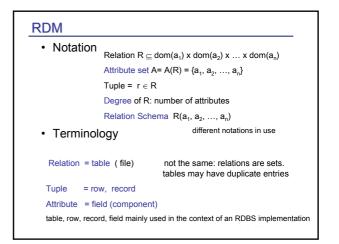

3. Schema Design: Logical Design using the Relational Data Model

- 3.1 Logical Schema Design
- 3.1.1 The Relational Data Model Basics
- 3.1.2 Keys, candidate keys and more
- 3.2 From Conceptual to Logical Schema: Mapping ER to RDM
- 3.2.1 Relationships to relations: a simple step
- 3.2.2 Mapping weak entities and multivalued attributes
- 3.2.3 Consolidation
- 3.2.4 Mapping generalization hierachies and more Kemper/ Eickler: chap. 3.1-3.3, Elmasri / Navathe: chap. 9

3.1 Logical schema design

- · Second phase of DB design
 - Transform the E-R model into the logical schema of a particular data model
 - Easy for Relational Data Model (RDM) can be performed automatically (e.g. Oracle Designer, Visio, and many other tools)
- · The next steps:
 - Relational Data Model: Basics
 - General principles for mapping entities and relationships to relations (of the RDM)
 - Define the DB schema by means of a Data Definition Language (DDL) - SQL DDL in Relational DBS
 - Formal analysis of the relational schema, / DBS05-04-RDM1 3

3.1.1 The Relational Data Model - Basics

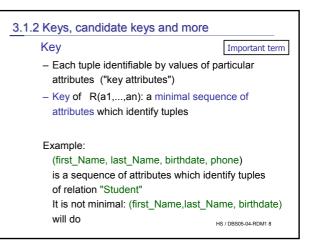

The Relational Data Model

- Simplicity and formal rigor as the guiding principle

KISS - Keep It simple, stupid Do we need entities and relations? No, just relations and attributes

- Relations are mathematical objects
- Relations may be implemented by tables
- Introduced by E.F. Codd, 1970, at that time at IBM Research labs, San Jose. Honored by the Turing award for his achievement.

3.1.1 Basics of the RD	M					
Basic ideas – Database is collection of – Relation R = set of n-tuple Relation scheme R(a, a)	es	IS	Impo	rtant terr	ns	
 Relation schema R(a₁,a₂, Attributes a_i have atomic 	112	from d	omain F)=dom(a.)	
relation (table) attribute tuple	fName Tina Anna Carla		ident email mueller@ katz@ piep@	matrNo 13555 12555 11222		
relation schema: Student(fname, name, email, matrNo) OF						
Student(fname:Name, name	:Name,		trNo:nu	•• · .		

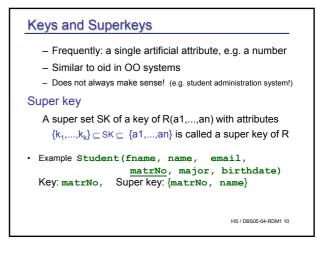


Properties of the RDM

Properties

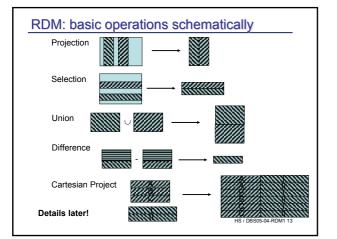
- No duplicate rows: R is a set
- No tuple order
- Database relations are time variant update, insertion, deletion of tuples
- · Integrity constraints must hold for all states over time
- Attributes have a primitive type, no constructed type
- Unique names in the relation and the DB namespace otherwise dot-notation: R.a, db.S.b
- Attributes single-valued (more or less...)
- Attributes may have no value (NULL value)

HS / DBS05-04-RDM1 7



RDM: key

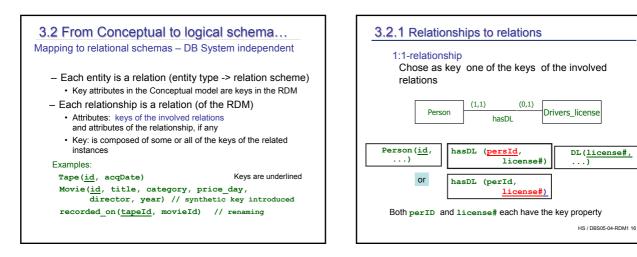
Formally: $(k_1, \dots, k_k) \subseteq A = \{a1, \dots, an\}$ is a key iff:

