5 Normalization:Quality of relational designs

5.1 Functional Dependencies
5.1.1 Design quality
5.1.2 Update anomalies
5.1.3 Functional Dependencies: definition
5.1.4 Properties of Functional Dependencies
5.2 Normal forms
5.2.1 Informal introduction
5.2.2 Normal Forms and FDs
5.2.3 Normal forms (2NF, 3NF, BCNF, MV NF)
5.2.4 Lossless join and dependency preservation
5.2.5 Multivalued dependencies and 4NF
5.3 Algorithms for finding Normal Forms
5.2.1 Informal introduction
5.3.2 Minimal sets of Functional Dependencies
5.3.3 Synthesis and Decomposition
5.4 Normal Forms: Critical review

Lit: Kemper/Eickler: chap 6; Garcia-Molina/Ullman/Widom: chap 3.4 ff.; Elmasr/Navathe: chap 14 Lausen: Datenbanken - Grundlagen und XML-Technologien

Roadmap

- Functional dependencies may cause "update anomalies" \square
- Update anomalies cause troubles
\Rightarrow find relational schema without "anomalies" in case of update \square
- Define "Normal forms" for relations which do not show (all) anomalies
- Given a set of functional dependencies, find algorithm which generates a relational schema in some normal form.

5.2 Normal Forms

5.2.1 Informal introduction

First normal form: all attributes are single valued and atomic "Movie"-table is in first, but not in second normal form.
Second normal form (2NF): No non-prime attribute functionally dependent on only part of the primary key
("No partial dependency")
Remove "format" from "Movie" -attributes, mld is a single attribute key -> no partial dependencies on key-> table in 2 NF

But: thereis still a dependeny, which is not a key dependency: \{director\} -> \{birthdate\}

Design quality FDs and Normal Forms

Third normal form (3NF):

- No dependencies of non-prime attributes except those on the whole key or on candidate keys
Example:
Movie (mld, title, director, birthdate, livesInCity,...) 2NF but not in 3NF since director \rightarrow birthday is a FA

To achieve 3NF, data on directors, i.e. birthdate, livesInCity, have to be put into a different table:

Movie(mld, title, director, year,...) and
Dir (director, birthdate, livesInCity) are in 3NF
Note: the original table "Movie" can be reconstructed by a join.
HS/DBS05-7-FA 18

5.2.2 Normal forms - definitions

Given a set of Functional Dependencies

- Wanted:
- Find "normalized" relations from "unnormalized" R
- Define normalization properly
- Design algorithm which decomposes R from FDs to normalized relations
- Or: synthesizes normalized relations from FDs which result in R when joined
- First Normal form: \square (no structured attributes)

Normal Forms Second normal form

- Second normal form
R is in second normal form (2NF), iff $\forall X \subseteq \Sigma(R)$, $\forall a \in \Sigma(R): a \notin X$, a not prime, $X->a$ $\Rightarrow X$ is a key or a superset of a key but not a proper subset of any key of R

This means basically thereis no functional dependencyin which a non- prime attribute depends on some part of a key („no partial dependencies on keys")
Example from above:

Normal Forms Second normal form

Removed: partial dependency on key
Movie (mld, title, format, directpr, birthday, livesInCity)
Movie2(mld, format)
.... but a functional dependency remains
..... since there is a transitive dependency on a (the) key: mld $->$ director \rightarrow birthday

More general: a non-prime attribute y is transitive dependent on a key K , if $\mathrm{K} \rightarrow \mathrm{X}$ and $\mathrm{X} \rightarrow \mathrm{y}$ and $\operatorname{not} \mathrm{X} \rightarrow \mathrm{K}$ Notation: K -> X -> y

Normal Forms Third normal form

- Example

Suppose for each tape the video shop wants to record the company which sold the tape, furthermore its phone number

Tape(id, format, mld, since, back, seller, phone)
'seller' is not a key, 'phone' is not prime
but $\quad\{i d\}$-> $\{$ seller $\}$-> \{phone $\}$
'Tape' is in 2NF (why?), not in 3NF
$3 N F \Rightarrow$ no partial dependencies on a key $\Rightarrow 2 N F$

