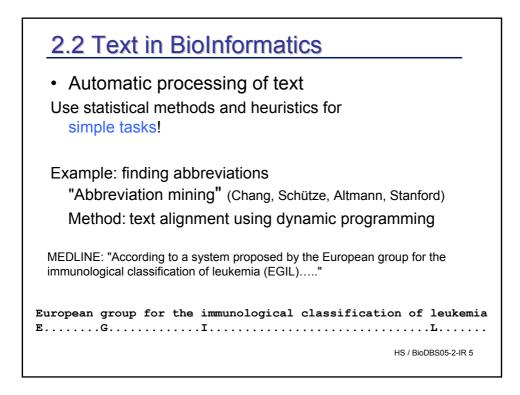
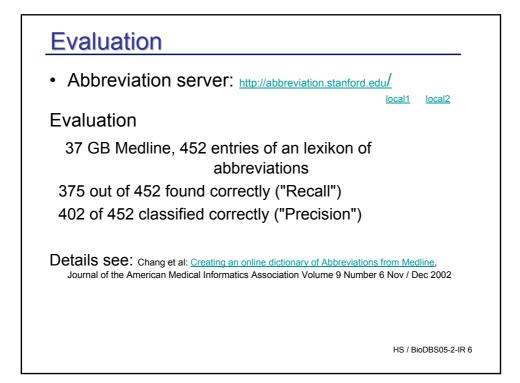
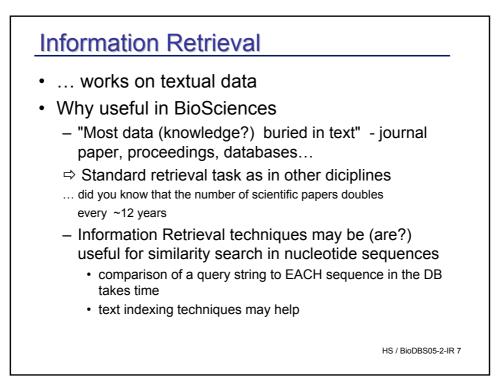
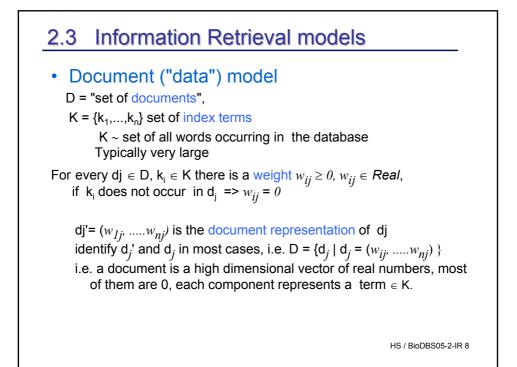
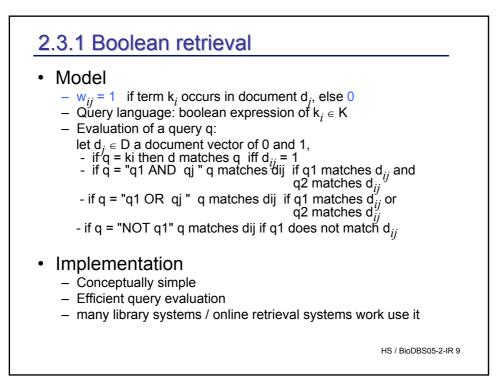

