L ecture Overview

* |/O devices
— 1/O hardware
— Interrupts
— Direct memory access
— Device dimensions
— Devicedrivers
— Kernel 1/0 subsystem

Operating Systems - June 26, 2001

/O Device | ssues

» The control of 1/O devicesis amajor concern for
OS designers

— There are many different devices that vary greatly in
function and speed
— While software and hardware trends are towards standard

interfaces, new devices are continually introduced and may
not fit nicely in existing device categories

/O Hardware

* A device communicates with the computer viaa
connection point, called a port

* |f one or more devices use a common set of wireto
communicate with the computer, thisis a bus
— A bus also requires a protocol for accessing it
— Another form of abusisadaisy chain

» A controller is some hardware that operates a port,
bus, or device
— Some controllers are ssimple, like a serial-port controller

— Others are complex, like a SCSI-bus controller (it often uses
a separate host adapter circuit board)

/O Hardware

* How does the processor give commands and data
to the controller

— Controllers have one or more registers control and data
signals, the processor writes to these registers

— There are special 1/0 instructionsto transfer datato an 1/0
port address over the bus

— In some cases, it is possible to use memory-mapped 1/0O
where the device registers are mapped into the address space
of the processor

— Itispossible to use both techniques

Device |/O Port Locations

» Asan example, atypical PC usesthese I/O port
locations

1/0 address range (hex) device
000 - oof DMA controller
020 - 021 interrupt controller
040 - 043 timer
200 - 20f game controller
2f8 — 2ff serial port (secondary)
320 - 32f hard disk controller
378 — 37f parallel port
3d0 - 3df graphics controller
3f0 - 3f7 diskette drive controller
3f8 — 3ff serial port (primary)

— The graphics controller also uses memory-mapped /0O

|/O Device Coordination via Polling

» Determines state of device using bit flagsin the
device controller, such as
— command- r eady, busy,error,wite

» Busy-wait cycle to wait for 1/O from device
— Host repeatedly reads busy bit until it isclear
— Host setswr i t e bit and writes bytein dat a- out register
— Host setscommand- r eady bit
— Controller notices command, sets busy bit, does command
— Clearscommand- r eady and busy bits
— Loop repeatedly
» Thisisbusy-waiting or polling
— Problematic when used with slow devices

|/O Device Coordination via Interrupts

* CPU hardware hasa“wire” caled the interrupt
request line
— The CPU interrupt request lineis triggered by 1/0 devices
— The CPU checks thisline after every instruction execution
— If line set, the CPU saves a small amount of state, then
jumps to the interrupt handler routine
— Theinterrupt handler determines cause of interrupt,
performs necessary processing, and then returns the CPU to
the execution state prior to the interrupt
» We say that adevice controller raises an interrupt by
asserting asignal on the interrupt request line; the CPU

catches the interrupt and dispatches the interrupt handler
which clears the interrupt

|/O Device Coordination via Interrupts

* Interrupt-driven I/O cycle

G ceriodisr

dhivaa i Rk

c e

P g
eI o L bt e N

—

|/O Device Coordination via Interrupts

* Interrupt-driven I/O allows the CPU to respond to
asynchronous 1/0 events while still doing other work
» Many sophisticated interrupt handling schemes include
(viaahardware interrupt controller)
— Ability to defer interrupt handling during critical processing
— Efficient way to dispatch to proper handler
— Multilevel interrupts based on priority
* Interrupts may be either maskable (i.e., it can be deferred
during critical regions) or non-maskable (i.e., it cannot be
deferred)
» Theinterrupt vector isheld in a specific memory location
and is atable of interrupt handlers

— Theindex into the vector corresponds to the device that raised the
interrupt

|/O Device Coordination via Interrupts

* A Pentium vector table

vector vector

number | description number | description
0 divide error 11 segment not present
1 debug exception 12 stack fault
2 null interrupt 13 general protection
3 breakpoint 14 page fault
4 [overflow] 15 (reserved)
5 range exception 16 floating-point error
6 invalid opcode 17 alignment check
7 device not available 18 machine check
8 double fault 19-31 |(reserved)
9 (reserved) 32-255 | maskable interrupts
10 invalid TSS

— For Linux, 32 to 47 are for IRQs and of the remaining, only
vector number 128 (0x80) is used for system calls

Direct Memory Access (DMA)

