5. Introduction to Data Mining

5.1 Introduction

5.2 Building a classification tree
5.2.1 Information theoretic background
5.2.2 Building the tree
5.3. Mining association rule
[5.4 Clustering]

Data Mining

- Data Mining is all about automating the process of searching for patterns in the data.

Which patterns are interesting?

- How do we find them?

5.1 Introduction

	PERSONID μ	${ }^{\text {a }}$ AGE H	WORKCLASS H	WEIGHT ${ }^{\text {H }}$	Education μ	EDUCATON_NUM ${ }^{\mu}$	MAFITN_Btatus μ	OCCUPATION\#	
$\begin{aligned} & 8 \\ & 3 \end{aligned}$	3	70		133348	H5-grad	9	Married		Husban
	4	24	SeIteni	277700	- Bach	10	Separ.	Handier	O-ctald
	5	20	Private	226978	H5-grad	9	Newem	Ofer	O-child
	6	20	Stargor	205895	< Bach	10	Neverm	Clenk.	O-crild
	14	24	Prost	162593	Bach.	13	Newem	Clerk.	NOSnFs
	19	42	Pinste	317078	HS-grad	9	Drore.	Mathine	NOAnFa
	20	64	Serter	181408	Assoc:V	11	Marned	Crans	Mustan
	28	37	Fed-gor	325538	Masters	14	Mamied	Prot.	Husban
	28	34	Private	37210	HS-prad	9	NeverM	Clerik.	O-ctild
	33	46	Private	116330	Masters	14	NeverM	Prot.	Notinfa
	52	52	Loc-gov	346688	Masters	14	NeverM	Prot.	O-child
	55	37	Panse	100503	Bach.	13	NeverM	Claris.	Notn5a
	56	25	Finate	154270	11th	1	Mabsent	Sales	O-crild
	57	41	Sta-gor	110556	Masters	14	Married	Exac.	W\%o
	58	58	Private	153551	HSgrad	9	Ditore.	Sales	Unmarn
	60	32	Pivast	239652	H89rad	9	Mamed	Crats	Husban
	61	26	Prost	106705	H89ras	9 -	Neverm	Handier	O-child
	89	23	Prowe	149704	HS-gras	9	Newerm	Clerk.	O-ctidg
	90	43	Loc-gov	135056	HS-prad	9	separ.	Clenk.	Ones.R
	C:	an	$\cdots \cdots$...9	-...	\cdots			F_{5}
Aurnhiongarento		0.191	Zuruitgegatant 2	Fiton\|1225	大-		ett solzeigen	Schielen	Hile

- Large amount of data
- Find "hidden knowledge" - e.g. correlations between attributes
- Statistical techniques
- Challenge for DB technology: scalable algorithms for very large data sets

Introduction

- Typical Mining tasks

Classification

Given set of data and a set of classes. Assign data object to one class according to its characteristics (e.g. values)
find risk dependent on age, sex, make, horsepower risk = 'high' or 'low' in db of car insurance

Methods: Decision tree of data set
Naïve Bayes
Adaptive Bayes
Goal: prediction of attribute value $x=c$ dependent on predictor attributes

$$
F(a 1, \ldots, a n)=c
$$

Sometimes written as classification rule :
$($ age $<40) \wedge\left(\right.$ sex $\left.=` m^{\prime}\right) \wedge($ make=`Golf GTI' $) \wedge(h p>100)$ \Rightarrow (risk='high')

Introduction

Association rules
Market basket analysis: customer transaction data: tid, time, \{articles\}
Find rules $X \Rightarrow Y$, with particular confidence
e.g. those buying sauce, meat and spaghetti buy red wine with 0.7 probability.

Clustering

Group homogenous data into clusters according to some similarity measure. Not predefined as opposed to classification.

Data Mining

- Which patterns are interesting?

What means "interesting"?
Some quantitative measure?