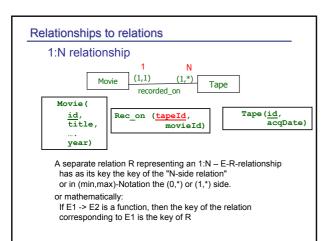

- if v₁,...,v_k are the values of k1,...k_k of a row r1 and v₁',...,vk' for a row r2, and r1 != r2
 ⇒ there is at least one i, 1 <= i <= k, v_i!=v_i')
 (identifying property)
- there is no subset of {k₁,...,k_k} with this property (minimality)

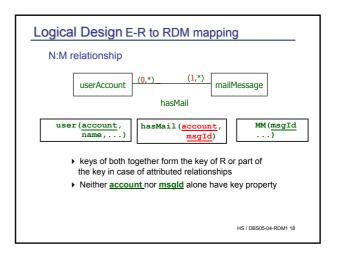
each relation R has a key since R is a set (in theory ...)

Primary Key, candidate key	RDM: Foreign	
 A relation must have a key, but may have several. The keys of a table are called candidate keys* 	How can rows o Example:	
Example: Student(fname, name, email, matrNo, major) Candidate Keys: (Email), (MatrNo)	R: Student S: Exam (Exam.std shoul	
 Primary Key: an arbitrarily chosen candidate key 	Exam.std shou	
 Primary key access is "by value", not by location (oid) as in OO-languages 	Foreign key A set of attributes FK	
Example: Find Student.name where email='katz@inf.fu- berlin.de'	 attributes of FK of primary key p A value of FK ir for some t, in R 	
* Schlüsselkandidaten, nicht Kandidatenschlüssel HS / DBS05-04-RDM1 11		

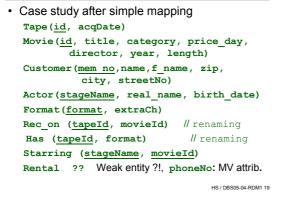
RDM: Foreign Key
How can rows of other tables be referenced?
Example:
R: Student(fname, name, email, <u>matrNo</u>)
S: Exam (<u>prof</u> , std, subject, grade, <u>dateTime</u>)
Exam.std should identify exactly one student.
Foreign key
A set of attributes FK in relation schema S is called a foreign key if - attributes of FK have the same domain as the attributes of primary key pk of a relation R
- A value of FK in tuple $t_{\rm s}$ of S either occurs as a value of pk for some $t_{\rm r}$ in R or is NULL.
HS / DBS05-04-RDM1 12

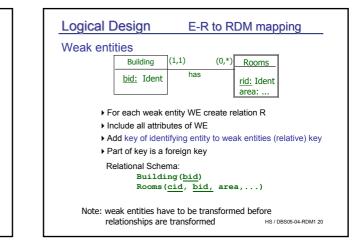

What next: From Entities to relations

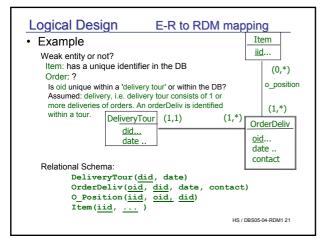

- 1. Select data model
 - → here relational data model
- 2. Transform conceptual model into logical schema of relational data model

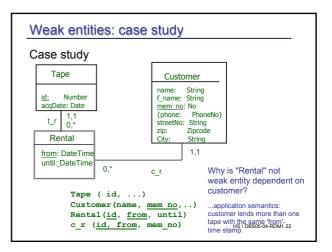

Mapping E-R designs to relational schemas

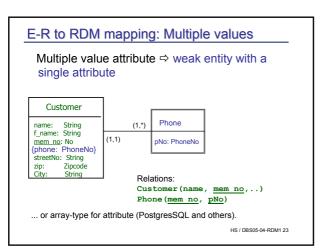
Define relational schema, table names, attributes and types, invariants

