
1

Lecture Overview

• Linux filesystem
– Linux virtual filesystem (VFS) overview

• Common file model
– Superblock, inode, file, dentry

• Object-oriented

– Ext2 filesystem
• Disk data structures

– Superblock, block group, inodes

• Memory data structures

• Disk space management

Operating Systems - June 19/21, 2001

The Linux Virtual Filesystem

• Virtual filesystem (VFS)
– Provides an abstraction layer between the application program and

the filesystem implementations

– Provides support for many different kinds and types of filesystems

• Disk-based, network, and special filesystems

Program
(cp, rm)

VFS

ext2

NTFS

NFS

Block Device

Block Device

Network

2

The Common File Model

• VFS introduces a common file model to represent all
supported filesystems

• The common file model is specifically geared toward
Unix filesystems, all other filesystems must map their
own concepts into the common file model
– For example, FAT filesystems do not have inodes

• The main components of the common file model are
– superblock (information about mounted filesystem)

– inode (information about a specific file)

– file (information about an open file)

– dentry (information about directory entry)

Common File Model Objects

• Interaction among objects

Storage
Device

proc1

proc2

file

file

dentry dentry

inode

superblock

fd

fd

f_dentry

f_dentry

d_inode

i_sb

Dentry cache

Hardlink

3

Object-Oriented Approach of VFS

• Each concept object has a set of defined operations
that can be performed on the object (i.e., methods)

• VFS provides certain generic implementations for
some operations

• Specific filesystem implementations must provide
implementation specific operations definitions
(i.e., inheritance and method overloading)

• There are no objects in C, though, so a table of
function pointers is used for each object to provide
its own version of the specific operations

Processes and Associated Files

• Each process has its own current working directory
and its own root directory, this is stored in an
fs_struct in the fs field of the process
descriptor

• The open files of a process are stored in a
files_struct in the files field of the
process descriptor
– When performing an open() system call, the file descriptor

is actually an index into an array of the file objects in the
fd array field of the process descriptors files field

• For example, current->files->fd[1] is standard
output for the process

4

The Ext2 Filesystem

• The first versions of Linux used the Minix
filesystem

• Linux later introduced the Extended Filesystem,
which as an improvement but offered
unsatisfactory performance

• The Second Extended Filesystem (Ext2) was
introduced in 1994

The Ext2 Filesystem Characteristics

• Configurable block size from 1024 to 4096 bytes

• Configurable number of inodes

• Partitions blocks into groups, where data blocks and
inodes are stored in adjacent tracks

• Pre-allocates data blocks to regular files before they
are used

• Supports “fast” symbolic links

• Implemented for robustness when updating disk
structures

• Supports automatic consistency checking

• Supports immutable and append-only files

5

Ext2 Disk Data Structures

• The first block in all Ext2 partitions is always reserved
for the boot sector

• The remainder of the partition is split into block
groups
– All block groups are the same size and are stored sequentially on

the disk

– Block groups reduce file fragmentation, since the kernel tries to
keep the data blocks belonging to a file in the one block group if
possible

– The next slide illustrates the block group structure

Block Group Disk Data Structure

• It should come as no surprise that the VFS concepts map easily
to the Ext2 structure

• Only the superblock and group descriptors in block group 0 are
used by the kernel

• Block group size depends on partition and block size
– 8GB partition with 4KB block, has 32k bits in block bitmap or 128MB;

therefore 64 block groups are needed

Boot
Block

Block Group 0 Block Group N...

Super
Block

Group
Descriptors

Data block
Bitmap

Inode
Bitmap

Inode
Table

Data Blocks

6

Superblock Disk Data Structure

• The superblock is stored in an ext2_super_block
structure

• Contains
– Total number of inodes

– Filesystem size in blocks

– Free block counter

– Free inode counter

– Block size

– Blocks per group

– Inodes per group

– 128-bit filesystem identifier

– Mount counter

– etc.

Group Descriptor Disk Data Structure

• Each block group has its own group descriptor, an
ext2_group_desc structure

• Contains
– Block number of block bitmap

– Block number of inode bitmap

– Block number of first inode table block

– Number of free blocks in group

– Number of free inodes in group

– Number of directories in group

– etc.

7

 Inode Table Disk Data Structure

• The inode table consists of a series of consecutive
blocks, each packed with inodes of the structure
ext2_inode

• All inodes are the same size (128 bytes in Linux 2.2)

• An inode contains
– File type and access rights

– Owner and group identifiers

– File length in bytes

– Number of data blocks in the file

– Various timestamp attributes

– An array of (usually 15) data block pointers

– etc.

Example Inode File Types

• Regular file
– Need data blocks when it starts to have data

• Directory file
– Special kind of file whose data blocks store filenames with

corresponding inode numbers (actually it contains structures of
type ext2_dir_entry_2)

• Each directory structure contains inode number, entry length,
name length, file type, and file name

• Variable length structure, padded to be a multiple of 4

• Symbolic link
– Up to 60 characters are stored in the data block pointer array of

the inode structure for “fast” symbolic links

– If longer than 60 characters, then a data block is required

8

Ext2 Memory Data Structures

• For efficiency, most information stored in disk
data structures is copied into RAM when the
filesystem is mounted

• Consider how often data structures change
– Whenever a new file is created

– Whenever a file needs more disk blocks

– Whenever access times need to be updated

• Some in-memory data structures differ from on-
disk data structures

Ext2 Memory Data Structures

Type Disk structure Memory structure Caching
Superblock ext2_super_block ext2_sb_info Always
Group descriptor ext2_group_desc ext2_group_desc Always
Block bitmap Bit array in block Bit array in buffer Fixed
Inode bitmap Bit array in block Bit array in buffer Fixed
Inode ext2_inode ext2_inode_info Dynamic
Data block Unspecified Buffer Dynamic
Free inode ext2_inode None Never
Free block Unspecified None Never

Corresponding data structures and caching policies

9

Superblock Memory Data Structure

• An ext2_sb_info structure pointer is placed in
the VFS superblock data structure when an Ext2
filesystem is mounted
– This memory data structure contains most of the information

from the disk data structure for the Ext2 superblock

– Contains data related to mount state, options, etc.

