
1

Lecture Overview

• I/O devices
– I/O hardware

– Interrupts

– Direct memory access

– Device dimensions

– Device drivers

– Kernel I/O subsystem

Operating Systems - June 26, 2001

I/O Device Issues

• The control of I/O devices is a major concern for
OS designers
– There are many different devices that vary greatly in

function and speed

– While software and hardware trends are towards standard
interfaces, new devices are continually introduced and may
not fit nicely in existing device categories



2

I/O Hardware

• A device communicates with the computer via a
connection point, called a port

• If one or more devices use a common set of wire to
communicate with the computer, this is a bus
– A bus also requires a protocol for accessing it

– Another form of a bus is a daisy chain

• A controller is some hardware that operates a port,
bus, or device
– Some controllers are simple, like a serial-port controller

– Others are complex, like a SCSI-bus controller (it often uses
a separate host adapter circuit board)

I/O Hardware

• How does the processor give commands and data
to the controller
– Controllers have one or more registers control and data

signals, the processor writes to these registers

– There are special I/O instructions to transfer data to an I/O
port address over the bus

– In some cases, it is possible to use memory-mapped I/O
where the device registers are mapped into the address space
of the processor

– It is possible to use both techniques



3

Device I/O Port Locations

• As an example, a typical PC uses these I/O port
locations

– The graphics controller also uses memory-mapped I/O

I/O address range (hex) device
000 – 00f DMA control ler
020 – 021 interrupt controller
040 – 043 t imer
200 – 20f game controller
2f8 – 2ff serial port (secondary)
320 – 32f hard disk controller
378 – 37f parallel port
3d0 – 3df graphics controller
3f0 – 3f7 diskette drive controller
3f8 – 3ff serial port (primary)

I/O Device Coordination via Polling

• Determines state of device using bit flags in the
device controller, such as
– command-ready, busy, error, write

• Busy-wait cycle to wait for I/O from device
– Host repeatedly reads busy bit until it is clear
– Host sets write bit and writes byte in data-out register
– Host sets command-ready bit
– Controller notices command, sets busy bit, does command
– Clears command-ready and busy bits
– Loop repeatedly

• This is busy-waiting or polling
– Problematic when used with slow devices



4

I/O Device Coordination via Interrupts

• CPU hardware has a “wire” called the interrupt
request line
– The CPU interrupt request line is triggered by I/O devices

– The CPU checks this line after every instruction execution

– If line set, the CPU saves a small amount of state, then
jumps to the interrupt handler routine

– The interrupt handler determines cause of interrupt,
performs necessary processing, and then returns the CPU to
the execution state prior to the interrupt

• We say that a device controller raises an interrupt by
asserting a signal on the interrupt request line; the CPU
catches the interrupt and dispatches the interrupt handler
which clears the interrupt

I/O Device Coordination via Interrupts

• Interrupt-driven I/O cycle



5

I/O Device Coordination via Interrupts

• Interrupt-driven I/O allows the CPU to respond to
asynchronous I/O events while still doing other work

• Many sophisticated interrupt handling schemes include
(via a hardware interrupt controller)
– Ability to defer interrupt handling during critical processing
– Efficient way to dispatch to proper handler
– Multilevel interrupts based on priority

• Interrupts may be either maskable (i.e., it can be deferred
during critical regions) or non-maskable (i.e., it cannot be
deferred)

• The interrupt vector is held in a specific memory location
and is a table of interrupt handlers
– The index into the vector corresponds to the device that raised the

interrupt

I/O Device Coordination via Interrupts

• A Pentium vector table

– For Linux, 32 to 47 are for IRQs and of the remaining, only
vector number 128 (0x80) is used for system calls

vector
number description

vector
number description

0 divide error 11 segment not present
1 debug exception 12 stack fault
2 null interrupt 13 general protection
3 breakpoint 14 page fault
4 [overflow] 15 (reserved)
5 range exception 16 floating-point error
6 invalid opcode 17 alignment check
7 device not available 18 machine check
8 double fault 19-31 (reserved)
9 (reserved) 32-255 maskable interrupts

10 invalid TSS



6

Direct Memory Access (DMA)