2 The Information Retrieval data model

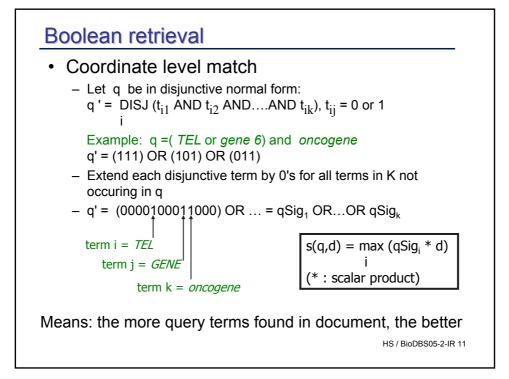

2.1 Introduction: Data models

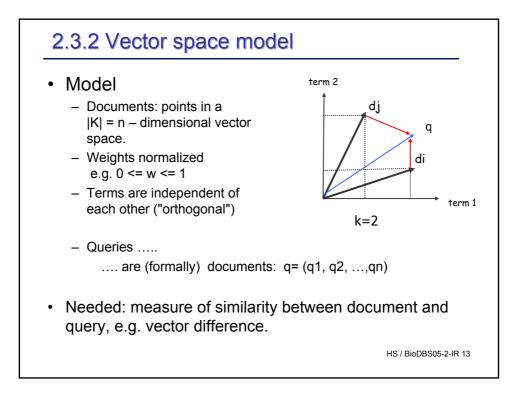

- 2.2 Text in BioSciences
- 2.3 Information Retrieval Models
 - 2.3.1. Boolean Model
 - 2.3.2 Vector space Model
 - 2.3.3 Efficient implementation of VSM
- 2.4 Evaluation of Retrieval effectiveness
- 2.5 Molecular Biology application

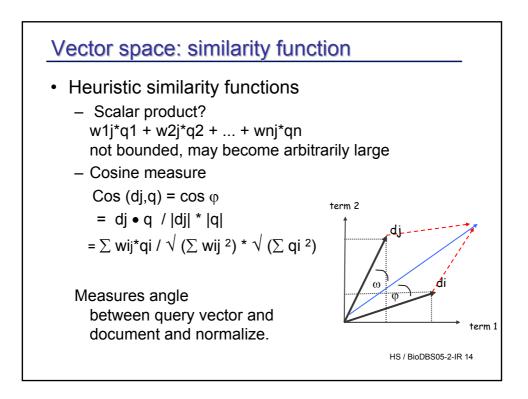

LOCUS AL33DMOR4 314 bp ds-DNA PHG 24-MAY-1991 DEFINITION Bacteriophage alpha3 deletion mutant DNA for origin region (-or of replication ACCESSION X15716	i)
KEYWORDS origin of replication. SOURCE Bacteriophage alpha3 DNA.	
ORGANISM Bacteriophage alpha3	
Viridae; ds-DNA nonenveloped viruses; Siphoviridae.	
REFERENCE 1 (bases 1 to 314) structured fiel	ds
AUTHORS Kodaira,K.I.	
JOURNAL Unpublished (1989)	
STANDARD full automatic REFERENCE 2 (sites)	
AUTHORS Nakano,K., Kodaira,K.I. and Taketo,A.	—multiple values
TITLE Properties of the bacteriophage alpha3 mutants with deletion and/or	r
insertion in the complementary strand origin	
JOURNAL Biochim. Biophys. Acta 1048, 43-49 (1990)	
STANDARD full staff_review COMMENT *source: clone=delo L105; See <j02444>.<m25640>.<x13332:< td=""><td>< < Y15713></td></x13332:<></m25640></j02444>	< < Y15713>
to <x15715>,and <x15717> to <x15721> for other -ori sequences.</x15721></x15717></x15715>	-,-x13713-
Data kindly reviewed (06-JAN-1990) by Kodaiva KI.	00
	(NL) text
From EMBL entry BA3DMOR4; dated 16-JAN-1991.	reference to
BASE COUNT 68 a 67 c 82 g 97 t ORIGIN	reference to
1 tgaagttgag cattacccaa ttgaaatgtc tgttggttct ggtggtgttt gttctgctcg	foreign data sets,
61 cgattgtgct actgttgata ttcatcctcg tacttctggt aataatgttt ttgttggtgt	"micro syntax"
121 gatttgttct agcgctaaat ggacctccgg tcgtgtgatt ggtaccatcg ctacgactca	Iong fields
181 ggttattcat gaataccaag tccttcagcc gcttaaataa aaggctgccg cactcccggt	-
241 tagatgcctg cccagtgtag ggcagaccgg tacggagata cccgataaac taggaacgtg	9

