition of syntax for (row) predicatesas usual:

- Primitive predicates are predicates
- If $\,Q,\,Q'$ are predicates, then $Q \wedge Q'$, $Q \vee Q'$ and $\neg Q$ are predicates
- Operator preference and brackets as usual
- There are no other predicates

```
Movies directed by Spielberg before 1999 or an entertainment movie:

movie.director='Spielberg' \( \) (year <= TO_DATE('1999', 'yyyyy') \( \) cat = 'entertainment )

HS/DBS05-08-RDML1 16
```

Propositional semantics

Semantics of predicates:

Let

a, b be attributes of table R, r $\in~$ R, P the predicate a θ v , Q is the predicate a θ b

r(a): value for attribute a of tuple r

Then

 $P(r) := r(a) \theta v$ $Q(r) := r(a) \theta r(b)$ $S = P \wedge Q : S(r,t) := P(r) \wedge Q(r)$ according to \wedge semantics

 \neg , \lor and preference as usual in propositional logic Frequently, θ is equality predicate (=)

HS / DBS05-08-RDML1 17

Selection of rows

Selection of

$$\sigma_P(R) = \{r \mid r \in R \text{ and } P(r) = TRUE \}$$

where P is a row predicate

Note:

- Selection operator selects the row with all attributes:

$$\Sigma(R) = \Sigma (\sigma_P(R))$$

size of result depends on selectivity of P
 selectivity := | σ_P (R) | / | R |
 important for optimization

Relational Algebra Basic Operations

Example

"Movies directed by Spielberg produced 1997 or later!"

```
Movie(mId,title,...,director, year)

O p(Movie)

where P = "director = 'Spielberg' and year >= 1997"
```

```
M_ID_TITLE CAT YEAR DIRECTOR PRICE_DAY LENGTH

2 Amistat Drama 01.04.97 Spielberg 1 120
4 Minority Report Drama 01.04.02 Spielberg 2 145

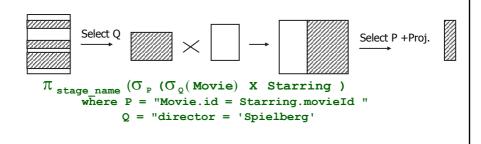
2 Zeilen ausgewählt.
```

Wrong result...? "Truth" defined relative to contents of DB Closed world assumption: for all predicates P $r \notin R \Rightarrow P(r) = False$

Relational Algebra: combining operators

```
\pi _{title} (O _{P}( Movie) )  
    where P = "director = 'Spielberg' and year >= 1997"
```

Find the actors performing in movie directed by Spielberg



Renaming

Renaming of relations

```
Example: Employee( id, name, boss, ...)

Find subordinates of 'Miller'

\pi_{\text{name}} (\sigma_{P} (\sigma_{Q} (Employee) X Employee)))

where P = "Employee name = 'Miller' "

Q = "Employee.boss = Employee.id"
```

HS / DBS05-08-RDML1 21

Renaming

```
\rho <newname> (<relname>)
```

Relation <relname> is renamed to <newname> in the context of expression

```
\rho <attrname> \leftarrow <newAttrname> (<reIname>)
```

Attribute <attrname> of relation <relname> is renamed to <newAttrname> in the context of expression

```
\pi _{\text{Sub.name}} (\sigma_Q (\sigma_P ( Employee X ( \rho_{Sub} (Employee))))) where P = "Employee.name = 'Miller' " Q = "Sub.boss = Employee.id "
```

Evalution example: one table - two roles

Employee		
<u>id</u>	name	boss
001	Abel	NULL
002	Bebel	005
004	Cebel	005
005	Miller	001
006	Debel	001

Sub			
<u>id</u>	name	boss	
001 002 004 005 006	Abel Bebel Cebel Miller Debel	NULL 005 005 001 001	

ρ_{Sub} (Employee)