Decomposition: eliminate FDs

- Given $\Sigma(\mathrm{R})=U$ and DEP the set of FDs
- Find the set of keys K :
$K->U \in D E P$ or $K->U \in D E P^{+}$(set of all implied dependencies)
- Eliminate all transitive dependencies by splitting recursively
- if $K \rightarrow Y$-> a is a transitive FD in R_{k}, split R_{k} into R_{i}, R_{j}

$$
\Sigma\left(\mathrm{R}_{\mathrm{i}}\right)=\Sigma\left(\mathrm{R}_{\mathrm{k}}\right) \backslash\{\mathrm{a}\}, \Sigma\left(\mathrm{R}_{\mathrm{j}}\right)=\mathrm{Y} \cup\{\mathrm{a}\}
$$

until there is no more relation with a transitive dependency

- Example
$\Sigma(R)=\{a, b, c\}, F=\{a->c, a->b, b->c\}$
Key: $\{\mathrm{a}\}$
Transitive dependency a -> b $->\mathrm{c}$
Normal form: $\Sigma(\mathrm{R} 1)=\{a, \mathrm{~b}\}, \Sigma(\mathrm{R} 2)=, b, c\}$

Normal Forms Third normal form
Third normal form:
R is in Third Normal Form (3NF) if no non-prime attribute is transitively dependent on a key
or:
If an attribute a of R is transitively dependent on a key k :
$\mathrm{k}->\mathrm{X}$-> a then either

- X contains a key
- a is prime
- a is an element of X
...or more formally:
R is in third normal form (3NF), iff
$\forall x \subseteq S(R), \forall a \in S(R): a \notin X, X->a$
$\Rightarrow X$ contains a key or a is prime

DESIGN QUALITY: what do we have?

- Functional Dependencies
- Normal forms
- 2NF: no functional dependencies of non-prime attributes on part of a key
"no partial dependencies"
-3 NF : no transitive dependency of a non-prime attribute b on a Key $K: K \rightarrow X \rightarrow a$
and $\neg \mathrm{X}->\mathrm{K}, \mathrm{a} \notin \mathrm{K}$
" no transitive dependencies"
3NF $\Rightarrow 2 N F$
More dependencies??

YES: dependencies between prime attributes!

Normal Forms More normal forms?

- What kind of dependencies remain?
- Remember: "3NF : No other dependencies of nonprime attributes than from a key"

Example:
$R(p, o, s, n)$ with $\{0, s, n\}->p, p->o$ and the
keys $\{0, \mathrm{~s}, \mathrm{n}\}$ and $\{\mathrm{p}, \mathrm{s}, \mathrm{n}\}$
R is in $3 N F$, but there is a transitive dependencyin R :
$\{p, s, n\}$-> p->o
e.g. ($\mathrm{p}, \mathrm{o}, \mathrm{s}, \mathrm{n})=(\mathrm{PLZ}, \mathrm{City}$, Street,Number $)$

- Given Relation R with two candidate keys and more than one attribute each:
$K=\{a, b\}, K^{\prime}=\{c, d\}$ R may be in 3NF but there may exist a FD among key attributes in R

Boyce Codd Normal Form

- Boyce-Codd Normal Form(BCNF) :

A relation R is in $B C N F$, if there are no non trivial dependencies X-> a except when X contains (or is) a key.
Equivalent to: There are no transitive dependencies in R other than trivial ones
Consequence: $\mathrm{BCNF} \Rightarrow 3 N F$
Equivalent to: X -> a then (i) trivial (ii) X is superkey of R

- Always decompose relations to BCNF?
- Does only work, if the decomposition has particular properies
- Normalization (by decomposition) means:

Split the relation R into relations $R_{1}, R_{2}, \ldots, R_{n}$ in a way, such that R_{i} are in normal form (3NF or BCNF) which

- „preserves information"
- preserves dependencies
- Criterion for „preserved information":
$R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}=R$
„lossless property"

Lossless joins

- Example:

- Lossless property depends on functional dependencies e.g. $\{a->b, c->b\}$ could hold in the above situation
- If $\{a->c, c->b\}$ the decomposition of $R(a, b, c)$ into $R 1$ (a,c), R2(c, b) is lossless (check!)
- In general: Decomposition of R into R1 and R2 is lossless, if

"Natural join"

Lossless joins

- Lossless decomposition and keys
$\Sigma(\mathrm{R} 1) \cap \Sigma(\mathrm{R} 2) \rightarrow \Sigma(\mathrm{R} 2) \quad$ or $\Sigma(\mathrm{R} 1) \cap \Sigma(\mathrm{R} 2)->\Sigma(\mathrm{R} 1)$ means:
The common attribute(s) of R1 and R2 are a key (or a superset of a key) of R1 or R2
(example from above: cis a key of R2)
Important side effect of normalization:
Functional dependencies are transformedinto
key dependent FDs
Advantage: Invariance property expressed by FDs may now be checked by checking the primary key property.