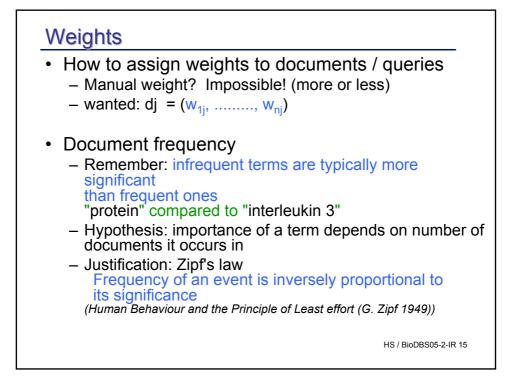


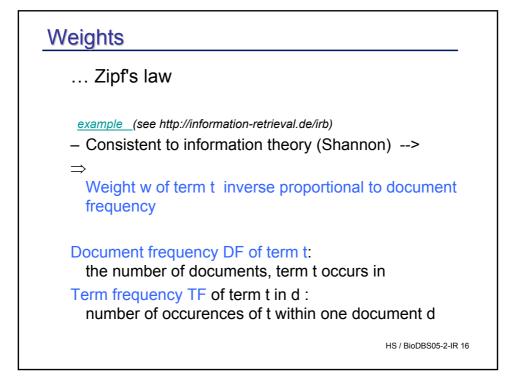


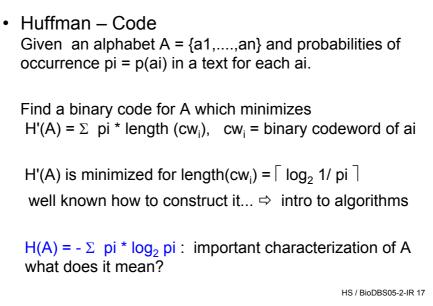


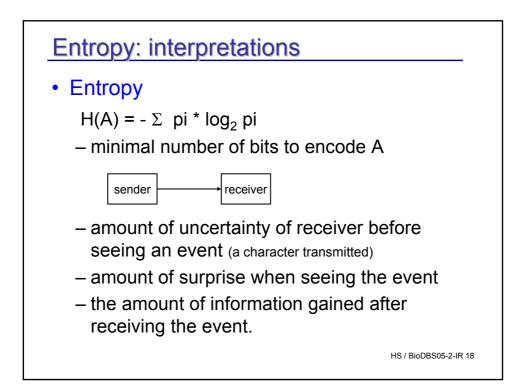




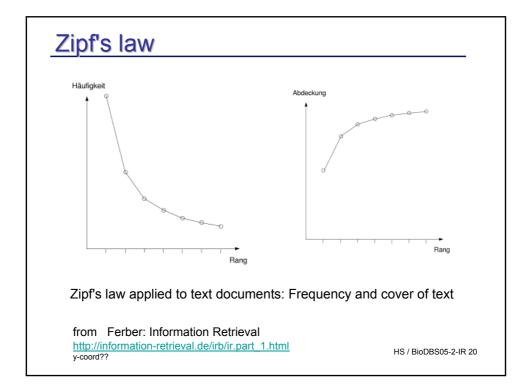

Boolean retrieval	
Issues	
 Very restrictive evaluation: binary decision 	on
Wanted: mapping s: Q x D -> [0,1] Q is the set of all queries	
 Every term has the same influence on th 	e result
Wanted: weight should reflect "important	ce" of term
Example: term "protein" occurs in many documents many times, term "propylthiouracil" less frequent In a search for "propylthiouracil AND protein" bot the same significance.	h have
 For q = "k₁ OR k_j" a document match at least one term matches. No difference if one or all terms match. 	es if
	HS / BioDBS05-2-IR 10