		Employe	e		Sub			
	id	name	boss	id	name	boss]	
	001 001	Abel Abel	NULL NULL	001 002	Abel Bebel	NULL 004		$\pi_{\text{ name}}$
	 002 002	Bebel Bebel	005 005	001 002	Abel Bebel	NULL 005		
	005	Miller	001	001	Abel	Null		
	005 005	Miller Miller	001 001	002 004	Bebel Cebel	005 005	σ_{Q}	σ_{P}
_	005 005	Miller Miller	001 001	005 006	Miller Debel	001 001	٠٠٧	
	006 006	Debel Debel	001 001	005 006	Miller Debel	001 001	5-08-RD	ML1 23

6.3 Relational Algebra: Syntax and Semantics

Syntax of (simple) Relational Algebra defined inductively:

- (1) Each table identifier is a RA expression
- (2) $\rho_A(B)$, $\rho_{s \leftarrow y}(A)$ are RA expressions where A,B table identifiers, s, v attribute identifiers
- (3) If E and F are RA expressions then

 π_D (E), σ_P (E), E X F, E \cup F, E \ F are RA expressions (if union-compatible etc.)

where $D \subseteq \Sigma(E)$

(4) These are all RA expressions

Semantics of Relational Algebra

val is a function which assigns to each relational algebra expression a result table:

val(R') = R

"The value of a relation name is the relation (table)"

 $val('\tau(E)') = \tau(val(E))$

where τ is some unary rel. Operation like π

"The value of an unary relational operator applied to an relational algebra expression E is the result of applying the operator to the value of E"

val(E F') = val(E) val(F)

where ω is some binary operator like X

"The value of an unary relational operator applied to a relational algebra expression E is the result of applying the operator to the value of E"

HS / DBS05-08-RDML1 25

6.4 Relational Algebra: More Operators

Some sequences of operations occur frequently like cartesian product followed by a select

⇒ Define compound operators

Join $(\theta$ -join)

R, S relations,

 $R \bowtie_{P} S$

Important concept

= $\{(a_1, ...a_n, b_1,...b_m) \mid P(a_1,...a_n,b_1,...b_m) \text{ is true } \}$ = $\sigma_P (RXS)$

where P is a (boolean) predicate composed of primitive predicates of the form

a θ b, a $\in \Sigma(R)$, b $\in R \Sigma(S)$, $\theta \in \{=, \neq, <, <=, >>=\}$

(Join predicate)

Relational Algebra Join

 $R \bowtie$

1 A 2 1 3 A
2 A 2 1 3 A
The result usually does not have a name

Note: exactly the same as taking the set of all pairs of R and S rows and checking the predicate subsequently

HS / DBS05-08-RDML1 27

Relational Algebra: more operators

Equijoin: equality comparison 🔀

Important type of join: all primitive predicates in P compare equality of column values of two rows at a time: $P \equiv \wedge R.x_i = S.y_i$, $\{x_i\} \subseteq \Sigma(R), \{y_i\} \subseteq \Sigma(S),$ Implements the "values as pointers" concept of RDB for foreign keys, but is more general.

Example using foreign key: Find movie title on tape 27 π_{title} (Movie $\bowtie \sigma_{\text{id=27}}$ (Tape))

Example

N	Movie (mId, title	e,,direct	cor, year)	Tape(id, acDate,
2	25 Amistad,	Spielberg	1997	format, movieId
3	85 A.I.	Spielberg	2001	11 9-3-98 VHS 25
4	7 Matrix	Azzopardi	1993	23 4-6-01 DVD 47
5	55 Private Ryan	Spielberg	1998	17 1-3-99 DVD 25

```
R > 5 =
Movie.mId = Tape.movieId
```

```
    25 Amistad . . .Spielberg 1997 11 9-3-98 VHS 25
    25 Amistad . . .Spielberg 1997 17 1-3-99 DVD 25
    47 Matrix ... Azzopardi 1993 23 4-6-01 DVD 47
```

HS / DBS05-08-RDML1 29

Relational Algebra: more operators

- Renaming required, if identical column names
- No canonical projection of columns if columns are redundant

Example above: mId and movieId Query with subsequent projection:

"Find title, tapeld and format for all movies"

 $\pi_{\text{ title, id, format}}$ (Movie \bowtie Tape)

Movie.id = Tape.movieId

Result:

Amistad 11 VHS Amistad 17 DVD Matrix 23 DVD

Relational Algebra: Natural join

Natural Join R ⋈ S:

equijoin over all literally identical column names of R and S and projection of redundant columns. Join predicate omitted .