This can efficently be done by any DBS

Preserving Dependencies

If DEP is the set of FDsdefined for relation R, decomposition should guarantee:
foreach $X->Y$ from $D E P$ there is a relation R_{i} in the decomposition with $X \cup Y \subseteq \Sigma\left(R_{i}\right)$.
This should be a key dependency, i.e. X should be a (super) key

Means: the set of FDs after decomposition should be the same as before.

Example:
Movie1 (mID, title, director), M2(director, birthday)
Dependencies are preserved

- BCNF does not always guarantee both the lossless property and dependency preservation

3NF versus BCNF

Example:

Let (p, s, n) be the key of $R(p, o, s, n)$
there is a transitive dependency of the (prime)
attribute o on (p, s, n).
Normalisation to BCNF:
R1 (p, s, n) and R2(p, o)
Dependency ($\mathrm{o}, \mathrm{s}, \mathrm{n}$) ->p is lost

- Consequence:

Normalization to 3NF is the best we can achieve

- Note the following property.

If thereis at most one key with more than one attribute, $3 N F \Leftrightarrow B C N F$

5.2.5 Multivalued dependencies and 4NF

Multiple values: example

Person (name, affiliation, hobbies)

Meier	\cdots	skiing
Müller	TUB	trekking
Meier -6	F为	trekking
Schulze	HU	skating

Redundancy introduced by multiple values
'hobbies' is multivalued dependent on name

Definition for single attribute multi valued (MV) dependencies: see below,
Let $R=(a, y, b)$, chap. 6
b is multivalued dependent on $a(a-\gg b$) if for each value v
of a $\quad\{v\} \times\left(\pi_{y}\left(\sigma_{a=v} R\right)\right) X \quad\left(\pi_{b}\left(\sigma_{a=v} R\right)\right) \subseteq R$
Example: \{'Meier'\} X \{'FU'\} X \{'skiing', 'trekking'\} \subseteq Person
\{'Müller'\} $\times\{$ 'TU'\} \times \{'trekking'\} \subseteq Person
\{'Schulze'\} $\times\{$ 'HU'\} \times \{'skating' $\} \subseteq$ Person \quad Hs/DBsos-7-FA3 4

Fourth Normal Form

A relation R is in Fourth Normal Form
if for every MVD A ->> B

- $B \subseteq A$ or
- $\mathrm{B}=\Sigma(\mathrm{R}) \backslash \mathrm{A}$ or \quad see below,
- A contains a key
chap. 6
May be easily calculated by splitting up a relation R with a MVD A->> B into R1 and R2 such that $\Sigma(\mathrm{R} 1)=\mathrm{A} \cup \mathrm{B}, \Sigma(\mathrm{R} 2)=\Sigma(\mathrm{R}) \backslash \Sigma(\mathrm{R} 1) \cup \mathrm{A}$

Müller	TUB			
Meier	FUB			
Schulze	HU	\quad	Müller	trekking
:---	:---			
Meier	trekking			
Meier	skiing			
Schulze	skating			

Better to have multi valued attributes?

5.3 Algorithms for finding Normal Forms

5.3.1 Informal introduction

- Invariants hold in the application domain They are made explicit during requirements analysis
e.g. "A tape may only be borrowed by one client"
"A video tape has one and only one format"
"A person has exactly one date of birth"
- Wanted: algorithm producing relational schema from the set DEP of all FDs

FDs and Normal Forms

Given a set of dependencies DEP there are two

 approaches:- Set up relations in such a way, that
- All attributes are consumed
- The relations are in normal form

Called synthesis of relations

- For a given set of relations find those which are not normalized with respect to DEP and decompose them into normalized relations
Called decomposition
- Question: how do we find all FDs?