– Also contains a block bitmap cache and an inode bitmap
cache

• It is not feasible to keep all disk bitmaps in memory, so it is
necessary to cache some and leave the rest on disk

• Uses a LRU algorithm over (usually) 8 cache entries

Inode Memory Data Structure

• An ext2_inode_info structure pointer is
placed in the VFS inode data structure
– Contains most of the fields in the Ext2 disk inode structure

– Information for block preallocation

– Flag to indicate whether I/O operations should be done
synchronously

10

Ext2 Operations

• Ext2 superblock operations
– Essentially, specific implementations are provided for all

VFS operations (except 2)

• Ext2 inode, directory, and file operations
– Many operations have specific implementations, but in many

cases the generic VFS operations are sufficient

Creating a Filesystem

• Ext2 filesystems are created with the utility program
/sbin/mke2fs
– Default options: block 1024 bytes, one inode for each group of

4096 bytes, 5% reserved blocks
– It performs these actions

• Initializes superblock and group descriptors
• Creates a list of defective blocks
• For each block group, reserves all blocks needed to store superblock,

descriptors, bitmaps, and inode table
• Initializes all bitmaps to zero
• Initializes all inode tables
• Creates root directory
• Creates lost+found directory
• Updates inode bitmap and data bitmap of block group where the above

directories were added
• Groups defective blocks in the lost+found directory

11

Creating a Filesystem

• Consider a filesystem created on a 1.4MB floppy disk
– A single group descriptor is sufficient, 72 (5% of 1440)

reserved blocks, 360 inodes in 45 blocks

Block Content
0 Boot block
1 Superblock
2 Block containing single block group descriptor
3 Data block bitmap
4 Inode bitmap
5-49 Inode table (inodes up to 10 are reserved, inode 11 is lost+found)
50 Root directory
51 lost+found directory
52-62 Reserved blocks preallocated for lost+found directory
63-1439 Free block

Ext2 Managing Disk Space

• The goals for disk space management are twofold
– Make every effort to avoid file fragmentation

• Increases average time of file operations

• Similar problems as associated with memory allocation

– Make every effort to be time-efficient
• Conversion between file offset and logical block number must

be performed quickly

• Need to limit accesses to disk data structures

12

Ext2 Managing Disk Space

• Allocating inodes
– Occurs in ext2_new_inode()

– Requires the parent inode and the mode (i.e., type) of the file
to be created

– If the inode is for a directory
• Forward search from the parent’s block group for a block

group with free space and a low directory-to-inode ratio

• If that fails, searches for block groups with above average free
space and chooses the one with the fewest directories

– If the inode is for any other type
• Forward search from the parent’s block group for a free inode

– Updates inode bitmap, decrements inode counters, puts the
inode into the superblock’s dirty list

Ext2 Managing Disk Space

• Releasing inodes
– Occurs in ext2_free_inode()

– Requires inode to deallocate

– Is called after inode is removed from the inode has table,
after the last hard link has been deleted, and after the file is
truncated to 0

– Computes the index of the block group using the inode
number and number of inodes per block group

– Releases all pages in the page cache associated with inode
(e.g., for memory mapped I/O)

– Updates inode bitmap, increments inode counters, puts the
inode into the superblock’s dirty list

13

Ext2 Managing Disk Space

• Data block addressing
– A non-empty regular file consists of a group of data blocks

• The blocks can be referred to by their relative position inside
the file (file block number) or their position inside the disk
partition (logical block number)

– Deriving the logical block number from an offset f inside a
file is a two-step process

• Derive from f the file block number
– This is easy, divide f by block size and round down to an integer

• Translate the file block number to the logical block number
– This is not so easy

Ext2 Managing Disk Space

• Data block addressing
– Recall that an inode has an array of 15 block pointer

– The first 12 entries actually point to data blocks

– The 13th entry points a disk block that contains pointers to
data blocks for the file, i.e., a single level of indirection

– The 14th entry points to a disk block that contains pointers
to disk blocks that contain pointers to data blocks, i.e., two
levels of indirection

– The 15th entry points to a disk block that contains pointers
to disk blocks that contain pointers to disk blocks that
contain pointers data blocks, i.e., three levels of indirection

– Use an algorithm to convert the file block number into the
indices (i.e., logical block number) to find the physical block

14

Ext2 Managing Disk Space

• Data block addressing

11

......

66 1212

......

......

......
(b/4)2 +
2(b/4) +

11

(b/4)2 +
2(b/4) +

11

(b/4)2 +
(b/4) +

12

(b/4)2 +
(b/4) +

12

(b/4) +
12

(b/4) +
12

File
block
numbers

i_block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Logical
block numbers
(i.e., the location
of the pointer values)

Ext2 Managing Disk Space

• Allocating data blocks
– Occurs in ext2_getblk()

– Requires an inode for the request and a “goal”
• The goal is a preferred logical block number

• The preferred logical block number is the previously allocated
block number plus one or any of the previously allocated
block numbers plus one or a logical block number in the
inode’s block group

– This is an attempt to reduce file fragmentation

– Performs pre-allocation of blocks

– Updates the various bookkeeping records

15

Ext2 Managing Disk Space

• Releasing data blocks
– Occurs in ext2_truncate()

– Requires an inode

– Walks i_block to get all of the data blocks to free them

– Updates the various bookkeeping records

