L ecture Overview

* Multiple processors
— Multiprocessors
* UMA versus NUMA
» Hardware configurations
» OS configurations
* Process scheduling
— Multicomputers
* Interconnection configurations
* Network interface
* User-level communication
* Distributed shared memory
* Load balancing
— Distributed Systems

Operating Systems - July 5, 2001

Multiple Processors

Lacal

st ook Complete aystam
/ m M) [[
Gl o\l
s
@_@_ conmact

cH
@ ﬁ\l
b G () (]
(a}
Continuous need for faster computers
a) Shared memory multiprocessor

b) Message passing multicomputer
c) Wide-areadistributed system

Multiprocessor System

Definition
A computer system in which two or more

CPUs share full accessto acommon
RAM

Multiprocessor System

Two types of multiprocessor systems

« Uniform Memory Access (UMA)

— All memory addresses are reachable as fast as
any other address

 Non-uniform Memory Access (NUMA)
— Some memory addresses are slower than others

UMA Multiprocessor Hardware

Privale Mmamory = Shared
Shared memory [| mﬂﬁrr'r
CPU CPU it CPU CPU M CPU CPU M
S0 BE
| | | Cache | |
Bus
(a) (b} ic)

UMA bus-based multiprocessors
a) CPUscommunicate viabusto RAM
b) CPUs have alocal cache to reduce bus access

¢) CPUs have private memory, shared memory
access viabus

UMA Multiprocessor Hardware

Momanaes
2 1=t 121 1=1 2] 1] |2 1: Crasspainl
| ﬂﬂﬂﬂﬂﬂ —]— L swich is open
o el Y g — L I e
e
o0 4—p—p———p——p ————_ 34
; P ' i \
I IR R 1]
oo | g & B—t i pa
i J _& 151}
R 1 Crosspoint
& [e |+ o - S switch is closed
[T - 15
T Y . & will . S i ;g r
. L & - ! |
) || L
[T }o—trie—t—b—t—b—t
! i
x 1 =
Cliogad X
Opsn
CrosEpaing ;
: crogapein
mailch tichh

la)

UMA multiprocessor using a crossbar switch
— Alleviates bus access problems, but is expensive (grows as n?)

UMA Multiprocessor Hardware

* UMA multiprocessors using multistage switching
networks can be built from 2 x 2 switches
— Input to switchesin in the form of a message

A— —4 T T T
B y Medule | Address | Opcode | Value :

(a) ()
a) 2 x 2switch b) Message format

UMA Multiprocessor Hardware

CPUs ' Memuorias

UMA omega switching network
— Less costly than crossbar switch

NUM A Multiprocessor Hardware

NUMA Multiprocessor Characteristics
» Single address space visible to all CPUs

» Access to remote memory via commands
- LOAD

- STORE
» Access to remote memory slower than to local

NC-NUMA versus CC-NUMA

— No cache versus cache-coherent

NUM A Multiprocessor Hardware

Made 0 Mode 1 Mode 255

CPU Maimary CPLU Memary CPLU Mamary
Directary

Imerconneciion network

EH

Bits E 18 =]
MNoda | Block |le.sa1|
i}
a) 256-node directory-based multiprocessor

b) Fields of 32-bit memory address
¢) Directory at node 36

BZ

e R
alal=Je]=e] ©

[=]

feh

Multiprocessor OS Paradigms

CPRU 1 chU 2z ChU 3 CPU 4 hdermary]
1 2
Has Has Has Has Dita | Date
private private private privala E] 4
os os os os el

_

Each CPU has its own operating system
— Allows sharing of devices
— Efficient process communication via shared memory
— Since each OS is independent
* No process sharing among CPUs
* No page share among CPUs
» Makes disk buffering very difficult

Multiprocessor OS Paradigms

CPU1 CPU 2 CPU 3 CPLU 4 Memory (lLe)
Masier Slave Sl Slave User

runs TunS Usar runs user TUMS wser processas

Qs progecaes procasseas procasses o5

_

Master-slave multiprocessors
— OS and all tables are on one CPU
* Process sharing, so no idle CPUs
* Page sharing
e Disk buffers
— Master CPU becomes a bottleneck

Multiprocessor OS Paradigms

CPU 1 CcPU 2 CPU 3 CPU 4 Memary g
Runs Runs Runs Runs
usars and users and users and users and

shared OS] |shared OF |shared OF |shared O oS o

\ \

Bus Locks

Symmetric multiprocessors
— One copy of OS, but any CPU can run it
— Balances processes and memory dynamically
— Eliminates bottleneck

— More complicated requires reasonably fine-grained
synchronization to avoid bottleneck, deadlock issues

Multiprocessor Synchronization

Word

CPU1 1000 is Memory CPU 2
initially O
I 5 -II.JI. I
L1.CF‘U 1readsad) \2. CPU 2 reads a0 J
3. CPU 1 writes a 1 4, CPU 2 writes a 1
L ocking