5.3.2 Minimal sets of Functional Dependencies

Task:
Given a set of FDs F and a relational schema
-> Find all FDs F^{\prime} implied by F (?)
$->$ Find a canonic set $F^{\prime \prime}$
\rightarrow Find a relational schema in 3NF
How to find all FDs?

- The first step for synthesis or decomposition: given a set of dependencies DEP, determine all dependencies of E which must "logically" hold:
$D E P^{+}=\{f \mid f$ is a FD in the attribute set,
f is implied by DEP\}
Implied means: " DEP $\Rightarrow f$ " can be provenHs/DBSos-7-FA38

Finding a canonical set

- Dep $^{+}$- the set of all implied dependencies of DEP is called the closure of DEP
- Example:

Movie (mld, title, format, director, birthdate, livesInCity)
$a, b, \quad c, d, \quad, \quad, g$
$D E P=\{a->b, a->d, a c->c, d->e, d->g\} *$
transitivity: a-> e, a-> g
augmentation: $a b->b, a c->b c, a d->b d, \ldots \ldots . . a b->g b$, ad $->$ bd, ad $->$ gd,

Inclusion: abcd -> abc, abcd -> bcd,

Exponentially many not very interesting dependencies
*Notation: ab ->c means $\{\mathrm{a}, \mathrm{b}\}->\{\mathrm{c}\}$

