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ABSTRACT
Motivation: As the sizes of three-dimensional (3D) protein
structure databases are growing rapidly nowadays, exhaustive
database searching, in which a 3D query structure is com-
pared to each and every structure in the database, becomes
inefficient. We propose a rapid 3D protein structure retrieval
system named ‘ProtDex2’, in which we adopt the techniques
used in information retrieval systems in order to perform
rapid database searching without having access to every 3D
structure in the database. The retrieval process is based
on the inverted-file index constructed on the feature vectors
of the relationships between the secondary structure ele-
ments (SSEs) of all the 3D protein structures in the database.
ProtDex2 is a significant improvement, both in terms of speed
and accuracy, upon its predecessor system, ProtDex.
Results: The experimental results show that ProtDex2 is very
much faster than two well-known protein structure comparison
methods, DALI and CE, yet not sacrificing on the accuracy
of the comparison. When comparing with a similar SSE-
based method, namely TopScan, ProtDex2 is much faster with
comparable degree of accuracy.
Availability: The software is available at: http://xena1.ddns.
comp.nus.edu.sg/~genesis/PD2.htm
Contact: zeyaraun@comp.nus.edu.sg
Supplementary information: Supplementary tables and
figures for this paper can also be found at: http://xena1.ddns.
comp.nus.edu.sg/~genesis/PD2.htm

INTRODUCTION
In the area of bioinformatics, three-dimensional (3D) struc-
tural comparison and structural database searching of proteins
play important roles. In many cases, merely comparing the
amino acid sequences of the proteins cannot provide sufficient
information required by the biologist. In particular, we cannot
detect the similarity of two remotely homologous proteins by
sequence comparison alone. Instead, we need to compare their
3D structures in order to determine their similarity as the 3D
structures are better preserved than the sequences throughout
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the evolution. Usually, a protein structure is compared against
a database of other protein structures to find the structures that
are similar to it.

Because of the advancements in the laboratory methods to
determine the structures of the bio-molecules, the sizes of the
protein structure databases such as PDB (Berman et al., 2000)
are growing at a very rapid rate. For example, PDB stored only
about 1000 structures in 1993. But, today (as of November
2003) it stores over 23 000 structures. When the databases
were of small size, in order to search a protein structure against
a database, people could comfortably use exhaustive search-
ing by comparing the query structure against each and every
structure in the database. But, when the database sizes grow to
the order of ten’s of thousands, such an exhaustive searching
approach cannot provide a satisfactory response time, how-
ever fast the pairwise comparison method used to compare the
query against each of the database structures might be. There-
fore, people have been starting to look at the filter-and-refine
and the information retrieval (IR) approaches to cope with this
database searching problem.

Our design strategy is to adopt the filter-and-refine and/or
the IR approaches using secondary structure elements (SSEs)
as the basic elements in order to speed up the process of data-
base searching. We first build an inverted-file index based on
the feature vectors of the relationships among the SSEs from
all the protein structures in the database. When evaluating a
query, we use this index to collectively determine the overall
similarity of all the proteins in the database with respect to the
query, and then retrieves and reports those that are most sim-
ilar. We can optionally perform detailed pairwise comparison
on the selected candidates upon user’s request. We can use
any of the existing structural alignment algorithms to carry
out this refinement step.

PROBLEM DEFINITION
Pairwise 3D structure comparison
Given two 3D protein structures, we need to compare them
according to a certain framework, and determine how similar
they are. This process is also known as 3D structural matching
or alignment. The general problem of structural comparison
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is known to be NP-complete. People use heuristics methods
to solve this problem, and the similarity scores assigned to
two given protein structures may be different from method to
method.

3D structure database searching
Given a query protein structure, we have to search through the
database and report the structures that are similar to the query
structure. There may be a user-defined or pre-defined similar-
ity threshold, and the structures whose similarity scores are
equal to or above the threshold are reported. When using an
exhaustive searching approach, searching through a database
with N structures essentially means running pairwise compar-
ison N times. If the database size becomes very large, such
an exhaustive searching becomes extremely slow, because the
response time grows linearly with the number of proteins in
the database.