The term programmed |/O refers to using the CPU to
monitor and process the low-level receiving of data

from 1/0O devices

DMA isused to avoid programmed |/O for large data

movement

Requires DMA controller

Bypasses CPU to transfer data directly between 1/0

device and memory

— Thisdoeslead to memory cycle stealing from the CPU, but

on averageit is not problematic
— DMA can be implemented to use physical or virtual

addresses
1. dewioe deraer is bodd 0
trarsisr disk data i
bultar af addrass 3 GPU
5. DMA conirclier fmnsfers 2. devios cderenr lels dek e E—
[rytes to buffer X, pamiroler o ransier G
nCroasng mamory s Irom disk o uffar cacha
addmss and decreasing af address %
Cundl C=0
6. whan G = 0, OMA DA besfintermpt | = o
rtarrupls GPU B sigral controdar =GR memary bug = memory
WANENT compkegon
| PG Bus -

DIMA, wrarmfar

IDE disk Gonitralles

ool e

3, ek conhicier i

nikales

&, chak conlrodar aands
wach byte bo DR

Main I/O Concepts Review

A bus
A controller
An1/O port and itsregisters

Handshaking relationship between the host and a
device controller

Execution of handshaking in apolling loop or via
interrupts

Off-loading this work to aDMA controller for
large transfers

Device Dimensions

Character stream or block
Sequential or random access
Synchronous or asynchronous
Sharable or dedicated

Speed of operation

Read/write, read only, or write only

Device Dimensions

* Character stream device
— Commandsincludeget , put
— Libraries layered on top allow line editing

» Block device
— Commandsincluder ead,writ e, seek
— Raw I/O or file-system access
— Memory-mapped file access possible

* Network device
— Different enough have own interface
— Unix and Windows/NT include socket interface
» Separates network protocol from network operation
* Includessel ect functionality
— Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

Device Dimensions

» Clocksand timers
— Provide current time, elapsed time, timer

— Programmableinterval time used for timings, periodic
interrupts

e i octl (onUNIX) coversodd aspects of I/O such

as clocks and timers

— Essentially an escape or back-door system call to directly
access device driver functionality

Application 1/O Interface

» Details /O device usage differs among devices

» The OS abstracts away differences by defining afew
genera kinds of 1/O devices
— Essentialy, it defines interfaces

— Animplementation of one of these interfacesis called adevice
driver, which encapsulates a specific device' s details

— Benefits both the OS writer and the device manufacturer

MrlzimeJ ““““Ker“nd“““J

CUEU R 1 e

Specific devices Devices using driver interface

Blocking and Non-blocking 1/0O

 Blocking - process suspended until I/O completed
— Easy to use and understand
— Insufficient for some needs
» Non-blocking - I/O call returns as much as
available
— User interface, data copy (buffered 1/0)
— Implemented via multithreading
— Returns quickly with count of bytes read or written
» Asynchronous - process runs while 1/O executes

— Difficult to use
— 1/O subsystem signal's process when 1/O completed

Kerne 1/O Subsystem

» Scheduling
— Some I/0 request ordering via per-device queue
— Some OSstry fairness
» Buffering - store datain memory while transferring
between devices
— To cope with device speed mismatch
— To cope with device transfer size mismatch
— To maintain “copy semantics’

Kerne 1/O Subsystem

» Caching - fast memory holding copy of data
— Alwaysjust a copy
— Key to performance
» Spooling - hold output for adevice
— If device can serve only one request at atime (e.g., printing)

» Device reservation - provides exclusive accessto a
device
— System callsfor allocation and deall ocation
— Watch out for deadlock

an

Kerne 1/O Subsystem

 Error handling

— OS can recover from disk read, device unavailable, transient
writefailures

— Most return an error number or code when 1/0 request fails
— System error logs hold problem reports

» Kernel data structures

— Kernel keepsinformation about I/O components, including
open file tables, network connections, character device state

— Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

— Some use object-oriented methods and message passing to
implement 1/0

/O Request Life Cycle

» Consider reading afile from disk for a process
— Determine device holding file
— Trandlate name to device representation
— Physically read datafrom disk into buffer
— Make data available to requesting process
— Return control to process

1

/O Request Life Cycle

/O Performance

* |/O amajor factor in system performance
— Demands CPU to execute device driver, kernel 1/0 code
— Context switches due to interrupts
— Data copying
— Network traffic especially stressful
» Toimprove performance
— Reduce number of context switches
— Reduce data copying

— Reduce interrupts by using large transfers, smart controllers,

polling
— UseDMA

— Balance CPU, memory, bus, and 1/0O performance for
highest throughput

an

/O Performance

» Performance also relates to where device support is
implemented
— Application code is the slowest, but offers many advantages
when building a new an untested device

— Kernel code isfaster because it reduces context switching
and provides access to internal structures, but the device
must be stable

— Hardware code isfor optimal performance, but device must
be really stable because it is difficult to change

an