Finding a canonical set

- Different approach
- Given a set DEP of dependencies, find a minimal one MIN such that: $\mathrm{DEP} \subseteq \mathrm{MIN}^{+}$
- MIN is called a minimal cover of DEP
- Minimal: MIN $\backslash\{f\}$ is not a cover for all $f \in \operatorname{MIN}$
- Finding a minimal cover
- First determine the closure X^{+}of a set of attributes X
- Closure of attribute set X with respect to the set DEP of FDs is the largest set Y of attributes such that $X->Y \in D^{+}$

```
Functional Dependencies Closure of X
m = 0; x[0] = x; /* integer I, attr. set x[0] */
REPEAT /* loop to find larger X[I] */
    I = I + 1; /* new I */
    x[I] = x[I-1]; /* initialize new x[I] */
    FOR ALL Z ->W in DEP /* loop on all FDs z ->W in DEP*/
    IF Z \subseteqX[I] /* if z contained in X[I] */
    THEN X[I] = X[I]\cupW; /* add attributes in W to X[I]*/
    END FOR /* end loop on FDs */
UNTIL X[I] = X[I-1]; /* loop till no new attributes*/
RETURN X = X[I] ; /* return closure of X */
Used rule: X -> YZ and Z -> W then X -> YZW
Proof?
Example:
    X=X[0] ={a,b} (attributes a and b), DEP = {a -> b,b b da, e>>d}
    X[1]={a,b,d}
    X[2] = X[1]

\section*{Finding a canonical set}
- Algorithm for determining a minimal cover in polynomial time
- Steps
1. Replace each FD \(X \rightarrow Y\) of DEP in which \(Y\) contains more than one attribute, by FDs with one attribute on the right hand side Example: DEP \(=\{a b->c d, a->e\} \rightarrow\{a b->c, a b->d, a->e\}\)
2. Remove redundant \(F D\) f is redundant, if ( \(\mathrm{DEP} \backslash\left\{\})^{+}=\mathrm{DEP}+\right.\) Example: \(\{b \rightarrow d, d \rightarrow e\), ef \(\rightarrow a, c \rightarrow f, b c->a\}\) \(b \rightarrow d, d \rightarrow e \Rightarrow b \rightarrow e, c \rightarrow f \Rightarrow b c \rightarrow\) ef , ef \(\rightarrow a \Rightarrow b c->a\) FD bc \(->\mathrm{a}\) is redundant
3. Minimize left hand side of each \(F D\), i.e. if \(f=X->Y \in D E P, a \in X\) and \(\left.\{D E P\}+=\left(D E P^{\prime}\right)^{+}, D E P^{\prime}=\{D E P \backslash f\} \cup X \backslash\{a\}->Y\right\}\) then replace DEP by DEP', If a FD has been minimized repeat step 2 . Example: \(\{b c d \rightarrow a, c \rightarrow e, e \rightarrow b\}^{+}=\{c d \rightarrow a, c>e, e \rightarrow b\}+\)
4. Make lefthand side of \(F D\) s unique by applying the union rule Example: \(\{c d->a, c d \rightarrow e, d \rightarrow f\}\) becomes \(\{c d \rightarrow a e, d \rightarrow f\}\)

\subsection*{5.3.3 Synthesis and Decomposition}
- Given \(\Sigma(\mathrm{R})=\mathrm{U}\) and DEP the set of FDs
- Find the set of keys \(K\) : see above..
\(K->U \in D E P\) or \(K->U \in D E P^{+}\)
- Eliminate all transitive dependencies by splitting recursively if \(K->Y->a\) is a transitive FD in \(R_{k}\), split \(R_{k}\) into \(R_{i}, R_{j}\) \(\Sigma\left(\mathrm{R}_{\mathrm{i}}\right)=\Sigma\left(\mathrm{R}_{\mathrm{k}}\right) \backslash\{\mathrm{a}\}, \Sigma\left(\mathrm{R}_{\mathrm{j}}\right)=\mathrm{Y} \cup\{\mathrm{a}\}\)
until there is no more relation with a transitive dependency
- Example
\(\Sigma(R)=\{a, b, c\}, F=\{a>b, b>c\}\)
Key: \{a\}
Transitive dependencya->b ->c
Normal form: \(\Sigma(\mathrm{R} 1)=\{\mathrm{a}, \mathrm{b}\}, \Sigma(\mathrm{R} 2)=\{\mathrm{b}, \mathrm{c}\}\)
- Disadvantage;
- May produce more relations than necessary
- Time complexity, since keys have to be determined in each step HS/DBS05-7-FA43

\section*{...and Synthesis}
- Normalization problem:
- Given a relation R in 1NF and a set of DEP of FD Find a lossless, dependency preserving decomposition \(\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{k}}\), all in 3 NF
- Synthesis Algorithm
1. Find minimal cover MIN of DEP;
2. For all \(X \rightarrow Y\) in MIN define a relation

RX with schema \(\Sigma(R X)=X \cup Y\)
3. Assign all FDs \(X^{\prime} \rightarrow Y^{\prime}\) with \(X^{\prime} \cup Y^{\prime} \subseteq \sum(R X)\) to RX
4. If at least one of the synthesized relations \(R X\) contains a candidate key of \(R\)
skip
else introduce a relation Rkey which contains a
candidate key of \(R\)
5. Remove relations RY where: \(\Sigma(R Y) \subseteq \Sigma(R X)\)

Final result: lossless, dependency preserving decompositionofoBs05-7-FA44

\section*{Normal Forms Synthesis}

\section*{Example}

Movie ( \(\underline{\text { mld }}\), title, format, director, birthday, livesInCity)
MIN \(=\{\) mID \(->\{\) title, director \(\}\),
director \(\rightarrow\) \{birthday, livesInCity\},
format -> format \}
R1 = (mld, title, director)
R2=(director, birthday, livesInCity)
R3 \(=\) (format)
No relation which includes key.
Therefore: \(\mathrm{R} 4=\) (mld, format)
\(R 3 \subseteq R 4\) : remove R3

\subsection*{5.4 Normal Forms: Critical review}

\section*{Should relations be always normalized?}
- Yes : makes invariant checking easy, no „update anomalies"
- No: Why should we normalize if there are no updates?

\section*{Example:}

Customer( culd, name, fname, zipCode, city, street, no)
No reason to normalize into e.g.: Cu1(culd, name, fname) and CuAdr(culd, zipCode, city, street, no)
if only one address per customer and updates are infrequent
- Yes: consider cost of joins / updates
- How expensive areselects which need joins because of normalization?
"Select name from Cu1, Cu2 where Cu1.culd = Cu2.culd and..."
- Updates which cause anomalies?

\section*{ER modeling and Normal Forms}
- ER and Normal Forms two different mechanisms to set up or enhance a database scheme
- ER more intuitive, NF uses algorithms
- BUT
- ER-models often already in NF
- Starting with a universal set of attributes and FDs and synthesizing relations not a "natural way" of modeling
- Use normalization as a complementary design tool
1. Set up ER model
2. Transform to relations
3. Normalize each non normalized relation if the tradeoff of join processing (Select) and updating redundant data suggests to do so```