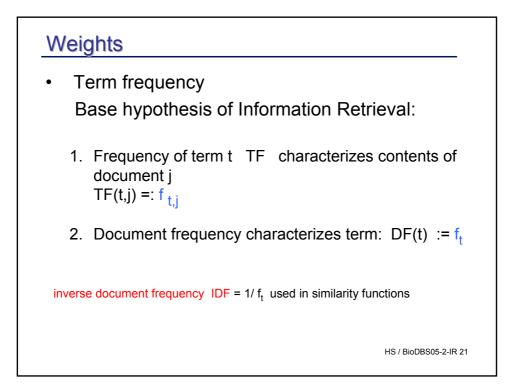


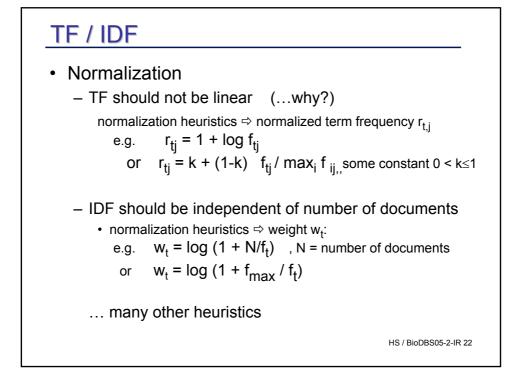




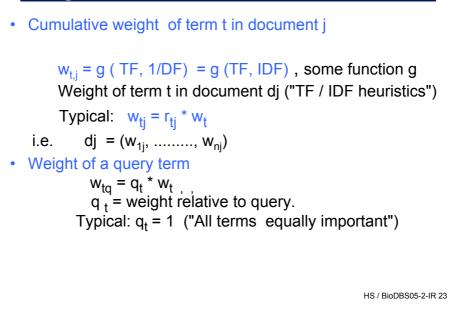
Information Theory

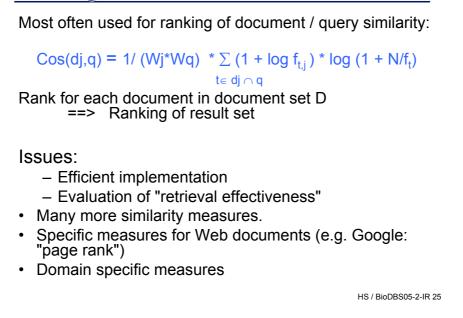

Information Theory and alphabets

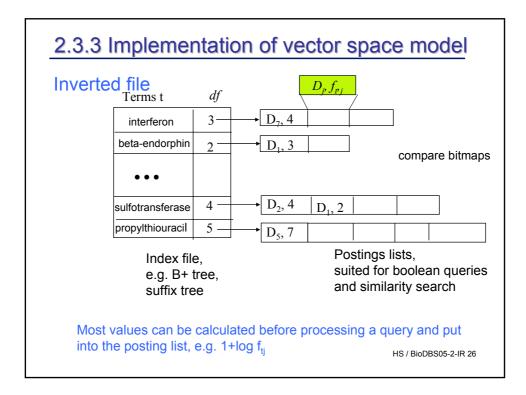

• Example

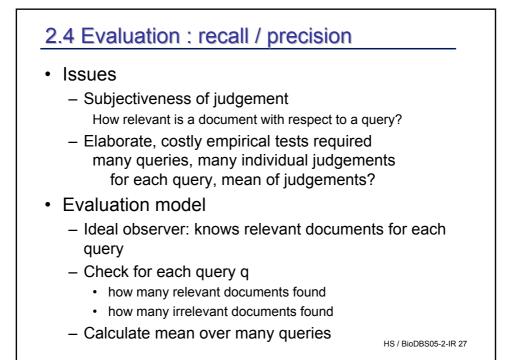

L = {A,C,T,G}, $p(A) = p(C) = p(T) = p(G) = \frac{1}{4}$,

Boring: seeing a "T" in a sequence is as interesting as seeing a "G" or seeing an "A".