Filter-and-refine and IR approaches
Due to the inscalability of exhaustive searching approaches,
researchers have started to look at more economical strategies
such as filter-and-refine and IR to solve the problem of
database searching.

In filter-and-refine strategy, the objects (3D protein struc-
tures in this case) that are most likely to be similar to the
given query object are first selected or filtered by merely look-
ing at an abstract structure, usually an index or a hash table,
pre-constructed from the original collection of objects in the
database. The objects that seem to be dissimilar to the query
are discarded in the first place. Then, a detailed comparison
method is applied to the selected objects in order to find those
that are actually similar to the query.

In IR approach, the overall similarity measures of the
objects in the database for a given query object are increment-
ally and simultaneously evaluated by looking at the abstract
structure or an index pre-constructed from the original data-
base. The original database of objects do not need to be
processed at all.

Actually, these two strategies of filter-and-refine and IR are
somehow interrelated and overlapping. Both strategies are
designed to deal with huge collections of objects. ‘Indexing’
is the key concept in both of them. Both strategies may sac-
rifice accuracy in order to gain speed. They have to allow
both false positives and false negatives to some extent dur-
ing the index searching process. Both filter-and-refine and IR
approaches have been widely used in the areas of document,
image and spatial database searchings and retrievals (Bertino
et al., 1997). They have started to emerge in the area of 3D
protein structure database searching recently.

RELATED WORKS
The classical pairwise comparison methods include SSAP
(Orengo and Taylor, 1996), DALI (Holm and Sander, 1993),
VAST (Gibrat et al., 1996) and CE (Shindyalov and Bourne,

1998). These are the two-level methods, which start with find-
ing the matching pairs of SSEs or Cα backbone fragments,
and then go into the detailed finding of the matching Cα atom
pairs. These methods can provide us with the good quality
answers. But when performing a database search, they all have
to use exhaustive searching, which results in slow response
times.

TopScan (Martin, 2000) and SCALE (Chionh et al., 2003)
are examples of pairwise comparison methods which take
SSEs as basic elements to be compared. These methods are
less accurate, but much faster than the two-level methods.
However, when searching against a very large database, these
methods still cannot provide the required quick response time.

Guerra et al. (2002), PSI (Camoglu et al., 2003) and
ProtDex (Aung et al., 2003), which is a predecessor of the
system proposed in this paper, are the newly-emerged index-
based methods designed for fast database searching. These
methods take SSEs or relationships among them as basic
elements.

INDEX CONSTRUCTION
In order to develop a rapid protein structure retrieval system
for 3D structural database searching task, we adopt IR
techniques, particularly inverted-file indexing and document
similarity ranking mechanisms, which have been success-
fully used in the area of document/text retrieval for a long
time. Our work is inspired by the methods such as CAFE
(Williams and Zobel, 2002) that uses IR techniques to index
and retrieve genome sequences, and VIPER (Müller et al.,
1999) that uses IR techniques in the content-based retrieval of
images.

SSEs are the well-defined sub-structures within the protein
structures. Two common types of SSEs are helix (H) and sheet
(E). In our approach, we treat SSEs as the basic elements,
as we can roughly determine the overall shape of a protein
structure through the shapes and the topology of its SSEs. The
number of SSEs in a protein is only an order of tens, while the
number of amino acid residues is an order of hundreds. Thus,
storing and handling SSEs as the basic structural elements is
much more cost effective than handling the individual amino
acid residues.

We perform the global similarity searching of a given query
protein against the proteins in the database based on the fea-
ture vectors of the inter-SSE relationships (called the contact
regions) that are indexed.

Our approach is both sequence and sequence-order inde-
pendent. That is, we do not take any amino acid sequence
information into account at all, and we also do not take
the sequence-order information into account in finding the
matching feature vectors.