- Which might be mere illusions?
- And how can they be exploited?
- Data mining uses Machine Learning algorithms
- Well known since the 80's
- Challenge: apply to very large data sets

Introduction

- Data mining process

- Data gathering, joining, reformatting e.g. Oracle: max 1000 attributes \Rightarrow transform into "transactional format": (id, attr_name, value)
- Data cleansing
- eliminate outliers
- check correctness based on domain specific heuristics
- check values in case of redundancy, ...
- Build model (training phase). (Example: Decision tree)
- Apply to new data

5.2 Building a decision tree

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker	40 records
good	4	low	low	low	high	75to78	asia	
bad	6	medium	medium	medium	medium	70to74	america	
bad	4	medium	medium	medium	low	75to78	europe	
bad	8	high	high	high	low	70to74	america	
bad	6	medium	medium	medium	medium	70to74	america	
bad	4	low	medium	low	medium	70to74	asia	
bad	4	low	medium	low	low	70to74	asia	
bad	8	high	high	high	low	75to78	america	
:	:	:	:	:	:	:	:	
:	.	:	:	:	:	:	:	
:	.	:	:	:	:	:	:	
bad		high	high	high	low	70to74	america	
good		high	medium	high	high	79to83	america	
bad		high	high	high	low	75to78	america	
good	4	low	low	low	low	79to83	america	
bad	6	medium	medium	medium	high	75to78	america	
good	4	medium	low	low	low	79to83	america	
good		low	low	medium	high	79to83	america	
bad		high	high	high	low	70to74	america	
good		low	medium	low	medium	75to78	europe	
bad		medium	medium	medium	medium	75to78	europe	

Miles per gallon: how can we predict mpg ("bad", "good") from the other attributes example by A.Moore, data by R. Quinlan

Building a decision tree

- Wanted: tree which allows to predict value of an x given the values of the other attributes a1,...an
- Given: a training set - attribute value of x known

How to construct the tree?
Which attribute to start with?

HS /Bio DBS05-5-Datamining 9

Building a decision tree

Simple binary partitioning
$\mathrm{D}=$ Data set, $\mathrm{n}=$ node (root), a attribute
Prediction attribute x

BuildTree(n,D,a)

split D according to a into D1, D2 -- binary! for each child $D_{i}\{$
if ($x==$ const for all records in D_{i}
OR no attribute can split D_{i}) make leaf node else
\{ Chose "good" attribute b create children n1 and n2 Partition Di into $D_{i 1}$ und $D_{i 2}$

What is a "good" discriminating attribute?

BuildTree(n1, $\left.\mathrm{D}_{\mathrm{i} 1}, \mathrm{~b}\right)$
BuildTree(n2, $\left.\mathrm{D}_{\mathrm{i} 2}, \mathrm{~b}\right)$ \}

5.2.1 Data mining and Information Theory

A short introduction to Information Theory
by Andrew W. Moore

Information theory:

- originally a "Theory of Communication"
(C. Shannon)
- useful for data mining

Information Theory

- Huffman - Code

Given an alphabet $A=\{a 1, \ldots, a n\}$ and probabilities of occurrence pi = p(ai) in a text for each ai.

Find a binary code for A which minimizes
$\mathrm{H}^{\prime}(\mathrm{A})=\Sigma \mathrm{pi}$ * length $\left(\mathrm{cw}_{\mathrm{i}}\right), \quad \mathrm{cw}_{\mathrm{i}}=$ binary codeword of ai
$\mathrm{H}^{\prime}(\mathrm{A})$ is minimized for length $\left(\mathrm{cw}_{\mathrm{i}}\right)=\left\lceil\log _{2} 1 / \mathrm{pi}\right\rceil$
well known how to construct it... \Rightarrow intro to algorithms
$\mathrm{H}(\mathrm{A})=-\Sigma \mathrm{pi}{ }^{*} \log _{2}$ pi : important characterization of A what does it mean?

Entropy: interpretations

- Entropy

$$
\mathrm{H}(\mathrm{~A})=-\Sigma \mathrm{pi} * \log _{2} \mathrm{pi}
$$

- minimal number of bits to encode A

- amount of uncertainty of receiver before seeing an event (a character transmitted)
- amount of surprise when seeing the event
- the amount of information gained after receiving the event.

Information Theory and alphabets

- Example
$L=\{A, C, T, G\}, p(A)=p(C)=p(T)=p(G)=1 / 4$,
Boring: seeing a " T " in a sequence is as interesting as seeing a " G " or seeing an " A ".
$H(L)=-1 / 4 * \sum \log 1-\log 4=2$
But:
$L^{\prime}=\{A, C, T, G\}, p(A)=0.7, p(C)=0.2, p(T)=p(G)=0.05$
Seeing a "T" or a "G" is exciting as opposed to "A"
$H\left(L^{\prime}\right)=-\left(-0.7^{*} 0,514-0.2^{*} 2.31-2^{*} 0.05^{*} 4.32\right)$
$=0.36+0.464+0.432=1.256$
Low entropy more interesting

Histograms and entropy

SELECT Count(*), education
FROM Census_2d_apply_unbinned
GROUP BY education;