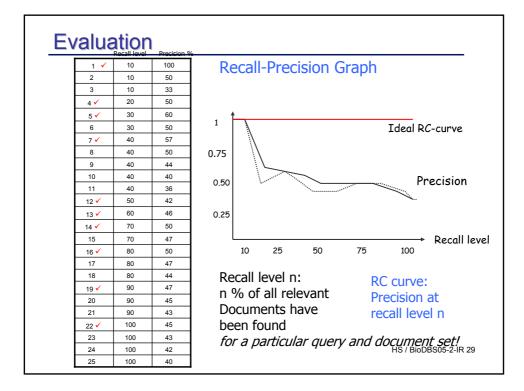

 $\begin{array}{l} \mathsf{H}(\mathsf{L}) = -\frac{1}{4} * \sum \mbox{ log } 1 - \mbox{ log } 4 = \ 2 \\ \mbox{But:} \\ \mathsf{L}' = \{\mathsf{A},\mathsf{C},\mathsf{T},\mathsf{G}\} \ , \ \mathsf{p}(\mathsf{A}) = 0.7, \ \mathsf{p}(\mathsf{C}) = 0.2 \ , \ \mathsf{p}(\mathsf{T}) = \mathsf{p}(\mathsf{G}) = 0.05 \\ \mbox{Seeing a "T" or a "G" is exciting as opposed to "A"} \\ \mbox{H}(\mathsf{L}') = -(-0.7*0,514 - 0.2*2.31 - 2* \ 0.05*4.32 \) \\ = 0.36 + 0.464 + 0.432 = 1.256 \\ \mbox{Low entropy more interesting} \\ \mbox{What is the lowest value?} \end{array}$



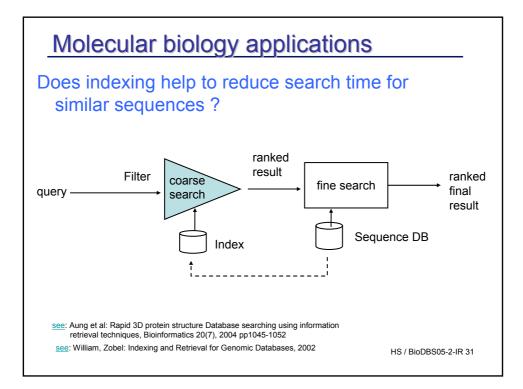

Weights



PankingSubstrainSimilarity of query q and document q
sing cosinus measureDocument fi
smetimes
abreviated asCos(dj, q)
 $= dj \cdot q / |dj| * |q|
<math>= \sum w_{tj} * w_t / \sqrt{(\sum w_{tj} ^2) * \sqrt{(\sum w_{tq} ^2)}}
<math>t \in dj \cap q$ $dj \cdot q / |dj| * |q|$
 $= 1/ (Wj^*Wq) * \sum (1 + \log f_{t,j}) * (\log (1 + N/f_t))^2$
where $w_j = \sqrt{(\sum w_{t,j}^2)}$, $w_q = \sqrt{(\sum w_{t,q}^2)} = \sqrt{(\sum w_{t,j}^2)}$ Note: document frequency has double influence - counts in d_j as well
as q. Reasonable?


Ranking

Evaluation					
Recall:		relevant	not relevant		
fraction of <i>relevant</i> documents <i>found</i> out of	found	r	n		
all <i>relevant</i> documents R = r / (r + v)	not	v	u		
Precision:	found				
fraction of <i>relevant</i> documents <i>found</i> out of <i>all</i> documents <i>found</i>					
P = r / (r + n)					
F-Measure:	Noise:?				
$F = 2P^*R / P + R$					
Relevant objects found should occur as soon as possible in					
Output set.					


2.5 Molecular biology applications

- TREC competition
 - on retrieval of publications in MEDLINE concerning the function of a gene
 ⇒ GeneRIF ("reference into function")

Query example:

For gene X, find all MEDLINE references that focus on the basic biology of the gene or its protein products from the designated organism. Basic biology includes isolation, structure, genetics and function of genes/proteins in normal and disease states.