The steps involved in constructing the index are described
below. These steps are illustrated through Figures S1
through S4 in Supplementary information webpage.
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Extracting feature vectors from contact regions
We represent a 3D protein structure as a set of feature vectors
of the inter-SSE contact regions (hereafter referred to simply
as contact regions). The two proteins are considered to be sim-
ilar if they contain enough number of similar or compatible
contact regions. So, it is important that the feature vector we
choose capture sufficient information on the contact region so
that we can effectively determine the similarity or compatib-
ility between two given contact regions by comparing their
representative feature vectors.

Our feature vector representation is derived from two clas-
sical concepts, namely distance matrix representation of the
3D protein structures, and vector representation of the SSEs.

Distance matrix representation. A 3D protein structure can
be represented as a 2D distance matrix.

Definition 1. (Distance matrix) A distance matrix D rep-
resenting a particular protein with n amino acid residues is an
n × n matrix, in which each cell D(i, j), where 1 ≤ i, j ≤ n,
stores the Euclidean distance Dist(i, j) between the Cα atom
of the ith residue and Cα atom of the j th residue. The dis-
tance matrix is symmetrical along the main diagonal, i.e.
D(i, j) ≡ D(j , i).

The Euclidean distance between two points p and q is
defined as

Dist(p, q) =
√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2 (1)

where (xp, yp, zp) and (xq , yq , zq) are the 3D coordinates of
point p and q, respectively.

The distance matrix is rotation and translation independent
(Holm and Sander, 1993).

SSE vector representation. SSEs can be roughly approxim-
ated by their representative vectors or line segments in 3D
space. We adopt the equations for calculating the start and the
end points of an SSE vector from Singh and Brutlag (1997).

For a helix beginning at amino acid residue i and ending
at amino acid residue j , the vector start and end points are
calculated as

Xstart = (0.74 × Xi + Xi+1 + Xi+2 + 0.74 × Xi+3)/3.48
Xend = (0.74 × Xj + Xj−1 + Xj−2 + 0.74 × Xj−3)/3.48

(2)

where X = (x, y, z) is the coordinates of a point in 3D space.
For a sheet beginning at residue i and ending at residue j ,

the vector start and end points are calculated as:

Xstart = (Xi + Xi+1)/2

Xend = (Xj + Xj+1)/2
(3)

After having the start and the end points of a vector, we can
represent it as a point vector V with respect to the origin 0.

V = Vend − Vstart (4)

Given two point vectors V and U, representing two SSEs,
we can calculate the angle θ between them as:

θ(V, U) =



0 if V = U

cos−1
(

V · U
Dist(V, 0) · Dist(U, 0)

)
otherwise

(5)

where V · U is the dot product of vectors V and U, and Dist is
the Euclidean distance function as defined in Equation (1).

Also, the vertex distance (VD) between two SSE vectors V
and U can be calculated as:

V D(V, U) = min




Dist(Vend, Ustart)

Dist(Vstart, Uend)

Dist(Vend, Uend)

Dist(Vstart, Ustart)

(6)

In our implementation, we use the STRIDE algorithm
(Frishman and Argos, 1995) to identify the SSEs. We treat
all α, π and 3/10 helices as a single type. For both helix and
sheet, we assume the minimum length (number of amino acid
residues) of an SSE to be 4. Any SSE with length shorter
than 4, as annotated by STRIDE, is not regarded as an SSE.
In the case of helices, if the length of a helix is exactly 4, it is
extended by a single residue on either end in order to avoid a
zero vector.

Feature vector construction. We have to construct a feature
vector for each contact region in the distance matrix. A contact
region can be formally defined as follows.

Definition 2. (Contact region) Within a distance matrix
D (see Definition 1) of size n × n, a contact region Cab

of two SSEs a and b is a sub-matrix containing the cells
D(sa , sb), . . . , D(sa + la − 1, sb + lb − 1), where sa and sb
are starting amino acid residue numbers of SSEs a and b,
respectively (sa , sb ≤ n), and la and lb are the lengths
or the numbers of residues in SSEs a and b, respectively
(sa + la − 1 ≤ n, sb + lb − 1 ≤ n).