• The term programmed I/O refers to using the CPU to
monitor and process the low-level receiving of data
from I/O devices

• DMA is used to avoid programmed I/O for large data
movement

• Requires DMA controller

• Bypasses CPU to transfer data directly between I/O
device and memory
– This does lead to memory cycle stealing from the CPU, but

on average it is not problematic

– DMA can be implemented to use physical or virtual
addresses

DMA Transfer



7

Main I/O Concepts Review

• A bus

• A controller

• An I/O port and its registers

• Handshaking relationship between the host and a
device controller

• Execution of handshaking in a polling loop or via
interrupts

• Off-loading this work to a DMA controller for
large transfers

Device Dimensions

• Character stream or block

• Sequential or random access

• Synchronous or asynchronous

• Sharable or dedicated

• Speed of operation

• Read/write, read only, or write only



8

Device Dimensions

• Character stream device
– Commands include get, put
– Libraries layered on top allow line editing

• Block device
– Commands include read, write, seek
– Raw I/O or file-system access
– Memory-mapped file access possible

• Network device
– Different enough have own interface
– Unix and Windows/NT include socket interface

• Separates network protocol from network operation
• Includes select functionality

– Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

Device Dimensions

• Clocks and timers
– Provide current time, elapsed time, timer

– Programmable interval time used for timings, periodic
interrupts

• ioctl (on UNIX) covers odd aspects of I/O such
as clocks and timers
– Essentially an escape or back-door system call to directly

access device driver functionality



9

Application I/O Interface

• Details I/O device usage differs among devices

• The OS abstracts away differences by defining a few
general kinds of I/O devices
– Essentially, it defines interfaces

– An implementation of one of these interfaces is called a device
driver, which encapsulates a specific device’s details

– Benefits both the OS writer and the device manufacturer

Kernel

Specific devices

Kernel

Devices using driver interface

Blocking and Non-blocking I/O

• Blocking - process suspended until I/O completed
– Easy to use and understand

– Insufficient for some needs

• Non-blocking - I/O call returns as much as
available
– User interface, data copy (buffered I/O)

– Implemented via multithreading

– Returns quickly with count of bytes read or written

• Asynchronous - process runs while I/O executes
– Difficult to use

– I/O subsystem signals process when I/O completed



10

Kernel I/O Subsystem

• Scheduling
– Some I/O request ordering via per-device queue

– Some OSs try fairness

• Buffering - store data in memory while transferring
between devices
– To cope with device speed mismatch

– To cope with device transfer size mismatch

– To maintain “copy semantics”

Kernel I/O Subsystem

• Caching - fast memory holding copy of data
– Always just a copy

– Key to performance

• Spooling - hold output for a device
– If device can serve only one request at a time (e.g., printing)

• Device reservation - provides exclusive access to a
device
– System calls for allocation and deallocation

– Watch out for deadlock



11

Kernel I/O Subsystem

• Error handling
– OS can recover from disk read, device unavailable, transient

write failures

– Most return an error number or code when I/O request fails

– System error logs hold problem reports

• Kernel data structures
– Kernel keeps information about I/O components, including

open file tables, network connections, character device state

– Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

– Some use object-oriented methods and message passing to
implement I/O

I/O Request Life Cycle

• Consider reading a file from disk for a process
– Determine device holding file

– Translate name to device representation

– Physically read data from disk into buffer

– Make data available to requesting process

– Return control to process



12

I/O Request Life Cycle

I/O Performance

• I/O a major factor in system performance
– Demands CPU to execute device driver, kernel I/O code
– Context switches due to interrupts
– Data copying
– Network traffic especially stressful

• To improve performance
– Reduce number of context switches
– Reduce data copying
– Reduce interrupts by using large transfers, smart controllers,

polling
– Use DMA
– Balance CPU, memory, bus, and I/O performance for

highest throughput



13

I/O Performance

• Performance also relates to where device support is
implemented
– Application code is the slowest, but offers many advantages

when building a new an untested device

– Kernel code is faster because it reduces context switching
and provides access to internal structures, but the device
must be stable

– Hardware code is for optimal performance, but device must
be really stable because it is difficult to change


