
1

Lecture Overview

• Multiple processors
– Multiprocessors

• UMA versus NUMA
• Hardware configurations
• OS configurations
• Process scheduling

– Multicomputers
• Interconnection configurations
• Network interface
• User-level communication
• Distributed shared memory
• Load balancing

– Distributed Systems
Operating Systems - July 5, 2001

Multiple Processors

Continuous need for faster computers
a) Shared memory multiprocessor
b) Message passing multicomputer
c) Wide-area distributed system

2

Multiprocessor System

Definition
A computer system in which two or more
CPUs share full access to a common
RAM

Multiprocessor System

Two types of multiprocessor systems

• Uniform Memory Access (UMA)
– All memory addresses are reachable as fast as

any other address

• Non-uniform Memory Access (NUMA)
– Some memory addresses are slower than others

3

UMA Multiprocessor Hardware

UMA bus-based multiprocessors
a) CPUs communicate via bus to RAM
b) CPUs have a local cache to reduce bus access
c) CPUs have private memory, shared memory

access via bus

UMA Multiprocessor Hardware

UMA multiprocessor using a crossbar switch
– Alleviates bus access problems, but is expensive (grows as n2)

4

UMA Multiprocessor Hardware

• UMA multiprocessors using multistage switching
networks can be built from 2 × 2 switches
– Input to switches in in the form of a message

 a) 2 × 2 switch b) Message format

UMA Multiprocessor Hardware

UMA omega switching network
– Less costly than crossbar switch

5

NUMA Multiprocessor Hardware

NUMA Multiprocessor Characteristics

• Single address space visible to all CPUs

• Access to remote memory via commands
- LOAD

- STORE

• Access to remote memory slower than to local

NC-NUMA versus CC-NUMA
– No cache versus cache-coherent

NUMA Multiprocessor Hardware

a) 256-node directory-based multiprocessor
b) Fields of 32-bit memory address
c) Directory at node 36

6

Multiprocessor OS Paradigms

Each CPU has its own operating system
– Allows sharing of devices
– Efficient process communication via shared memory
– Since each OS is independent

• No process sharing among CPUs
• No page share among CPUs
• Makes disk buffering very difficult

Multiprocessor OS Paradigms

Master-slave multiprocessors
– OS and all tables are on one CPU

• Process sharing, so no idle CPUs
• Page sharing
• Disk buffers

– Master CPU becomes a bottleneck

7

Multiprocessor OS Paradigms

Bus

Symmetric multiprocessors
– One copy of OS, but any CPU can run it
– Balances processes and memory dynamically
– Eliminates bottleneck
– More complicated requires reasonably fine-grained

synchronization to avoid bottleneck, deadlock issues

Multiprocessor Synchronization

Locking
– Test-and-set instructions fail is bus cannot be locked
– Create contention for bus, caching doesn’t help since

test-and-set is a write instruction
– Could read first, before test-and-set; also use

exponential back-off

8

Multiprocessor Synchronization

Locking with multiple private locks
– Try to lock first, if failed, create private lock and put

it at the end of a list of CPUs waiting for lock
– Lock holder releases original lock and frees private

lock of first CPU on waiting list

Multiprocessor Synchronization

Spinning versus Switching

• In some cases CPU must wait
– For example, must wait to acquire ready list

• In other cases a choice exists
– Spinning wastes CPU cycles

– Switching uses up CPU cycles also

– Possible to make separate decision each time locked mutex
encountered

9

Multiprocessor Scheduling

• Timesharing
– Non-related processes
– Note use of single data structure for scheduling

• Provides automatic load balancing
• Contention for process list

Multiprocessor Scheduling

• What about processes holding a spin lock?
– Does not make sense to block such a process

• In general, all CPUs are equal, but some are more
equal than others
– The CPU cache may have cached blocks of process that was

previously running on it

– The CPU TLB may have cached pages of a process that was
previously running on it

– Use affinity scheduling to try to keep processes on the same
CPU

10

Multiprocessor Scheduling

• Space sharing
– Related processes/threads
– Multiple threads at same time across multiple CPUs

• A group of threads is created and assigned to CPUs as a block
• Group runs until completion

– Eliminates multiprogramming and context switches
– Potentially wastes CPU time, when CPUs left idle

Multiprocessor Scheduling

• Potential communication problem when scheduling
threads independently
– A0 and A1 both belong to process A
– Both running out-of-phase