Since the distance matrix is symmetrical, only the contact
regions that are on or above the main diagonal are needed to
be taken into account. For a protein with g SSEs, the total
number of contact regions that need to be taken into account
is g · (g + 1)/2, which is O(g2).

For each contact region, we construct a 7D feature vector to
represent it. The feature vector consists of the attributes that
can effectively distinguish one contact region from another.
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The feature vector of a contact region Cab, which is formed
by SSEs a and b, consists of seven attributes as shown below.

Dimension Attribute Function Equation
no.

1 Angle between a and b θ 5
2 Vertex distance between

a and b

VD 6

3 Square-root of the area
of Cab

SA 7

4 Aspect ratio of Cab AR 8
5 Mean Cα–Cα distance

in Cab
MD 9

6 Standard deviation of
Cα–Cα distance
in Cab

SD 10

7 Type of Cab CT 11

The first two attributes are derived from SSE vector repres-
entation. Since a contact region essentially represents the
inter-relationship between the two SSEs, we can logically
associate it with the angle and the vertex distance between the
two SSE vectors. Angle and distance are the natural and most
commonly used properties for the relationship between two
SSE vectors, and is also used in many other methods such as
LOCK (Singh and Brutlag, 1997) and SCALE (Chionh et al.,
2003).

The rest of the attributes are derived directly from the dis-
tance matrix. Square-root of area and aspect ratio of contact
region attributes are related to the lengths of the SSEs. These
two attributes are used in order to avoid the matching of two
contact regions that are formed by the SSE pairs with very
different lengths. Mean and standard deviation of Cα–Cα dis-
tance attributes are related to the internal configuration of a
contact region. They are used in order to avoid the matching of
two contact regions which store very different Cα–Cα distance
values. Contact region type is a natural property that is used
for avoiding the comparison of two contact regions formed by
different types of SSEs, respectively. The functions used to
calculate these attribute values of the feature vector are defined
as follows.

SA(a, b) = √
la · lb (7)

AR(a, b) = min

(
la

lb
,
lb

la

)
(8)

MD(a, b) =
∑la−1

i=0

∑lb−1
j=0 D(sa + i, sb + j)

la · lb
(9)

SD(a, b) =
√∑la−1

i=0

∑lb−1
j=0 (D(sa + i, sb + j) − MD(a, b))2

la · lb
(10)

CT(a, b) =




0 if (a is H) ∧ (b is H) ∧ (a = b)
1 if (a is H) ∧ (b is H) ∧ (a �= b)
2 if (a is E) ∧ (b is E) ∧ (a = b)
3 if (a is E) ∧ (b is E) ∧ (a �= b)
4 if ((a is H) ∧ (b is E)) ∨

((a is E) ∧ (b is H))

(11)

where the definitions of all the symbols are the same as their
previous definitions respectively. Now, let

K = (kθ , kVD, kSA, kAR, kMD, kSD, kCT)

be a feature vector. We can generate feature vector Kab for
contact region Cab as follows.

Kab = (θ(a, b), VD(a, b), SA(a, b), AR(a, b),

MD(a, b), SD(a, b), CT(a, b)) (12)

It should be noted that the feature vector we use is only
a good approximation of the original contact region in an
abstract form. There may be some cases that the two feature
vectors are similar even though their original contact regions
are not similar.

Building inverted-file index
For every protein structure in the database, we generate the 7D
feature vectors as described above. After that, we hash these
feature vectors into a hash table of seven dimensions, together
with their Protein IDs. We finally build an inverted-file index
based on the hash table.

Feature vector hashing. A hash table can be formally defined
as follows.

Definition 3. (n-dimensional hash table) Ann-dimensional
hash table H is an n-dimensional array of size (m1 + 1) ×
(m2 + 1) × · · · × (mn + 1) where (mi + 1) (1 ≤ i ≤ n)

is the length of each dimension. Each cell H(d1, d2, . . . , dn)

(0 ≤ di ≤ mi , 1 ≤ i ≤ n) in the array corresponds to a
feature vector having exactly the ‘discrete’ attribute values of
(d1, d2, . . . , dn).