X y		
14 9th	Male	
7 9th	Female	What can we say about Y if we
19 10th	Male	know X?
10 10th	Female	
23 11th	Male	
13 11th	Female	
9 12th	Male	Special conditional entropy:
	Female Male	$\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=$ val) is entropy for those
65 Bach.	Female	records having $\mathrm{X}=$ val
26 Profsc	Male	
5 Profsc 3 1st-4th	Female Male	
4 1st-4th	Female	e.g. $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=$ 'Profsc')
9 9th-6th	Male	$=26 / 31{ }^{*} \log 31 / 26+5 / 31^{*} \log 31 / 5=0.637$
$137 \mathrm{th}-8 \mathrm{th}$	Male	(31 records)
4 7th-8th	Female	
$\begin{aligned} 158 & \text { < Bach. } \\ 83 & \text { < Bach. }\end{aligned}$	Male Female	Conditional entropy:
27 Assoc-A	Male	
17 Assoc-A	Female	$\Sigma \operatorname{Prob}(\mathrm{X}=\mathrm{xi})^{*} \mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{xi})$ is
$\begin{array}{r} 33 \text { Assoc-v } \\ 7 \text { Assoc-v } \end{array}$	Male Female	the average conditional entropy of Y
287 HS-grad	Male	
146 HS-grad	Female	
55 Masters 33 Masters	Male Female	e.g. $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=\mathrm{H}($ education\|sex) $=0.909$
1 Presch.	Male	
2 Presch.	Female	

Information gain

- What does the knowledge of X tell us about the value of Y ?
- Or: Given the value of X, how much does the surprise of seeing an Y event decrease?
- Or: If sender and receiver know value of X, how much bits are required to encode Y ?

$$
\text { IG }(Y \mid X)=H(Y)-H(Y \mid X)
$$

e.g. IG (education | sex) =

H (education) $-\mathrm{H}($ education|sex $)=2.872-0,909=1.86$
e.g. IG (maritalStatus | sex)
$=\mathrm{H}$ (status) -H (status|sex) $=1.842-0.717=1.125$

Information gain: what for?

- Suppose you are trying to predict whether someone is going live past 80 years. From historical data you might find...
- IG(LongLife | HairColor) $=0.01$
- IG(LongLife | Smoker) $=0.2$
- IG(LongLife | Gender) $=0.25$
- IG(LongLife | LastDigitOfSSN) $=0.00001$
- IG tells you how interesting a 2-d contingency table is going to be.

Contingency tables

For each pair of values for attributes (status, sex) we can see how many records match (2-dimensional)

What is a k-dim contingency table? Any difference to data cube?
COUNT (*) MARITAL_STAT SEX
----------- ---------

1 Mar-AF Male
2 Mar-AF Female
214 NeverM Male
166 NeverM Female
14 Separ. Male
29 Separ. Female
66 Divorc. Male
95 Divorc. Female
12 Mabsent Male
8 Mabsent Female
509 Married Male
78 Married Female
4 Widowed Male
28 Widowed Female

5.2.2 Building a decision tree

Remember

Decision tree is a plan to test attribute values in a particular sequence in order to predict the binary target value
Example: predict miles per gallon (low, high) depending on horse power, number of cylinders, make, ...

Constructing the tree from training set

 In each step:- chose attribute which has highest information gain

Construction of DT: choosing the right attribute

Building the tree

Recursion Step

And partition it according to the value of the attribute we split on

Records in which cylinders
$=5$

Records in which cylinders
$=6$

Records in which cylinders $=8$

Recursion Step

Build tree from Build tree from Build tree from Build tree from These records.. These records.. These records.. These records..

Second level of tree

DT construction algorithm

BuildTree(DataSet, Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_{X} distinct values (i.e. X has arity n_{X}).
- Create and return a non-leaf node with n_{X} children.
- The i'th child should be built by calling

BuildTree(DS ${ }_{i}$,Output)
Where $D S_{i}$ built consists of all those records in DataSet for which $X=$ ith distinct value of X.

Errors

Training set error

- Check with records of training set if predicted value equals known value in record

Test set error

- use only subset of training set for tree construction
- Predict output value ("mpg") and compare with the known value
- Check attribute to be predicted in training set

If prediction wrong: test set error

- For detailed analysis of errors etc see tutorial of A. Moore

Training set error much smaller than test set error - why?