$$\mathsf{R} \bowtie \mathsf{S} \quad = \ \pi_{\ \Sigma(\mathsf{R}) \ \cup \ \Sigma(\mathsf{S})} \ \ (\sigma_{\ \mathsf{P}} \ (\mathsf{R} \ \mathsf{X} \ \mathsf{S}))$$
 where
$$\mathsf{P} \equiv \land \ \mathsf{R}.\mathsf{x} = \mathsf{S}.\mathsf{x}, \qquad \mathsf{x} \in \Sigma(\mathsf{R}) \ \cap \ \Sigma(\mathsf{S})$$

HS / DBS05-08-RDML1 31

Realtional algebra: outer join

Motivation: only tuples of S participate in a join R ⋈ S, which have a "counterpart" in R.

```
Customer(<u>mem no</u>, name, f_name, zip, city)
Phones (<u>phoneNo</u>, <u>mem no</u>)

"Print telephon list of customers"

π <sub>name, phoneNo</sub> (Customer ⋈ Phones)
```

Customers without phoneNo will not appear

Relational Algebra: outer join

Left outer join
$$R \bowtie S$$

Includes (r, NULL,...NULL) – if there is no join partner for $r \in R$

$$R \bowtie_P S =$$

Outer join typically extension of equijoin $_{\rm HS/DBS05-08-RDML1\,33}$

Relational Algebra: outer join

Right outer join R⋈ S

Includes (NULL,...NULL, s) – if there is no join partner for $s \in S$

Full outer join: union of left and right outer join

Relational Algebra More operators

Semjoin

$$R \bowtie S = \prod_{\Sigma(R)} (R \bowtie S)$$

Left Semijoin is the subset of R, each r of which has a corresponding tuple s from S in the join.

Typically extension of equijoin or natural join

R(a b c) S(a c d) (a b c)

$$\begin{bmatrix}
1 & A & 2 \\
2 & A & 2 \\
3 & C & 1
\end{bmatrix}$$
R.a = S.c \land R.b=S.d
$$\begin{bmatrix}
1 & 3 & A \\
2 & 2 & B \\
1 & 2 & C
\end{bmatrix}$$
=
$$\begin{bmatrix}
1 & A & 2 \\
2 & 2 & B \\
1 & 2 & C
\end{bmatrix}$$

Right Semijoin defined symmetrically:

$$R \bowtie S = \prod_{\Sigma(S)} (R \bowtie S)$$

HS / DBS05-08-RDML1 35

Relational Algebra: Base operators

Base

Set of operators which allow to express all other operators e.g $\{ \land, \lor, \lnot \}$ in propositional logic

Relational operators

 π , σ , X, \setminus and \cup form a basis of relational algebra operators Means: every RA expression may be expressed only with these operators

Example:
$$R \bowtie S = \sigma_P (R X S)$$

Relational Algebra: table predicates

Row predicates:

p defined over rows (or pairs of rows)

Table predicates

Example: find all movies which are available in all formats

Cannot be answered by comparing individual rows

Predicates with universal quantifier are table predicates e.g. $P(x) = \forall x \exists y (Q(x,y,m))$

"for all formats (*in the database*) x there exists a tape y with movie m" Express table predicates with base operators?

HS / DBS05-08-RDML1 37

Relational Algebra: Division

 $\texttt{T=} \ \pi_{\texttt{format},\texttt{movieID}} \ \texttt{Tape} (\texttt{id},\texttt{format},\texttt{movieId}) \ \texttt{F=} \ \pi_{\texttt{format}} \ \texttt{Format} (\texttt{format},\texttt{extra_Ch}))$

1	VHS	7
2	DVD	7
4	VHS	55
5	VHS	1
8	НQ	7
11	VHS	25
17	DVD	25

Result: 1 7 2 7 8 7

Find movies which are available in all formats

Relational Division

Informally T . /. F is the set of all tuples r of T projected on attributes not belonging to F such that $\{(r)\}\ X\ F \subseteq T$