We have to hash the original 7D contact region feature vector
K with continuous attribute values into a 7D hash table with
the hash function Hash. The idea is similar to that of hashing
the points into the 3D grid cells in geometric hashing.

Let us define a quantized feature vector T.

T = (tθ , tVD, tSA, tAR, tMD, tSD, tCT)

T can be calculated from K by the function Hash.

T = Hash(K) (13)

where Hash is a collection of partial quantization or discret-
ization functions Hashr on each continuous attribute value kr
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(r ∈ {θ , VD, SA, AR, MD, SD, CT}).

tr = Hashr (kr ) = Round

(
kr · mr

cr

)
(14)

where cr and mr are the maximum possible values of attribute
r in the original continuous space and the new quantized space,
respectively. In fact, the quantization function Hashr performs
a space-based or equal-size partitioning of the continuous data
space of the attribute r .

The parameter values for c and m for each of the attributes
in our implementation are (180.0, 100.0, 80.0, 1.0, 100.0,
50.0, 4) and (12, 10, 10, 10, 10, 10, 4) respectively. As a result,
we have a hash table of size (13×11×11×11×11×11×5).

Inverted-file index. The idea of inverted-file indexing is bor-
rowed from the area of text and document retrieval. An
inverted file is basically a list of ‘words’, each pointing to
a posting list of ‘documents’ in which it occurs. In our case,
we can treat the quantized feature vectors as our words, and
the proteins in which they occur as our documents.

In our implementation, each cell in the hash table H stores
a pointer to a posting list consisting of Protein IDs together
with their occurrence counts. After we have hashed an original
feature vector K into a quantized feature vector T = Hash(K),
we update the posting list pointed by the cell H(T). We insert
the Protein ID, in which K occurs, into the posting list if it
does not exist in the list yet. Otherwise, its occurrence count
is increased.

After processing all the contact region feature vectors from
all the proteins in the database in this way, we finally come
up with our inverted-file index, in which each cell in the hash
table points to the posting list of Protein IDs and their number
of occurrences. Obviously, some of the cells in the hash table
may have empty pointers.

QUERY EVALUATION AND DATABASE
RETRIEVAL
In order to evaluate the similarity score between a query pro-
tein structure a protein structure in the database, we adopt and
modify the well-known �(tf × idf ) scoring scheme com-
monly used in document retrieval systems. Given a query
protein structure Q and a protein structure P in the database,
their overall similarity score ψ can be calculated as:

ψ(Q, P) =
∑

φ(T∈Q,T′∈P) �=0[w(Q, T) · w(P , T′) · φ(T, T′)]
WQ · WP

(15)
Given two quantized feature vectors T and T′, we can

determine their matching or compatibility score φ as

φ(T, T′) =
∏

r∈{θ ,VD,SA,AR,MD,SD,CT}
φr(tr , t ′r ) (16)

where φr is the partial matching score for attribute r (r ∈
{θ , VD, SA, AR, MD, SD, CT}), which is in turn defined as

φr(tr , t ′r ) =
{
σr · e−(|tr−t ′

r |/ξr ) if |tr − t ′r | ≤ ξr

0 otherwise
(17)

where ξr is the threshold value for the allowable difference
between two attribute values tr and t ′r , and σr is the relative
importance of attribute r . In our current implementation, we
set ξr = 1 for r ∈ {θ , VD, SA, AR, MD, SD} and ξCT = 0,
and σr = 1 for all r ∈ {θ , VD, SA, AR, MD, SD, CT}.

w(Q, T) is the weight of quantized feature vector T from
query Q, which is calculated as:

w(Q, T) = (lg fQ,T + 1) ·
(

lg
N

fT
+ 1

)
(18)

and w(P , T′) is the weight of quantized feature vector T′ from
database protein P , which is calculated as:

w(P , T′) = (lg fP ,T′ + 1) (19)

where N is the total number of protein structures in the data-
base, fT is the number of proteins in which T occurs, fQ,T is
the number of occurrences of T in Q, and fP ,T′ is the number
of occurrences of T′ in P .

Wx is the size of protein x ∈ {Q, P } in terms of the number
of quantized feature vectors it contains.