11

Multiprocessor Scheduling

• Need to avoid wasting idle CPUs and out-of-
phase thread communication

• Solution: Gang Scheduling
– Groups of related threads scheduled as a unit (a gang)

– All members of gang run simultaneously on different
timeshared CPUs

– All gang members start and end time slices together

Multiprocessor Scheduling

Gang scheduling
• All CPUs scheduled synchronously

• Still has some idle time and out-of-phase, but reduced

12

Multicomputers

Definition
Tightly-coupled CPUs that do not share memory

Also known as
– Cluster computers

– Clusters of workstations (COWs)

Multicomputer Interconnection

Interconnection topologies
a) single switch d) double torus
b) ring e) cube
c) grid f) hypercube

13

Multicomputer Interconnection

• Switching schemes
– Store-and-forward packet switching

• Send a complete packet to first switch

• Complete packet is received and forward to next switch

• Repeated until it arrives at destination

• Increases latency due to all the copying

– Circuit switching
• Establishes a path through switches (i.e., a circuit)

• Pumps packet bits non-stop to destination

• No intermediate buffer

• Requires set-up and tear-down time

Multicomputer Network Interface

• Interface boards usually contain buffer for packets
– Needs to control flow onto interconnection network when sending and

receiving packets

• Interface boards can use DMA to copy packets into main RAM

14

Multicomputer Network Interface

• Must avoid unnecessary copying of packets
– Problematic if interface board is mapped into kernel memory

• Map interface board into process memory
• If several processes are running on node

– Each needs network access to send packets …
– Must have sharing/synchronization mechanism

• If kernel needs access to network …
• One possible solution is to use two network boards

– One for user space, one for kernel space

Multicomputer Network Interface

Node to network interface communication
• Complicated when user is controlling DMA
• If interface has its own CPU, then must coordinate

with man CPU
– Use send & receive rings

15

Multicomputer User-Level Communication

• Bare minimum, send and receive
– Blocking versus non-blocking

• Choices
– Blocking send (CPU idle during message transmission)

– Non-blocking send with copy (CPU time waste for extra copy)

– Non-blocking send with interrupt (makes programming difficult)

– Copy on write (extra copy eventually)

– Pop-up thread
• Creates a thread spontaneously when a message arrives

– Active messages
• Message handler code is run directly in the interrupt handler

Multicomputer User-Level Communication

• The send/receive primitives are wrong paradigm

• Remote procedure call (RPC) maintains procedural
paradigm
– Breaks a procedure into client and server

16

Multicomputer User-Level Communication

RPC implementation issues
• Cannot pass pointers

– Call by reference becomes copy-restore (but might fail)

• Weakly typed languages
– Client stub cannot determine size

• Not always possible to determine parameter types
– Think about printf(…) with variable parameters

• Cannot use global variables
– May get moved to remote machine

Multicomputer Distributed Shared Memory

• Layers where shared memory can be implemented
– Hardware (multiprocessors)
– Operating system

17

Multicomputer Distributed Shared Memory

Replication
a) Pages distributed on 4

machines

b) CPU 0 reads page 10

c) CPU 1 reads page 10

Multicomputer Distributed Shared Memory

• False Sharing

• Must also achieve sequential consistency (i.e.,
cache coherency problem)

18

Multicomputer Process Scheduling

• On a multicomputer, each node has its own
memory and its own set of processes
– This is very similar to a uniprocessor, so process scheduling

can use similar algorithms
• Unless you have multiprocessors as nodes

• The critical aspect of multicomputer scheduling is
allocating processes to processors
– Processor allocation algorithms

• Use various metrics to determine process “load” and how to
properly allocate processes to processors

– These are “load” balancing algorithms

Multicomputer Load Balancing

• Graph-theoretic deterministic algorithm
– Know processes, CPU and memory requirements, and average

communication traffic among processes

– Partition graph to minimize network traffic and to meet constraints
on CPU and memory

Process

19

Multicomputer Load Balancing

• Sender-initiated distributed heuristic algorithm
– Overloaded sender probes for underloaded node
– Searches come during heavy loads, which adds more load

Multicomputer Load Balancing

• Receiver-initiated distributed heuristic algorithm
– Under loaded sender probes for overloaded node
– Searches come during lower loads

20

Distributed Systems

Comparison of three kinds of multiple CPU systems

Distributed System Middleware

Achieving uniformity with middleware