— Test-and-set instructions fail is bus cannot be locked
— Create contention for bus, caching doesn’t help since

test-and-set isawrite instruction

— Could read first, before test-and-set; also use
exponential back-off

Multiprocessor Synchronization

CPLE 3 et
U 3 spins on this {prvale) lock

/I:F‘
CFU 2 sping an this [privata) lock
\ / CPU 4 =pins on this (private) lack
[z ==

H""u'-'h CPU 1 is finished with th
Pl an is finished with the
Shared memory ik /’ real lock, it releases i and also
CPU1 raleasas the private lock CPU 2
holds the Is spinning on
real lock

L ocking with multiple private locks
— Try to lock first, if failed, create private lock and put
it at the end of alist of CPUs waiting for lock
— Lock holder releases original lock and frees private
lock of first CPU on waiting list

Multiprocessor Synchronization

Spinning versus Switching
* |n some cases CPU must wait
— For example, must wait to acquire ready list

* |n other cases a choice exists
— Spinning wastes CPU cycles
— Switching uses up CPU cycles adso
— Possible to make separate decision each time locked mutex
encountered

Multiprocessor Scheduling

[e] (] (=1 [5] [e] 1 =1 [2] [o] 1 [z [2]
[2] 5] [e] [ceu HEEIE] ceurz (A B [E]
EEBE e EREE ek 6 E
EENDIE ENEITE
Prical Priarity Pricrity
J1eoeo] g
88 388 180
30 o0 I
1 +ea0 | +ee0 i
e d T 2 _g%ﬁ)
o _J-08® o J-08® of O8O
» Timesharing

— Non-related processes

— Note use of single data structure for scheduling
* Provides automatic |oad balancing
* Contention for process list

Multiprocessor Scheduling

» What about processes holding a spin lock?
— Does not make sense to block such a process

* Ingenera, all CPUs are equal, but some are more
equal than others

— The CPU cache may have cached blocks of process that was
previously running on it

— The CPU TLB may have cached pages of a process that was
previously running on it

— Use affinity scheduling to try to keep processes on the same
CPU

Multiprocessor Scheduling

8-CPU partiion ~, jsacececacccoaauaaazs i
\\\‘E D E E . E E _.1-""4 CPU partition
Le] [s] [ie
B-CPU partition '-..,._. E .

9]

Unassignad CF’LJ/ 12 P partition

» Space sharing
— Related processes/threads

— Multiple threads at same time across multiple CPUs
» A group of threads is created and assigned to CPUs as a block
» Group runs until completion

— Eliminates multiprogramming and context switches

— Potentially wastes CPU time, when CPUs left idle

Multiprocessor Scheduling

Thread A, running

r'_"A"_'\
CPUD lml} BU nﬂ BIl:l AD BE
Request 1 1 Niequest 2
: : eply 1 : Reply 2 : !
CPU1| B, A, B, | A, [B, A,
Tima 0 100 200 300 400 500 600

 Potential communication problem when scheduling
threads independently
— Ay and A, both belong to process A
— Both running out-of-phase

Multiprocessor Scheduling

* Need to avoid wasting idle CPUs and out-of -
phase thread communication

« Solution: Gang Scheduling
— Groups of related threads scheduled as a unit (a gang)

— All members of gang run simultaneously on different
timeshared CPUs

— All gang members start and end time slices together

Multiprocessor Scheduling

CPU
0 1 2 3 4 5
ol A, A, A, A A, A
1| B, B, B, Cp c, C,
2| D, D, D, D, D, E,
Time 3| E, E, E, E. By E;
slot 4 A, A, A A, A, A
5| B, B, B, C, C, G,
6| D, D, D, D, D, Ey
7| E E, E, E, E, E,

Gang scheduling

» All CPUs scheduled synchronously
» Still has some idle time and out-of-phase, but reduced

11

Multicomputers

Definition
Tightly-coupled CPUs that do not share memory

Also known as
— Cluster computers
— Clusters of workstations (COWSs)

Multicomputer | nterconnection

{n I R

o il
5, 4
i, il
[, o
o ooan
) (=5

[= I = = = |
a

<
ol
o

O ooo
1] % M

| nterconnection topologies

a) single switch d) double torus
b) ring €) cube
¢) grid f) hypercube

12

Multicomputer | nterconnection

» Switching schemes

— Store-and-forward packet switching
» Send a complete packet to first switch
» Complete packet is received and forward to next switch
* Repesated until it arrives at destination
* Increases |atency dueto all the copying

— Circuit switching
* Establishes a path through switches (i.e., acircuit)
» Pumps packet bits non-stop to destination
* No intermediate buffer
* Requires set-up and tear-down time

Multicomputer Network Interface

Mode 1 Wode 2
Main RAM Main RaM
Lser 1 E,_. e
BiEy rEl] e
os{AL) =
Ty
Switch
Main RAM Main RAM
Cpticnal f
o
Interfaces
Hioce 3 IMedace board hode 4
board
RAM

* Interface boards usually contain buffer for packets

— Needsto control flow onto interconnection network when sending and
receiving packets

* Interface boards can use DMA to copy packetsinto main RAM

13

Multicomputer Network Interface

* Must avoid unnecessary copying of packets
— Problematic if interface board is mapped into kernel memory

Map interface board into process memory

If several processes are running on node
— Each needs network access to send packets ...
— Must have sharing/synchronization mechanism

If kernel needs access to network ...