	Num Errors	Set Size	Percent Wrong
Training Set	1	40	2.50
Test Set	74	352	21.02

Decision trees: conclusion

- Simple, important data mining tool
- Easy to understand, construct, use
- no prior assumptions on data
- predicts categorial date from categorial and / or numerical data
- applied to real life problems
- produce rules which can be easily interpreted

But:

- only categorial output value
- overfitting: paying too much attention to irrelevant attributes
... but not known in advance, which data are "noise" \Rightarrow statistical tests

5.3 Association rules: a short introduction

- Goal: discover co-occurence of items in large volumes of data ("market basket analysis")

Example: how many customers by a printer together with their PC

- Non supervised learning
- Measures:
- support ($A \Rightarrow B$) $=P(A, B)$ how often co-occur A and B in the data set
e.g. 0.05 if 5% of all customers bought a printer and a PC
- confidence $(A \Rightarrow B)=P(B \mid A)$ fraction of customers, who bought a PC and also bought a printer, e.g. 0.8: 4 of 5 bought also printer

A Priori algorithm for finding associations

Transactionen	
TransID	Product
111	printer
111	paper
111	PC
111	toner
222	PC
222	scanner
333	printer
333	paper
333	toner
444	printer
444	PC
555	printer
555	paper
555	PC
555	scanner
555	toner

Goal: Find all rules $A \Rightarrow B$ with support >= minSupport and
confidence >= minConfidence

Algorithm first finds all frequent items:
FI $=\{p \mid p$ occurs in at least minSupport transactions\}

All subsets of Fl are also frequent item sets.

A Priori Algorithm

for all products p \{
if p occurs more than minSupport make
frequent item set with one element: $\left.F_{1}{ }^{p}=\{p\}\right\}$
$\mathrm{k}=1$
repeat \{
for each Fk with k products generate candidates $\mathrm{Fk}+1$ with $\mathrm{k}+1$ products and $\mathrm{Fk} \subseteq \mathrm{Fk}+1$.
check in database, which candidates occur at least
minSupport times; (sequential scan of DB)
$k=k+1\}$
until no new frequent item set found

Transactionen		minSupport =3		
TransID	Product		Temporary results	
111	printer		Fl-candidate	\#
111	paper		\{printer\}	4
111	PC		\{paper \}	3
111	toner		\{PC\}	4
222	PC		\{scanner\}	2
222	scanner		\{toner\}	3
333	printer		\{printer, paper\}	3
333	paper		\{printer, PC\}	3
333	toner		\{printer, Scanner\}	
444	printer		\{printer, Toner\}	3
444	PC		\{paper, PC\}	2
555	printer		\{paper, Scanner\}	
555	paper		\{paper, toner\}	3
555	PC		\{PC, scanner\}	
555	scanner		\{PC,toner\}	2
555	toner	example adapted ${ }^{\text {en }}$ (rom Kemper	\{scanner, toner\}	

Generate association rules

Given: set of FI of frequent items
for each FI with support >= minSupport:
$\{$ for each subset $L \subset F I$
define rule R : $L \Rightarrow F I \backslash L$
confidence (R) = support FI / support L
if confidence $(R)>=$ minConfidence: keep L
\}

Example:

FI = \{printer, paper, toner\}
Support = 3
Rule: \{printer\} \Rightarrow \{paper, toner\},
Confidence $=$ Support(\{printer, paper, toner\}) $/$ Support(\{printer\})

$$
\begin{aligned}
& =(3 / 5) /(4 / 5) \\
& =3 / 4=75 \%
\end{aligned}
$$

Increase of confidence

- Increase of Left hand side (i.e. decrease of right hand side) of a rule increases confidence
$L \subset L^{+}, \mathbf{R} \subset \mathbf{R}^{-} \Rightarrow$ Confidence $(L \Rightarrow R)<=C\left(L^{+} \Rightarrow \mathbf{R}^{-}\right)$
- Rule: $\{$ printer $\} \Rightarrow$ \{paper, toner\}
confidence $=$ support(\{printer, paper, toner\}) / support(\{printer\})

$$
\begin{aligned}
& =(3 / 5) /(4 / 5) \\
& =3 / 4=75 \%
\end{aligned}
$$

- Rule: \{printer, paper\} \Rightarrow \{toner\}
confidence $=\mathrm{S}(\{$ printer, paper, Toner\}) / S(\{printer,paper\})

$$
\begin{aligned}
& =(3 / 5) /(3 / 5) \\
& =1=100 \%
\end{aligned}
$$

Summary data mining

- important statistical technique
- basis algorithms from machine learning
- many different methods and algorithms
- distinction supervised versus unsupervised learning
- efficient implementation on very large data sets essential
- Enormous commercial interest (business transactions, web logs,)