Wx =
√∑

T∈x

(w(x, T))2 (20)

All the information required to calculate similarity score ψ

can be easily extracted from the inverted-file index. We use a
modified version of a textbook algorithm (Bertino et al., 1997,
p. 171) to calculate the similarity scores of all the proteins in
the database, with respect to a query, by using the inverted-file
index. The scores are then normalized into the range of 0–100.
After that, all the database proteins are ranked according to
their similarity scores, and are reported to the user.

Calculation of the similarity scores for all the proteins is
done ‘simultaneously’ and ‘incrementally’ during the pro-
cess of searching through the index. The scheme is scalable,
because the index structure we need to search through is only
a fixed-size hash table which will not grow with the growth of
the database itself. However, the lengths of the posting lists
will apparently increase in sizes with the growth of the data-
base. There will still be some increases in cost for handling
them when the database grows.

EXPERIMENTAL RESULTS
We compare our new ProtDex2 scheme against the widely-
used detailed comparison schemes, namely DALI (Holm and
Sander, 1993) and CE (Shindyalov and Bourne, 1998); a
similar SSE-based scheme, namely TopScan (Martin, 2000);
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and the current scheme’s predecessor, namely ProtDex
(Aung et al., 2003). For DALI, CE and TopScan, we use
their downloaded stand-alone versions rather than the web
services.

All the experiments are conducted on Pentium 4 desktop
computer with 1.6 GHz CPU and 256 MB main memory.
The databases we use in our experiments are the subsets
of ASTRAL v1.59 (Brenner et al., 2000). Strictly speaking,
the 3D structures stored in ASTRAL are not the whole pro-
teins, but the domains within the proteins according to SCOP
(Hubbard et al., 1997) domain definitions. (However, we will
hereafter refer to these domains as proteins for simplicity.)

We conducted two experiments: one involving a small data-
base and a limited number of queries, and the other involving
a large database and a greater number of queries.

Experiment on small database
We randomly select 10 proteins from Globins family (a.1.1.2
in SCOP) and 10 proteins from Serine/ Threonin kinases
family (d.144.1.1 in SCOP) from the representative ASTRAL
dataset with less than 40% sequence homology. These
20 proteins are designated as the query proteins. (Table S1
in supplementary webpage.)

We again randomly select 180 proteins, other than Globins
and Serine/Threonin kinases, from four major classes (All-α,
All-β, α/β and α + β) of the same representative dataset.
We combine these 180 proteins with the above-mentioned
20 query proteins to form the target database of 200 proteins.
(Table S2 in supplementary webpage.)

We run 20 queries—taken from the Globins and Serine/
Threonin kinases families—against the target database. For
DALI and CE, the similarity scores of each query protein to
all the database proteins are calculated using pairwise compar-
isons. (Although DALI has a specialized database searching
facility, it is not flexible enough to be used in our experi-
ment.) For TopScan, the symbolic topology strings for the
database proteins are pre-constructed. For each query, the sim-
ilarity scores are calculated by comparing the query’s topology
strings to all of the database’s topology strings. A compre-
hensive comparison mode is used taking into account the
information on neighbors, accessibility, element length and
loop length. For both ProtDex and ProtDex2, the indexes are
pre-constructed from the database. The similarity scores of
each query protein to the database proteins are calculated with
the help of the index.

In all methods, for each query, all the proteins in the database
are ranked according to their similarity scores with respect
to the query, and are retrieved in this ranking order. If a
retrieved protein and the query protein belong to the same
‘family’, which is the most detailed level in SCOP classific-
ation, it is regarded as a ‘relevant’ retrieval. For example,
for a Globins family query protein, if a retrieved protein
also belongs to Globins family, it is regarded as a relevant
retrieval. For each query, there are 10 relevant proteins in the

Table 1. Running times for 20 queries on the database of 200 proteins

Method Total time
(hh : m m: ss)

Average time
per query
(hh : mm : ss.mm)

Average time
per comparison
(hh : mm : ss.mmmm)

DALI 52:36:08 02:37:48.40 00:00:47.3420
CE 10:23:03 00:31:09.15 00:00:09.3458
TopScan 00:00:59 00:00:02.95 00:00:00.0148
ProtDex 00:00:43 00:00:02.15 00:00:00.0108
ProtDex2 00:00:16 00:00:00.80 00:00:00.0040

Table 2. Accuracy comparison for 20 queries (10 form Globins family and
10 from Serine/ Threonin kinases family) on the database of 200 proteins.