One possible solution is to use two network boards
— Onefor user space, one for kernel space

Multicomputer Network Interface

Receha

Send ring rirg CPU Mioda 2

\

MNode 1

Main RAbd O

9 =®
/

Node to network interface communication
» Complicated when user is controlling DMA

e |f interface has its own CPU, then must coordinate
with man CPU
— Usesend & receive rings

Ilain Ak

o5

Bit mag

14

Multicomputer User-L evel Communication

e Bareminimum, send andr ecei ve

— Blocking versus non-blocking
 Choices
— Blocking send (CPU idle during message transmission)
— Non-blocking send with copy (CPU time waste for extra copy)
— Non-blocking send with interrupt (makes programming difficult)
— Copy on write (extra copy eventualy)
— Pop-up thread
* Creates athread spontaneously when a message arrives
— Active messages
» Message handler code isrun directly in the interrupt handler

Multicomputer User-L evel Communication

Cliant CFU Server CHU
Client Sapyear,
Y stub sty
Clignt
o ¥
Operating sysiem ;C.‘pnfming systam
L 2 -J

N

» Thesend/r ecei ve primitives are wrong paradigm
» Remote procedure call (RPC) maintains procedural
paradigm

— Breaks a procedureinto client and server

Mertwork

15

Multicomputer User-L evel Communication

RPC implementation issues

» Cannot pass pointers
— Call by reference becomes copy-restore (but might fail)

» Weakly typed languages
— Client stub cannot determine size

* Not always possible to determine parameter types
— Think about pri nt f (..) with variable parameters

» Cannot use global variables
— May get moved to remote machine

Multicomputer Distributed Shared Memory

MEtad | g aaring 1 Maghea arhiw |
LT)

LTS A Ao N [Cr A

tn trw Harvirms Farirm |t o
r 5

Frdars Hardwes P Hadery e]

» Layerswhere shared memory can be implemented

— Hardware (multiprocessors)
— Operating system

16

Multicomputer Distributed Shared Memory

Giotaly srarad virtal masmary conslsting of 16 pages

Lels[zalalelela]e 5,,|'°l,'-!,|,'21‘3|'f]']'5|

Replication | /o>
iotri [el[z1[x] (2] 3|1 1| O TV
8 Pages distributed on4 | r% = [|
machines _ceuo | | ceur [| cPuz _cPu3
| |— : Hebamrk |-
b) CPU 0 reads page 10 ’
{13 | N 1 O 3 N
El_lﬂ [=] (2] (4]
I | [[
c) CPU 1 reads page 10 o

OEE IEE 00 EE
AE | [EE | @@

CPU o CPU 1 CPU 2 CPu 3

(L]

Multicomputer Distributed Shared Memory

CRU1 CPU 2
B
Shared — ‘\\....*_____,_.AandElara unrelated
A " p shared varizbles that just
i LA ju
s E \’ B happen 1o ba on the same page|
Cada using Code using
variable A variable B
™~ Meatwork
 False Sharing

» Must also achieve sequential consistency (i.e.,
cache coherency problem)

17

Multicomputer Process Scheduling

* On amulticomputer, each node has its own
memory and its own set of processes

— Thisisvery similar to a uniprocessor, so process scheduling
can use similar algorithms
* Unless you have multiprocessors as nodes

» The critical aspect of multicomputer scheduling is
allocating processes to processors

— Processor allocation algorithms

* Use various metrics to determine process “load” and how to
properly allocate processes to processors

— These are “load” balancing algorithms

Multicomputer Load Balancing

Process

» Graph-theoretic deterministic algorithm
— Know processes, CPU and memory requirements, and average
communication traffic among processes
— Partition graph to minimize network traffic and to meet constraints
on CPU and memory

18

Multicomputer Load Balancing

o

o
v
5 el
00 O £
oooy

Cc O Q

I'm overloaded

%

» Sender-initiated distributed heuristic algorithm
— Overloaded sender probes for underloaded node
— Searches come during heavy loads, which adds more |oad

Multicomputer Load Balancing

" 5
*m%% E
be E

“%uﬁ\ o

y‘*‘*@'

I'm Bored
]

* Receiver-initiated distributed heuristic algorithm
— Under loaded sender probes for overloaded node
— Searches come during lower loads

19

Distributed Systems

Item Multiprocessor Multicomputer Distributed System
Mode configuration CPU CPU, RAM, netinterface | Complate computer
Noda perpherals All ghared Shargd axc. maybe disk | Full set per nede
Location Same rack Same room Possibly workdwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Oparating systams One, shared Multiple, sama Possibly all different
File systems Oneg, shared One, shared | Each node has own
Administration One organization | One orgarization Many organizations

Comparison of three kinds of multiple CPU systems

Distributed System Middleware

Common base for applications

Application Application Apglication Application
Middleware Middleware MMiddleware Middleware
Windaws Linux Solarns Mac 05
Pantium Pantium SPARC Macintesh

Netwark

Achieving uniformity with middleware

20