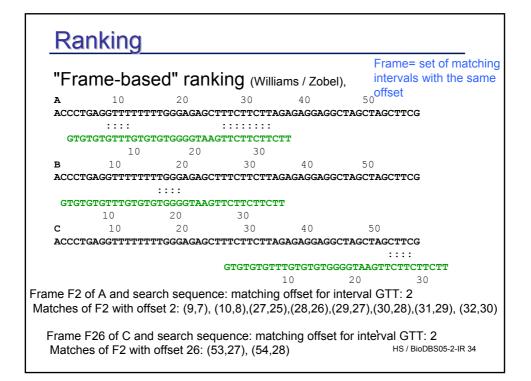
details see paper

Indexing sequences Intervals Insulin - Goose AANQHLCGSHLVEALYLVCGERGFFYSPKT/GIVEQCCENPCSLYQLENYCN* >P1;INAQ Insulin - American alligator AANQRLCGSHLVDALYLVCGERGFFYSPKG/GIVEQCCHNTCSLYQLENYCN* −<u>ل</u>ل ... n length of each interval (n –grams), k length of sequence \Rightarrow k-n+1 intervals Example: acctgtc, n=3: acc, cct, ctg, tgt, and gtc. Construct inverted index for interval occurrence in the sequences of DB correspondence: Document \Leftrightarrow sequence, word (term) $\Leftrightarrow_{HS/BioDBS05-2-IR 32}$

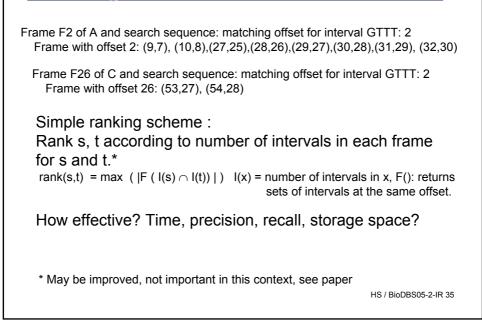
Inverted genomic index

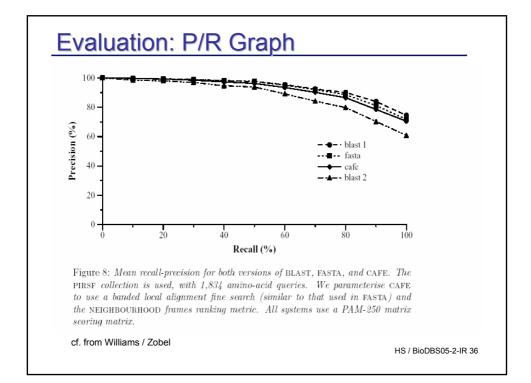
Posting list:

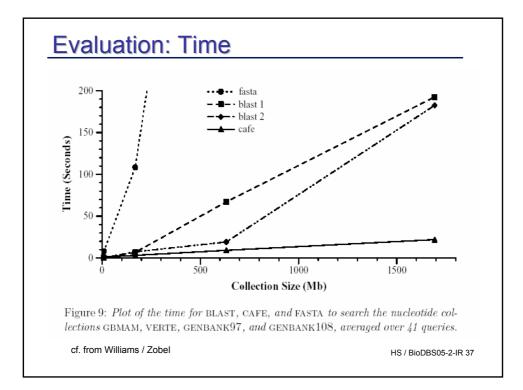
<interval> [seqNo, (noOfMatches: positions)]*


e.g. GAGA -> 52,(3: 147,233,256), 83,(2: 17, 256) means: GAGA occurs 2 times in sequence 52 at positions 147, 233, 256 and 2 times in 83...

Coarse homology search of sequence s in the DB:


- Cut s into intervals


- locate matching sequences in DB and the matches of intervals of $\ensuremath{\mathsf{s}}$


- rank the matching sequences
- fine search (e.g. alignment) on sequences

Ranking

Evaluation: Space

Collection	Inverted lists (Mb)	Other structures (Mb)
GBMAM	25.4	3.3
VERTE	427.7	3.3
genbank97	1420.4	3.3
genbank108	3682.6	3.3
PIRSF	23.6	0.1

Table 1: CAFE index size for the nucleotide collections, GENBANK108, GENBANK97, VERTE, and GBMAM and the amino-acid collection PIRSF. For nucleotide searching, CAFE has an interval length of n = 9 and, for amino-acid searching, an interval length of n = 3.

Index size Genbank: factor of 2.2 compressed factor > 10 uncompressed

Summary

- Information retrieval:
 - essential for text retrieval
 - in molecular biology in particular
 - who published the data when? which experiments?...
 - Indexing seems to be an alternative for a coarse searching step
 - Ranking functions: domain specific heuristics