No. of relevant
retrievals

Average no. of retrievals required
DALI CE TopScan ProtDex ProtDex2

1 1 1 1 1 1
2 2 2 2 3 2
4 4 4 5 7 4
6 6 6 8 12 6
8 8 8 14 21 9

10 10 10 29 79 16

In the table, row i represents the ranking under the various methods to retrieve i relevant
answers. For example, row 2 says that when 2 answers are required, the top 2 ranked
answers from DALI, CE, TopScan and ProtDex2 are the 2 relevant answers from the
same family as the query; while ProtDex ranks the 3 relevant answers among the top 3
retrievals

database of 200 proteins. If retrieved randomly, the probability
of selecting a relevant protein is only 0.05.

The speed comparison of the selected methods for this
experiment is shown in Table 1. The accuracy comparison
is shown in Table 2.

Experiment on large database
We conduct another experiment using a large database con-
taining 34 055 proteins which cover about 90% of the entire
ASTRAL database. From them, we select 108 query proteins
which belongs to 108 medium-size families (with ≥40 and
≤180 members) from four major classes, and which have less
than 40% sequence homology to each other.

The lists of 34 055 database proteins and 108 query proteins
are given respectively in Tables S3 and S4 in Supplement-
ary information webpage. DALI and CE are excluded from
this experiment because it is impractical to run them given
their very high computational costs. It can be estimated that
DALI will take over 5 years, and CE will take over 1 year,
respectively, to run this experiment on the given machine!
Only TopScan, ProtDex and ProtDex2 are included in this
experiment.

It should be noted that the sizes of the families (40–180)
are quite small with respect to the size of the entire database
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Table 3. Running times for 108 queries on the database of 34 055 proteins

Method Total time
(hh : mm : ss)

Average time
per query
(hh : mm : ss.mm)

Average time
per comparison
(hh : mm : ss.mmmm)

TopScan 26:15:51 00:14:35.47 00:00:00.0257
ProtDex 05:44:35 00:03:11.46 00:00:00.0056
ProtDex2 00:14:03 00:00:07.81 00:00:00.0002

0
0.1
0.2
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0.4
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Fig. 1. Average precision–recall curves for 108 queries on the
database of 34 055 proteins.

(34 055) and the probability of selecting a relevant protein by
chance is quite low (0.0012–0.0053).

The speed comparison of the selected methods for this
database searching task is shown in Table 3.

The accuracy comparison is shown in Figure 1. Again, a
relevant retrieval is defined as an event of retrieving a pro-
tein from the database that belongs to the same ‘family’ as
the query. The results are shown as average precision-recall
curves, which are commonly used in the IR experiments.
Precision and recall can be defined as:

Precision = Number of relevant retrievals

Total number of proteins retrieved
(21)

Recall = Number of relevant retrievals

Total number of proteins in the same family
(22)

DISCUSSION
Speed comparison
The fast speed of ProtDex2 is attributed to the conciseness
of the contact region feature vector representation scheme,
and the query evaluation scheme that uses the inverted-file
index to collectively rank the database proteins simultan-
eously. The cost incurred on each virtual pairwise comparison

decreases significantly (from 4 ms to 0.2 ms) as the size of the
database grows (from 200 to 34 055 proteins).

Although its predecessor method, ProtDex, also uses
inverted-file based query evaluation, the feature vectors are
based on fixed-size overlapping sliding windows. Thus the
number of feature vectors per protein is much more than that
in ProtDex2, and the query evaluation is relatively slower as it
involves comparisons of a huge number of feature vector pairs.