Relational Algebra: an operator based on table predicates

Relational Division T. /. F

- Simulates universal quantifier for finite sets
- In order to divide T by F, the attributes of F must be a subset of the attributes of T: Σ(F) ⊂ Σ(T)
- Signature of T ./. F is D = $\Sigma(T) \setminus \Sigma(F)$

T ./.
$$F = \{ t' \mid t' \in \pi_D (T) \land (\forall s \in F) (\exists t \in T) \pi'_{\Sigma(F)}(t) = s \land \pi'_D (t) = t' \}$$

 π^\prime denotes the projection of a row as opposed to $\pi,$ which is defined on tables.

```
\pi_D (T) = {(7), (55), (1), (25)}

F = {VHS,DVD, HQ}

let t' be (55), for s = (DVD) there is

no tuple (DVD, 55) in T. t' = (7) is the only one which qualifies
```

Relational Algebra Division

T ./. F may be defined in terms of other relational operators

```
T ./. F = \pi_D(T) \setminus (\pi_D(\pi_D(T) \times F) \setminus T)

The "missing" tuples of T

Building the complement

Proof: Assignment

Property of relational division:

Let D = \Sigma(T) \setminus \Sigma(F),

if D contains the key of T and |F| > 1 then T ./. F = \emptyset
```

Relational Algebra RA expression examples

Examples find algebraic expressions

- 1. Tapes loaned by 'Abel' $\pi_{\text{ tape_Id}}\left(R \bowtie \sigma_{\text{ name='Abel'}}\left(C\right)\right)$
- 2. List of films that are currently available (i.e. not rented by anyone)

- 3. First name, last name of customers who rented "To be or not to be"
- 4. List of customers and the films they have currently rented ...
- 5. Has 'Bebel' loaned a tape? Cannot be formluated, why?
- 6. Find the films which a available in all formats HS / DBS05-08-RDML1 41

6.5 Special Topics of RA

6.5.1 RA operators in SQL/DML

 Transformation rule: for every relational algebra expression with join, project, cartesian product and select operations there is an equivalent expression of the form:

$$\pi$$
 (σ _P ($R_1 \times R_2 \times ... \times R_n$))

Simple SQL (Sequel) block:

DISTINCT: Elimination of duplicates

Relational Algebra and SQL

"Find title, tapeld and format for all movies"

```
SELECT DISTINCT m.title, t.id,
t.format
FROM Movie m, Tape t
WHERE m.mId(+) = t.movieId
ORDER BY title;
```

Old Notation for left outer join,

```
SELECT DISTINCT m.title, t.id, tt.format
FROM Movie m LEFT OUTER JOIN Tape t
    ON m.mID = t.movieID
ORDER BY title;
```

New notation

Movies	TapeNO	FORMA
Amistad	11	VHS
A.I.	17	DVD
Matrix	23	DVD
Private Ryan		

HS / DBS05-08-RDML1 43

6.5.2 Relational completeness

- Completeness
 - A DB language L is called relational complete, if every RA expression can be expressed in L
 - Are there any operations on relations, which cannot be expressed by a finite RA expression (select, project, product or join; SPJ) ?
 - Yes: transitive closure of a relation cannot be expressed in this way

Pred	Descend
Paul	Mary
Mary	Peter
John	Bill
Peter	George

No RA expression to find all decendents of 'Paul'.

Recursion is missing!

6.5.3 What is missing in RA

- Arithmetic operators,
- many practically important operators like grouping of results

"find movies together and their number of copies"

Title	copyCount
Amistad	2
To be or	3
Private Ryan	1
Marnie	1
The Kid	2

More Predicates on tables (not rows)

Anyway relational algebra important conceptual basis for query languages and query evaluation

HS / DBS05-08-RDML1 45

6.5.4 Relational Algebra operator trees

Algebraic Optimization

- Evaluation of RA expressions in canonical form

$$\pi$$
 (σ _P (R₁ X R₂ X ... X R_n)) is very inefficient

- How to speed up evaluation of RA (and SQL) expressions?
- Example: Two tables R and S with n and m tuples
 Worst case complexity of :

$$\sigma_{\ P}\ (R^{\bowtie}\ S)$$
 is $O(m^*n)$

– Interchange of select and join may result in O(n+m) time σ_P (R) \bowtie S depending on the join algorithm