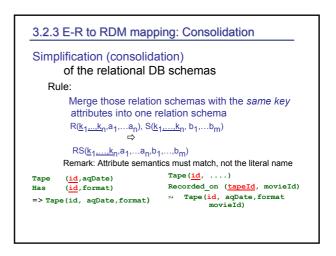

- Design steps:
 - 1. Translate entities into relations
 - 2. Translate relationships into relations
 - 3. Simplify the design
 - 4. (Select database system)
 - 5. Define tables in SQL
 - 6. Define additional invariants
 - 7. Formal analysis of the schema









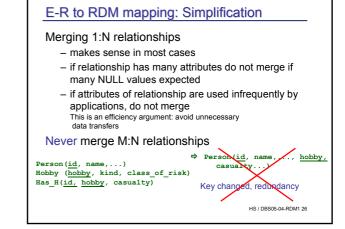


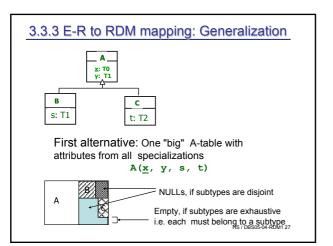
E-R to RDM mapping: Simplification

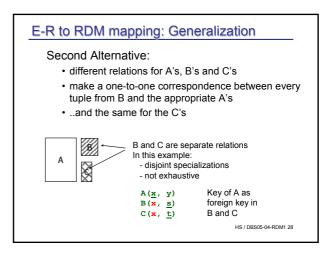
Transformation

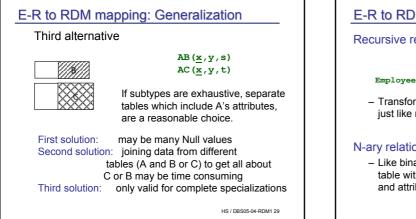
- unambiguous for relations representing 1:N
- 1:1 relationships: merge with one of the "entity-tables"
- M:N relationships: never merge Representation in RDM always by a separate table!

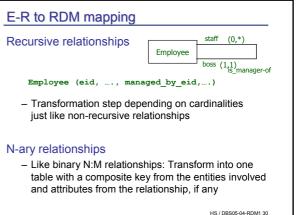
Always merge 1:N relationships?

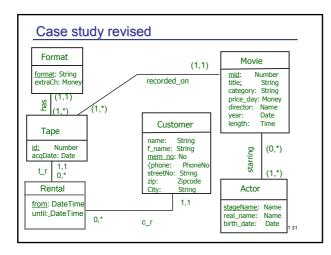

```
Example: Person(id, name,...)


Room (<u>rNo</u>, size, ...)


Sits_in(id, rNo, since, netSocket#,...)


Merge would result in a relation with many NULL values


Person(id, name, rNo, since, netSocket#...)
```



Logical Design E-R to RDM mapping	_
Tape(<u>id</u> , m_id, format, acqDate)	
Movie(<u>id</u> , title, category, price_day,	
director, year, length)	
Customer(<u>mem_no</u> ,name,f_name, zip,	
city, streetNo)	
<pre>Actor(stage name, real_name, birth_date</pre>)
<pre>Format(format, extraCh)</pre>	
Rental (<u>t Id</u> , <u>from</u> , until)	
Phones (phoneNo, mem no)	
<pre>Starring (stageName, movieId)</pre>	
HS / DBS05-04-RDM1 3	?

Summary ER to RDM (system independent)

- · Represent entities by relations (tables)
- Treat weak entities and generalization in a special way
- Represent relationships by relations, keys depend on cardinality of relationship
- Simplify the abstract schema by folding relations having the same key .

Note:

- Lost nearly all constraints in the abstract relational schema
 - Most cardinalities are lost
 - No existential dependencies (as for weak entities)
 - No value restrictions for attributes (not part of E-R)
 - · Key constraints survived
- Concrete SQL / DDL allows to specify most of thems

Summary

- · Relational data model
 - Representation of data as relations(tables)
 - Very simple strucuture has pros and cons (which?)
 - the most important data model today
- · Important terms & concepts
 - Relation: set of n-tuples
 - Relation schema defines structure
 - Attribute: property of relation, atomic values
 - Superkey, candidate key, primary key identify tuple
 - Transformation rules for entities, relationships
 - Simplification