DALI and CE are apparently much slower than ProtDex2
as they are detailed two-level pairwise comparison schemes.

TopScan is much faster than DALI and CE, but still slower
than ProtDex2. It has to perform exhaustive searching of each
query against the whole database. The disadvantage of this
exhaustive searching scheme is magnified when the database
size grows. TopScan is only about 3.5 times slower than
ProtDex2 for the small database of 200 proteins, but about
112 times slower for the large database with 34 055 proteins.
In addition, TopScan requires 24 rotations of one structure for
each pairwise comparison. Since ProtDex2 is based on SSE
contact regions of the distance matrix, such rotations are not
required.

Accuracy comparison
As shown in Table 2, in order to obtain all the relevant
answers, ProtDex2 has to retrieve more proteins than the
detailed comparison methods of DALI and CE. In this experi-
ment, ProtDex2 needs to retrieve the top 16 answers on the
average, whereas DALI and CE need to retrieve only the top
10 answers, in order to obtain all of the 10 relevant answers.
However, we can achieve the same level of accuracy as DALI
and CE by retrieving these top 16 answers, which is only 8%
of the entrie database in this case, and refining them with
DALI or CE. Given the very fast speed of ProtDex2, this
filter-and-refine strategy can reduce the running time by about
12 folds while maintaining the good accuracy of the detailed
comparison methods.

ProtDex2 is more accurate than its predecessor ProtDex
method. In ProtDex method, the feature vectors are extrac-
ted from the fixed-size sliding windows sub-divided from the
contact regions. This approach leads to the poorer results due
to the cross-matchings of the sliding windows from the differ-
ent contact regions. This weaknesses is avoided in ProtDex2
method by using only the feature vectors of the contact regions
in their entirety.

The accuracy of ProtDex2 is comparable to that of TopScan.
Both methods are based on SSEs. TopScan uses symbolic lin-
ear representation of SSE vectors using the various properties
such as SSE type, direction, length, proximity, etc. On the
other hand, ProtDex2 uses feature vector representation of
2D SSE contact regions using their various properties.

Interpreting similarity scores
For each query, ProtDex2 assigns a similarity score between
0 and 100 to every database protein. For the experiment

1051



Z.Aung and K.L.Tan

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge

Score Threshold

Misses (True Negatives)
Errors (False Positives)

Fig. 2. Errors and Misses percentages for various score thresholds.

of 108 queries on 34 055 proteins, we conduct a frequency
analysis of the scores of the relevant retrievals (intra-family
matches) and those of the irrelevant retrievals (inter-family
mismatches). (Table S5 in supplementary webpage.) Then,
we calculate the average percentage of errors and misses for
each score checkpoint yielding Figure 2. It can be observed
that if we set the similarity score threshold as 15, we can have
an optimal result with about 10% errors and 17% misses. If
we set the score threshold as 30, we can achieve 99% accuracy
(1% misses) with 47% error rate.

CONCLUSION
In this paper, we have proposed a new SSE-based indexing
scheme for efficient retrieval of the protein structures from the
large databases. We conducted an experiment on the retrieval
efficiency and effectiveness of the scheme in comparison with
the other methods by using a small database and some query
proteins from the well-known Globins and Serine/Threonin
kinases families. We also conducted another experiment using
a larger database and the several query proteins form diverse
families in order to observe the more general behaviour of the
scheme.

The experimental results showed that ProtDex2 is very
much faster than two well-known protein structure com-
parison methods, DALI and CE, yet not sacrificing on the
accuracy of the comparison. When comparing with a similar
SSE-based method, TopScan, ProtDex2 is much faster with
comparable degree of accuracy. In filter-and-refine frame-
work, it can be ideally used as a filtering tool to reduce
the search space before running a more detailed but slower
structural comparison method.

As a future work, we can further improve the accuracy
of the scheme by using data or distribution-based partition-
ing in quantizing the feature vectors, and by using different
relative importance values for different attributes in the feature
vector, etc.

Finally, it can become a very useful scheme in the near
future when the protein structure database sizes become too
large to be searched through exhaustively.
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