Some rewrite rules for RA

Properties of selection and projection

```
\begin{split} \sigma_P\left(\sigma_Q(R)\right) &= \sigma_Q\left(\sigma_P(R)\right) \\ \sigma_P\left(\sigma_P(R)\right) &= \sigma_P(R) \\ \sigma_{Q \wedge P}(R) &= \sigma_Q\left(\sigma_P(R)\right) = \sigma_Q\left(R\right) \cap \sigma_P(R) \\ \sigma_{Q \vee P}(R) &= \sigma_Q\left(R\right) \cup \sigma_P(R) \\ \sigma_{\neg P}(R) &= R \setminus \sigma_P(R) \\ \end{split} if X \subseteq Y \subseteq \Sigma(R) then \pi_X(\pi_Y(R)) = \pi_X(R) if X, Y \subseteq \Sigma(R) then \pi_X(\pi_Y(R)) = \pi_X(R) attr(P) \subseteq X \subseteq \Sigma(R) then \pi_X(\sigma_P(R)) = \sigma_P(\pi_X(R)) where attr(P) denotes the set of attributes used in P
```

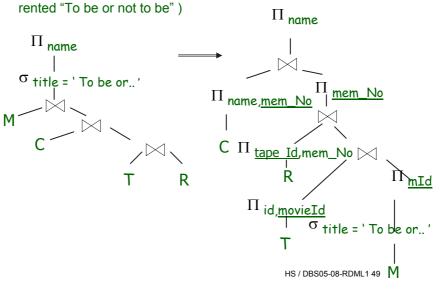
HS / DBS05-08-RDML1 47

Relational Algebra Using RA for opitmization

- An relational algebra operator tree is the data structure representing a RA expression
 - Compare with operator trees for arithmetic expressions
- Algebraic optimization: systematic interchange of operation according to the laws of RA
- Does not change time complexity in general, but "makes n small".
- Implementation of Algebraic Optimization by transformation of the operator tree
- Evaluation by recursive evaluation of the tree
- Systematic treatment of different optimization techniques
 → Part II (Implementation)

RA Operator tree transformation: example

Operator tree: example "Last name of customers who



6.5.5 Multivalued dependencies and 4NF

Multiple values: example (left over from ch. 5: Normal Forms)

Person (name, affiliation, hobbies)

Meier	FUB	skiing
Müller	TUB	trekking
Meier	FUB	trekking
Schulze	HU	skating

Redundancy introduced by multiple values

'hobbies' is multivalued dependent on name

Definition for single attribute multi valued (MV) dependencies:

Let
$$R = (a, y, b)$$
,

b is multivalued dependent on a $\,$ (a ->>b) if for each value v of a $\,$ {v} X (π_y ($\sigma_{a=v}$ R)) X (π_b ($\sigma_{a=v}$ R)) \subseteq R

Example: {'Meier'} X {'FU'} X {'skiing', 'trekking'} \subseteq Person {'Müller'} X {'TU'} X {'trekking'} \subseteq Person {'Schulze'} X {'HU'} X {'skating'} \subseteq Person HS / DBS05-08-RDML1 50

Fourth Normal Form

A relation R is in Fourth Normal Form if for every MVD A ->> B

- B ⊆ A or
- B = $\Sigma(R) \setminus A$ or
- · A contains a key

May be easily calculated by splitting up a relation R with a MVD A->> B into R1 and R2 such that $\Sigma(R1) = A \cup B$, $\Sigma(R2) = \Sigma(R) \setminus \Sigma(R1) \cup A$

I	Müller	TUB
Ī	Meier	FUB
Ī	Schulze	HU

Müller	trekking
Meier	trekking
Meier	skiing
Schulze	skating

Better to have multi valued attributes? HS / DBS05-08-RDML1 51

Summary

- Relational algebra: algebra on tables
- · Operators: project, select, cartesian product, union, set difference, (rename)
- Several compound operators: join, outer join, semi-join, division
- Serves as a basis for relational DB languages
- No recursion ⇒ not computationally complete
- Base of SQL
- · Used for optimization by operator tree transformation